玉米HD-Zip转录因子家族抗旱相关基因的鉴定及Zmhdz10功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米是世界上重要的粮食作物之一,干旱、盐渍、低温等非生物胁迫对玉米的生长造成了严重的影响,也是限制其产量的主要胁迫因素,抗逆育种一直是重要的育种目标。挖掘抗逆相关功能基因并利用这些基因培育抗逆新品种是应对逆境胁迫,提高玉米产量的最为有效途径。研究表明,转录因子在提高作物对胁迫的耐受性过程中起到了重要作用。过量表达特定的胁迫应答转录因子可以调控多个下游抗逆功能基因的同时表达,从而使作物获得良好的综合改良效果。目前,这种方法已经成为植物抗逆遗传改良育种中的研究热点。同源异型-亮氨酸拉链(HD-Zip)蛋白是高等植物特异的一类转录因子,参与了植物的胁迫应答和生长发育调控。因此,挖掘胁迫应答HD-Zip基因对开展玉米抗逆改良育种具有重要的意义。本研究运用生物信息学的方法对玉米全基因组HD-Zip基因进行鉴定,分析这些基因的结构特点、进化关系以及干旱诱导表达模式,并通过过量表达技术对玉米Zmhdz10基因在植物非生物胁迫应答过程中的功能及作用机制进行了研究,获得了如下主要结果:
     1.通过Blast同源搜索,共鉴定了55个非重复的玉米HD-Zip基因家族成员并从基因结构和进化等方面进行了分析。研究发现,玉米HD-Zip家族的大部分基因序列高度保守,与拟南芥和水稻HD-Zip基因在结构上不存在明显差异。根据进化关系,55个玉米HD-Zip基因被进一步分为4个亚族(I-IV)。染色体定位分析显示,55个基因在10条染色体上的分布是非随机的。对玉米HD-Zip基因复制事件进行分析,发现参与片段复制的基因占玉米HD-Zip基因总数的62%,表明片段复制对玉米HD-Zip基因数量的扩张起到了重要作用。
     2.对17个HD-Zip I基因上游2kb启动子序列的抗逆相关顺式作用元件(ABRE,LTRE和DRE)进行了分析,发现除Zmhdz16外,其余16个基因的启动子区域均含有1到多个抗逆相关顺式作用元件。对复制基因启动子区域内的3种顺式作用元件的分布进行比较,发现三种顺式作用元件在复制基因启动子区域内的数量和位置有较大的差异。利用荧光定量PCR方法对HD-Zip I基因的干旱诱导表达模式进行了分析,发现有12个基因的表达显著上调,其它5个基因表达下调。对复制基因的干旱诱导表达模式进行比较,发现复制基因的表达模式总体较为相似,说明这些基因可能存在着基因功能的冗余现象。
     3.根据进化关系和干旱诱导表达模式,筛选了一个受干旱强烈诱导表达的候选基因Zmhdz10并从玉米自交系B73中克隆了该基因。序列分析显示,Zmhdz10基因cDNA全长为825bp,编码274个氨基酸,与玉米B73数据库中公布的序列完全一致。进一步的表达分析发现Zmhdz10的表达还受到盐和外源ABA的诱导。组织表达模式分析显示,Zmhdz10在根、茎、叶、果穗、雄花序、幼芽和花丝7个组织中均有表达,其中在叶中的表达量最高。通过基因枪轰击洋葱表皮细胞的瞬时表达分析显示,Zmhdz10-GFP融合表达蛋白定位在细胞核中。酵母杂交实验表明,Zmhdz10在酵母细胞中能够激活报告基因的表达,能够对反向重复序列CAAT(A/T)ATTG发生特异性的结合。
     4.过量表达Zmhdz10的转基因植株在生长表型上与对照植株没有明显差异。在干旱和盐胁迫处理后,Zmhdz10转基因水稻表现出对胁迫较强的耐受性。通过对相对电解质渗透率、丙二醛含量和脯氨酸含量等生理生化指标进行测定,发现转基因植株在胁迫条件下的相对电解质渗透率和丙二醛含量低于野生型植株,脯氨酸含量高于野生型植株。另外,ABA敏感性实验显示Zmhdz10过量表达转基因植株显著提高了对外源ABA的敏感性。
     5. Zmhdz10过量表达的转基因拟南芥植株同样表现出对干旱和盐胁迫较强的适应性和忍耐力。通过对P5CS1、RD22、RD29B和ABI14个胁迫/ABA应答功能基因的表达分析发现,在干旱条件下,这些抗逆功能基因在转基因拟南芥中的表达量显著高于野生型植株,表达被激活。对参与非依赖ABA信号传导途径的ERD1表达分析显示,该基因在野生型和转基因植株中的表达没有显著差异。
     综上所述,本研究通过Blast同源搜索,在玉米全基因组水平上共鉴定了55个HD-Zip基因。根据基因结构、进化和干旱诱导表达模式等分析结果,克隆了Zmhdz10基因并对其分子生物学特性进行分析。过量表达该基因显著提高了转基因植株耐旱和耐盐性,为利用基因工程的方法改良作物的抗逆性提供了优良的基因资源。同时,转基因植株对ABA的敏感性的增加和胁迫/ABA应答功能基因的表达上调,表明该基因主要通过ABA信号传导途径调控抗逆功能基因的表达,从而提高转基因植株的耐旱和耐盐性。
Maize is one of the most important crops in the world. Environmental stresses,such as drought, salinity and low temperature, have adverse effects on maize growthand yield. Adversity-resistance breeding has been the important breeding objectives.To gain stress tolerance-related functional genes and cultivate new stress-tolerantcrops using these genes is one of the most effective measures to respond abiotic stressand increase maize yield. Stuides showed that transcription factors have importantfunctions on improving crop tolerance to various stresses. Overexpression of aspecific transcription factor related to stress response can regulate the expression ofmultiple downstream stress-responsive genes at the same time and consequentlyimprove comprehensive resistances of crops. At present, this method has become aresearch hotspot in the genetic improvement of plant resistance breeding.Homeodomain-leucine zipper (HD-Zip) proteins are unique to plants and have diversefunctions in regulating plant growth and stress response. Thus, isolating HD-Zipgenes related to stress response has important significance for maizeadversity-resistance breeding. In this study, we performed genome-wide survey ofHD-Zip genes in maize, and characterized their structure features, phylogeneticrelationships and drought-induced expression patterns. We subsequently study thefunctions of Zmhdz10gene in abiotic stress response by overexpressing this gene inplants. The main results are as follows:
     1. By Blast homologous search, a total of55non-redundant HD-Zip genes wereidentified in the maize genome and characterized for their structure and evolution, etc.Results showed that most of the genes have highly conserved sequences, and therewas no significant difference in their structure among different plant species. The55HD-Zip genes were further divided into four classes (I-IV) based on phylogeny.Chromosomal location of these genes revealed that they are distributed unevenlyacross all the10chromosomes. Analysis of gene duplication events showed thatsegmental duplicated genes accounted for62%of the maize HD-Zip genes,suggesting that segmental duplication play an important role in the expansion ofmaize HD-ZIP gene family.
     2. Three types of stress-related cis-elements, including ABRE, LTRE and DREwere identified in the2kb promoter regions upstream of the transcription start site ofthe17HD-Zip I genes. Results showed that all the HD-Zip I genes except for Zmhdz16contained one or more stress-related cis-elements in their promoter regions.By comparing the distribution of the three regulatory elements in the promoter regions,the duplicated genes were found to exhibit significant differences in their promotersequences. Expression levels of the HD-Zip I genes under drought treatment wereinvestigated by quantitative real-time PCR. Of the17HD-Zip I genes, the expressionsof12genes were obviously up-regulated, whereas those of the other5genes weredown-regulated. Expression profiles of the duplicated genes were also compared, andthe results revealed that the duplicated genes exhibited the similar expression patternsunder drought treatment.
     3. According to phylogenetic relationships and drought-induced expressionpatterns, a drought strongly indued gene, Zmhdz10, was cloned from maize inbredline B73. Sequence analysis showed that the full-length cDNA of Zmhdz10is825-bp,which encodes a protein of274amino acids. The cDNA sequence of Zmhdz10shares100%sequence identity to the predicted sequence in the maize B73annotateddatabase. Further expression analysis showed that Zmhdz10was also induced by saltstress and ABA, and tissue-specific expression indicated that Zmhdz10wasconstitutively expressed in roots, stems, leaves, tassels, ears, silks and seedlings, butthe highest expression was detected in leaves. Transient expression showed that theGFP signal was detected only in the nucleus of the onion cell for Zmhdz10-GFPfusion protein using bombarding transformation. Yeast hybrid assays showed thatZmhdz10can activate the expression of the reporter genes, and specifically bind tothe pseudopalindromic sequence CAAT(A/T)ATTG.
     4. Zmhdz10overexpression transgenic plants have no significant differences inthe morphology compared with control plants. After drought and salt treatments,Zmhdz10overexpression transgenic plants showed significantly enhanced tolerance todrought and salt stresses. Relative electrolyte leakage, malondialdehyde and prolinewere tested in WT and transgenic plants. Results showed that relative electrolyteleakage and malondialdehyde content in Zmhdz10overexpression plants weresignificantly lower than that in WT plants under stressed conditions, but prolinecontent was higher than that in WT plants. In addition, ABA sensitivity assayindicated that Zmhdz10overexpression transgenic plants exhibit significantlyincreased sensitivity to ABA.
     5. Zmhdz10overexpression Arabidopsis plants also showed significantlyimproved tolerance to drought and salt stresses. After drought treatment, expression levels of the tested stress/ABA-responsive marker genes, including P5CS1, RD22,RD29B and ABI1, were significantly higher than detected in WT plants, suggestingthat expression of these genes were actived in transgenic plants. No significantdifference in the expression of ERD1was found between WT and transgenic plantsafter drought treatment, which was proved to involve in the ABA-independentpathways as described previously.
     In conclusion, a total of55HD-Zip genes were identified in the maize genomeby Blast homologous search. According to the analysis of gene structure, phylogeneticrelationships and drought-induced expression patterns, Zmhdz10gene was cloned, andits molecular biological characteristics were also analyzed in this study.Overexpression of Zmhdz10could significantly increase tolerance to drought and saltstresses, which provides an excellent gene resource for improving crop resistancethrough genetic engineering methods. Moreover, the increased sensitivity to ABA andup-regulated expression of stress/ABA-responsive functional genes of transgenicplants indicate that Zmhdz10can regulate the expression of stress tolerance-relatedfunctional genes in response to abiotic stress through the ABA signal transductionpathway.
引文
[1] Fujita M, Fujita Y, Noutoshi Y, et al. Crosstalk between abiotic and biotic stressresponses: a current view from the points of convergence in the stress signalingnetworks. Curr Opin Plant Biol,2006,9:436~442
    [2] Valliyodan B, Nguyen HT. Understanding regulatory networks and engineeringfor enhanced drought tolerance in plants. Curr Opin Plant Biol,2006,9:189~195
    [3]汤章城.植物对水分胁迫的反应和适应性-I.抗逆性的一般概念和植物的抗涝性.植物生理学通讯,1983,3:21~29
    [4]钱正英,张兴斗.中国可持续发展水资源战略研究综合报告.中国水利学会2001学术年会论文集,2001,2:1~17
    [5] Ghassemi F, Jakeman AJ, Nix HA. Salinisation of land and water resources:human causes, extent, management and case studies. University of New SouthWales Press, Canberra, Australia,1995
    [6] Wang J, Huang X, Zhong T, et al. Review on sustainable utilization ofsalt-affected land. Acta Geographica Sinica,2011,5:013
    [7]梁慧敏,夏阳,王太明.植物抗寒冻,抗旱,耐盐基因工程研究进展.草业学报,2003,12:1~7
    [8] Skriver K, Mundy J. Gene expression in response to abscisic acid and osmoticstress. Plant Cell,1990,2:503~512
    [9] Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in droughtstress response and tolerance. J Exp Bot,2007,58:221~227
    [10] Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants.Annu Rev Plant Physiol Plant Mol Biol,1996,47:377~403
    [11] Ohno R, Takumi S, Nakamura C. Kinetics of transcript and proteinaccumulation of a low-molecular-weight wheat LEA D-11dehydrin inresponse to low temperature. J Plant Physiol,2003,160:193~200
    [12] Wei W, Huang J, Hao YJ, et al. Soybean GmPHD-type transcription regulatorsimprove stress tolerance in transgenic Arabidopsis plants. PLoS One,2009,4:e7209
    [13]李剑,赵常玉,张富生等. LEA蛋白与植物抗逆性.植物生理学报,2010,11:1101~1108
    [14]刘洋,邢鑫,李德全. LEA蛋白的分类与功能研究进展.生物技术通报,2011,8:36~43
    [15]刘迪秋,王继磊,葛锋等.植物水通道蛋白生理功能的研究进展.生物学杂志,2009,26:63~66
    [16]李军,乙引.植物水通道蛋白的运输和调节.植物生理学通讯,2010,5:493~498
    [17] Tyerman SD, Niemietz CM, Bramley H. Plant aquaporins: multifunctionalwater and solute channels with expanding roles. Plant Cell Environ,2002,25:173~194
    [18]郭惠红,高述民,李凤兰等.植物抗冻蛋白和抗寒基因表达的调控.植物生理学通讯,2003,6:555~560
    [19]张振华,卢孟柱,王义强等.抗冻蛋白提高植物抗寒性研究进展.中国农学通报,2011,27:342~346
    [20] Coleman HD, Yan J, Mansfield SD. Sucrose synthase affects carbonpartitioning to increase cellulose production and altered cell wall ultrastructure.Proc Natl Acad Sci U S A,2009,106:13118~13123
    [21] Abebe T, Guenzi AC, Martin B, et al. Tolerance of mannitol-accumulatingtransgenic wheat to water stress and salinity. Plant Physiol,2003,131:1748~1755
    [22] Verbruggen N, Hermans C. Proline accumulation in plants: a review. AminoAcids,2008,35:753~759
    [23] Takabe T. Engineering of betaine biosynthesis and transport for abiotic stresstolerance in plants. J Plant Biochem Biot,2012,21:1~5
    [24] Sakamoto A, Alia, Murata N. Metabolic engineering of rice leading tobiosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol,1998,38:1011~1019
    [25]彭志红,彭克勤.渗透胁迫下植物脯氨酸积累的研究进展.中国农学通报,2002,18:80~83
    [26]王娟,李德全.逆境条件下植物体内渗透调节物质的积累与活性氧代谢.植物学通报,2001,18:459~465
    [27] Yoshiba Y, Nanjo T, Miura S, et al. Stress-responsive and developmentalregulation of Delta(1)-pyrroline-5-carboxylate synthetase1(P5CS1) geneexpression in Arabidopsis thaliana. Biochem Biophy Res Co,1999,261:766~772
    [28] Yoshiba Y, Kiyosue T, Nakashima K, et al. Regulation of levels of proline as anosmolyte in plants under water stress. Plant Cell Physiol,1997,38:1095~1102
    [29]赵瑞雪,朱慧森,程钰宏等.植物脯氨酸及其合成酶系研究进展.草业科学,2008,25:90~97
    [30]孟凤,郁松林,郑强卿等.甜菜碱与植物抗逆性关系之研究进展.中国农学通报,2008,24:225~228
    [31]梁峥,骆爱玲.甜菜碱和甜菜碱合成酶.植物生理学通讯,1995,31:1~8
    [32]马旭俊,朱大海.植物超氧化物歧化酶(SOD)的研究进展.遗传,2003,25:225~231
    [33]陈金峰,王宫南,程素满.过氧化氢酶在植物胁迫响应中的功能研究进展.西北植物学报,2008,28:188~193
    [34]雷安平,陈欢,黎双飞等.谷胱甘肽-S-转移酶的功能,应用及克隆表达.环境科学与技术,2009,32:85~91
    [35]江香梅,黄敏仁.植物抗盐碱,耐干旱基因工程研究进展.南京林业大学学报,2001,25:57~62
    [36] Stone JM, Walker JC. Plant protein kinase families and signal transduction.Plant Physiol,1995,108:451~457
    [37]刘强,张勇,陈受宜.干旱,高盐及低温诱导的植物蛋白激酶基因.科学通报,2000,45:561~566
    [38]裴丽丽,郭玉华,徐兆师等.植物逆境胁迫相关蛋白激酶的研究进展.西北植物学报,2012,32:1052~1061
    [39] Jonak C, Kiegerl S, Ligterink W, et al. Stress signaling in plants: amitogen-activated protein kinase pathway is activated by cold and drought.Proc Natl Acad Sci U S A,1996,93:11274~11279
    [40] Kovtun Y, Chiu WL, Zeng W, et al. Suppression of auxin signal transductionby a MAPK cascade in higher plants. Nature,1998,395:716~720
    [41]吴涛,宗晓娟,谷令坤等.植物中的MAPK及其在信号传导中的作用.生物技术通报,2006,5:1~7
    [42]李书粉,孙富丛,肖理慧等.植物对非生物胁迫应答的转录因子及调控机制.西北植物学报,2006,26:1295~1300
    [43]刘欣,李云.转录因子与植物抗逆性研究进展.中国农学通报,2006,22:61~65
    [44] Luan S. Tyrosine phosphorylation in plant cell signaling. Proc Natl Acad Sci US A,2002,99:11567~11569
    [45] Davies WJ, Zhang J. Root signals and the regulation of growth anddevelopment of plants in drying soil. Annu Rev Plant Biol,1991,42:55~76
    [46]孙芳,夏新莉,尹伟伦.逆境胁迫ABA与钙信号转导途径之间的相互调控机制.基因组学与应用生物学,2009,28:391~397
    [47] Bray EA. Plant responses to water deficit. Trends Plant Sci,1997,2:48~54
    [48] Xiong L, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and saltstress. Plant Cell,2002,14:165~183
    [49] Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev PlantBiol,2002,53:247~273
    [50]董蔚.小麦十八碳烷酸合成途径基因的逆境胁迫应答研究:[博士学位论文].济南:山东大学,2012
    [51] O’Rourke SM, Herskowitz I. The Hog1MAPK prevents cross talk between theHOG and pheromone response MAPK pathways in Saccharomyces cerevisiae.Gene Dev,1998,12:2874~2886
    [52] Mizoguchi T, Ichimura K, Shinozaki K. Environmental stress response inplants: the role of mitogen-activated protein kinases. Trends Biotechnol,1997,15:15~19
    [53] Taj G, Agarwal P, Grant M, et al. MAPK machinery in plants: Recognition andresponse to different stresses through multiple signal transduction pathways.Plant Signaling Behavior,2010,5:1370~1378
    [54] Knight H. Calcium signaling during abiotic stress in plants. Int Rev Cytol,2000,195:269~324
    [55]刘贯山,陈珈.钙依赖蛋白激酶(CDPKs)在植物钙信号转导中的作用.植物学通报,2003,20:160~167
    [56]王娇娇,韩胜芳,李小娟等.钙依赖蛋白激酶(CDPKs)介导植物信号转导的分子基础.草业学报,2009,18:241~250
    [57] Harmon AC, Gribskov M, Gubrium E, et al. The CDPK superfamily of proteinkinases. New Phytol,2001,151:175~183
    [58] Haeseleer F, Imanishi Y, Sokal I, et al. Calcium-binding proteins: intracellularsensors from the calmodulin superfamily. Biochem Biophy Res Co,2002,290:615~623
    [59]余晓丛,娜仁,张少英.钙信号在植物抗病性中的作用研究进展.中国农学通报,2012,28:12~16
    [60] Yang G, Komatsu S. Involvement of calcium-dependent protein kinase in rice(Oryza sativa L.) lamina inclination caused by brassinolide. Plant Cell Physiol,2000,41:1243~1250
    [61] Sheen J. Ca2+-dependent protein kinases and stress signal transduction inplants. Science,1996,274:1900~1902
    [62] Anil VS, Harmon AC, Rao KS. Spatio-temporal accumulation and activity ofcalcium-dependent protein kinases during embryogenesis, seed development,and germination in sandalwood. Plant Physiol,2000122:1035~1043
    [63] Zhu JK, Liu J, Xiong L. Genetic analysis of salt tolerance in Arabidopsis.Evidence for a critical role of potassium nutrition. Plant Cell,1998,10:1181~1191
    [64] Zhu JK. Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol,2001,4:401~406
    [65] Liu JP, Ishitani M, Halfter U, et al. The Arabidopsis thaliana SOS2geneencodes a protein kinase that is required for salt tolerance. Proc Natl Acad SciU S A,2000,97:3730~3734
    [66] Luan S, Kudla J, Rodriguez-Concepcion M, et al. Calmodulins and calcineurinB-like proteins: calcium sensors for specific signal response coupling in plants.Plant Cell,2002,14: S389~400
    [67] Shi H, Ishitani M, Kim C, et al. The Arabidopsis thaliana salt tolerance geneSOS1encodes a putative Na+/H+antiporter. Proc Natl Acad Sci U S A,2000,97:6896~6901
    [68] Qiu QS, Guo Y, Dietrich MA, et al. Regulation of SOS1, a plasma membraneNa+/H+exchanger in Arabidopsis thaliana, by SOS2and SOS3. Proc Natl AcadSci U S A,2002,99:8436~8441
    [69]郝格格,孙忠富,张录强等.脱落酸在植物逆境胁迫研究中的进展.中国农学通报,2009,25:212~215
    [70] Seo M, Koshiba T. Complex regulation of ABA biosynthesis in plants. TrendsPlant Sci,2002,7:41~48
    [71] Xiong L, Ishitani M, Lee H, et al. The Arabidopsis LOS5/ABA3locus encodesa molybdenum cofactor sulfurase and modulates cold stress-and osmoticstress-responsive gene expression. Plant Cell,2001,13:2063~2083
    [72] Milborrow BV. The pathway of biosynthesis of abscisic acid in vascular plants:a review of the present state of knowledge of ABA biosynthesis. J Exp Bot,2001,52:1145~1164
    [73]吴耀荣,谢旗. ABA与植物胁迫抗性.植物学通报,2006,23:511~518
    [74] Xiong LM, Lee BH, Ishitani M, et al. FIERY1encoding an inositolpolyphosphate1-phosphatase is a negative regulator of abscisic acid and stresssignaling in Arabidopsis. Gene Dev,2001,15:1971~1984
    [75] Hoth S, Morgante M, Sanchez JP, et al. Genome-wide gene expressionprofiling in Arabidopsis thaliana reveals new targets of abscisic acid andlargely impaired gene regulation in the abi1-1mutant. J Cell Sci,2002,115:4891~4900
    [76] Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration andlow temperature: differences and cross-talk between two stress signalingpathways. Curr Opin Plant Biol,2000,3:217~223
    [77] Pastori GM, Foyer CH. Common components, networks, and pathways ofcross-tolerance to stress. The central role of "redox" and abscisicacid-mediated controls. Plant Physiol,2002,129:460~468
    [78] Ono A, Izawa T, Chua NH, et al. The rab16B promoter of rice contains twodistinct abscisic acid-responsive elements. Plant Physiol,1996,112:483~491
    [79] Carles C, Bies-Etheve N, Aspart L, et al. Regulation of Arabidopsis thalianaEm genes: role of ABI5. Plant J,2002,30:373~383
    [80] Menkens AE, Schindler U, Cashmore AR. The G-box: a ubiquitous regulatoryDNA element in plants bound by the GBF family of bZIP proteins. TrendsBiochem Sci,1995,20:506~510
    [81] Hobo T, Asada M, Kowyama Y, et al. ACGT-containing abscisic acid responseelement (ABRE) and coupling element3(CE3) are functionally equivalent.Plant J,1999,19:679~689
    [82] Niu X, Helentjaris T, Bate NJ. Maize ABI4binds coupling element1in abscisicacid and sugar response genes. Plant Cell,2002,14:2565~2575
    [83] Shen Q, Zhang P, Ho T. Modular nature of abscisic acid (ABA) responsecomplexes: composite promoter units that are necessary and sufficient for ABAinduction of gene expression in barley. Plant Cell,1996,8:1107~1119
    [84] Fujita Y, Fujita M, Shinozaki K, et al. ABA-mediated transcriptional regulationin response to osmotic stress in plants. J Plant Res,2011,124:509~525
    [85] Kang JY, Choi HI, Im MY, et al. Arabidopsis basic leucine zipper proteins thatmediate stress-responsive abscisic acid signaling. Plant Cell,2002,14:343~357
    [86] Abe H, Yamaguchi-Shinozaki K, Urao T, et al. Role of arabidopsis MYC andMYB homologs in drought-and abscisic acid-regulated gene expression. PlantCell,1997,9:1859~1868
    [87] Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to drought andcold stress. Curr Opin Biotechnol,1996,7:161~167
    [88] Fujita M, Fujita Y, Maruyama K, et al. A dehydration-induced NAC protein,RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J,2004,39:863~876
    [89] Yamaguchi-Shinozaki K, Shinozaki K. Arabidopsis DNA encoding twodesiccation-responsive rd29genes. Plant Physiol,1993,101:1119~1120
    [90] Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in anArabidopsis gene is involved in responsiveness to drought, low-temperature, orhigh-salt stress. Plant Cell,1994,6:251~264
    [91] Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1encodes an AP2domain-containing transcriptional activator that binds to theC-repeat/DRE, a cis-acting DNA regulatory element that stimulatestranscription in response to low temperature and water deficit. Proc Natl AcadSci U S A,1997,94:1035~1040
    [92] Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1andDREB2, with an EREBP/AP2DNA binding domain separate two cellularsignal transduction pathways in drought-and low-temperature-responsive geneexpression, respectively, in Arabidopsis. Plant Cell,1998,10:1391~1406
    [93] Simpson SD, Nakashima K, Narusaka Y, et al. Two different novel cis-actingelements of erd1, a clpA homologous Arabidopsis gene function in inductionby dehydration stress and dark-induced senescence. Plant J,2003,33:259~270
    [94] Narusaka Y, Nakashima K, Shinwari ZK, et al. Interaction between twocis-acting elements, ABRE and DRE, in ABA-dependent expression ofArabidopsis rd29A gene in response to dehydration and high-salinity stresses.Plant J,2003,34:137~148
    [95]舒卫国,陈受宜.植物在渗透胁迫下的基因表达及信号传递.生物工程进展,2000,20:3~6
    [96] Nantel A, Quatrano RS. Characterization of three rice basic/leucine zipperfactors, including two inhibitors of EmBP-1DNA binding activity. J BiolChem,1996,271:31296~31305
    [97] Shore P, Sharrocks AD. The MADS-box family of transcription factors. Eur JBiochem,1995,229:1~13
    [98] Martin C, Paz-Ares J. MYB transcription factors in plants. Trends Genet,1997,13:67~73.
    [99] Takatsuji H. Zinc-finger transcription factors in plants. Cell Mol Life Sci,1998,54:582~596
    [100] Klinge B, Uberlacker B, Korfhage C, et al. ZmHox: a novel class of maizehomeobox genes. Plant Mol Biol,1996,30:439~453
    [101]刘强,张贵友,陈受宜.植物转录因子的结构与调控作用.科学通报,2000,45:1465~1474
    [102] Sakuma Y, Liu Q, Dubouzet JG, et al. DNA-Binding specificity of theERF/AP2domain of Arabidopsis DREBs, transcription factors involved indehydration-and cold-inducible gene expression. Biochem Bioph Res Co,2002,290:998~1009
    [103] Guiltinan MJ, Miller L. Molecular characterization of the DNA-binding anddimerization domains of the bZIP transcription factor, EmBP-1. Plant Mol Biol,1994,26:1041~1053
    [104] Katagiri F, Seipel K, Chua NH. Identification of a novel dimer stabilizationregion in a plant bZIP transcription activator. Mol Cell Biol,1992,12:4809~4816
    [105] Goff SA, Cone KC, Fromm ME. Identification of functional domains in themaize transcriptional activator C1: comparison of wild-type and dominantinhibitor proteins. Genes Dev,1991,5:298~309
    [106] Goff SA, Cone KC, Chandler VL. Functional analysis of the transcriptionalactivator encoded by the maize B gene: evidence for a direct functionalinteraction between two classes of regulatory proteins. Genes Dev,1992,6:864~875
    [107] Boulikas T. Putative nuclear localization signals (NLS) in protein transcriptionfactors. J Cell Biochem,1994,55:32~58
    [108]郭予琦,田曾元.玉米转录因子Opaque-2的分子生物学特性.种子,2006,25:45~47
    [109] Varagona MJ, Raikhel NV. The basic domain in the bZIP regulatory proteinOpaque2serves two independent functions: DNA binding and nuclearlocalization. Plant J,1994,5:207~214
    [110] Sainz MB, Goff SA, Chandler VL. Extensive mutagenesis of a transcriptionalactivation domain identifies single hydrophobic and acidic amino acidsimportant for activation in vivo. Mol Cell Biol,1997,17:115~122
    [111] Shinozaki K, Dennis ES. Cell signalling and gene regulation: global analysesof signal transduction and gene expression profiles. Curr Opin Plant Biol,2003,6:405~409
    [112] Dai KS, Liew CC. Chromosomal, in silico and in vitro expression analysis ofcardiovascular-based genes encoding zinc finger proteins. J Mol Cell Cardiol,1999,31:1749~1769
    [113] Mochida K, Yoshida T, Sakurai T, et al. In silico analysis of transcription factorrepertoires and prediction of stress-responsive transcription factors from sixmajor gramineae plants. DNA Res,2011,18:321~332
    [114]张秋平,杨宇红,谢丙炎等.植物转录因子的超表达及其在分子育种中的应用.分子植物育种,2006,4:411~418
    [115] Doebley J, Stec A, Gustus C. Teosinte branched1and the origin of maize:evidence for epistasis and the evolution of dominance. Genetics,1995,141:333~346
    [116]刘菊华,徐碧玉,张静等. MADS-box转录因子的相互作用及对果实发育和成熟的调控.遗传,2010,32:893~902
    [117] Oppenheimer DG, Herman PL, Sivakumaran S, et al. A myb gene required forleaf trichome differentiation in Arabidopsis is expressed in stipules. Cell,1991,67:483~493
    [118] Dai X, Xu Y, Ma Q, et al. Overexpression of an R1R2R3MYB gene,OsMYB3R-2, increases tolerance to freezing, drought, and salt stress intransgenic Arabidopsis. Plant Physiol,2007,143:1739~1751
    [119] Kim S, Kang Jy, Cho DI, et al. ABF2, an ABRE-binding bZIP factor, is anessential component of glucose signaling and its overexpression affectsmultiple stress tolerance. Plant J,2004,40:75~87
    [120] Gilmour SJ, Sebolt AM, Salazar MP, et al. Overexpression of the ArabidopsisCBF3transcriptional activator mimics multiple biochemical changesassociated with cold acclimation. Plant Physiol,2000,124:1854~1865
    [121] Li J, Brader G, Palva ET. The WRKY70transcription factor: a node ofconvergence for jasmonate-mediated and salicylate-mediated signals in plantdefense. Plant Cell,2004,16:319~331
    [122]陈儒钢,巩振辉,逯明辉等.植物抗逆反应中的转录因子网络研究进展.农业生物技术学报,2010,1:126~134
    [123] Subramanyam K, Arun M, Mariashibu TS, et al. Overexpression of tobaccoosmotin (Tbosm) in soybean conferred resistance to salinity stress and fungalinfections. Planta,2012,236:1909~1925
    [124] Schena M, Davis RW. HD-Zip proteins: members of an Arabidopsishomeodomain protein superfamily. Proc Natl Acad Sci U S A,1992,89:3894~3898
    [125] Vollbrecht E, Veit B, Sinha N, et al. The developmental gene Knotted-1is amember of a maize homeobox gene family. Nature,1991,350:241~243
    [126] Ariel FD, Manavella PA, Dezar CA, et al. The true story of the HD-Zip family.Trends Plant Sci,2007,12:419~426
    [127] Jain M, Tyagi AK, Khurana JP. Genome-wide identification, classification,evolutionary expansion and expression analyses of homeobox genes in rice.FEBS J,2008,275:2845~2861
    [128]沈文飚.植物HD-Zip转录因子.生命的化学,2003,23:387~389
    [129] Henriksson E, Olsson AS, Johannesson H, et al. Homeodomain leucine zipperclass I genes in Arabidopsis. Expression patterns and phylogeneticrelationships. Plant Physiol,2005,139:509~518
    [130] Palena CM, Tron AE, Bertoncini CW, et al. Positively charged residues at theN-terminal arm of the homeodomain are required for efficient DNA binding byhomeodomain-leucine zipper proteins. J Mol Biol,2001,308:39~47
    [131] Ciarbelli AR, Ciolfi A, Salvucci S, et al. The Arabidopsis homeodomain-leucine zipper II gene family: diversity and redundancy. Plant Mol Biol,2008,68:465~478
    [132] Tron AE, Bertoncini CW, Chan RL, et al. Redox regulation of planthomeodomain transcription factors. J Biol Chem,2002,277:34800~34807
    [133] Tron AE, Comelli RN, Gonzalez DH. Structure of homeodomain-leucinezipper/DNA complexes studied using hydroxyl radical cleavage of DNA andmethylation interference. Biochemistry,2005,44:16796~16803
    [134] Prigge MJ, Otsuga D, Alonso JM, et al. Class III homeodomain-leucine zippergene family members have overlapping, antagonistic, and distinct roles inArabidopsis development. Plant Cell,2005,17:61~76
    [135] Sessa G, Steindler C, Morelli G, et al. The Arabidopsis Athb-8,-9and-14genes are members of a small gene family coding for highly related HD-ZIPproteins. Plant Mol Biol,1998,38:609~622
    [136] Schrick K, Nguyen D, Karlowski WM, et al. START lipid/sterol-bindingdomains are amplified in plants and are predominantly associated withhomeodomain transcription factors. Genome Biol,2004,5: R41
    [137] Mukherjee K, Bürglin TR. MEKHLA, a novel domain with similarity to PASdomains, is fused to plant homeodomain-leucine zipper III proteins. PlantPhysiol,2006,140:1142~1150
    [138] Nakamura M, Katsumata H, Abe M, et al. Characterization of the class IVhomeodomain-Leucine Zipper gene family in Arabidopsis. Plant Physiol,2006,141:1363~1375
    [139] Tron AE, Bertoncini CW, Palena CM, et al. Combinatorial interactions of twoamino acids with a single base pair define target site specificity in plantdimeric homeodomain proteins. Nucleic Acids Res,2001,29:4866~4872
    [140] Aoyama T, Dong CH, Wu Y, et al. Ectopic expression of the Arabidopsistranscriptional activator Athb-1alters leaf cell fate in tobacco. Plant Cell,1995,7:1773~1785
    [141] Olsson AS, Engstrom P, Soderman E. The homeobox genes ATHB12andATHB7encode potential regulators of growth in response to water deficit inArabidopsis. Plant Mol Biol,2004,55:663~677
    [142] S derman E, Hjellstr m M, Fahleson J, et al. The HD-Zip gene ATHB6inArabidopsis is expressed in developing leaves, roots and carpels andup-regulated by water deficit conditions. Plant Mol Biol,1999,40:1073~1083
    [143] S derman E, Mattsson J, Engstr m P. The Arabidopsis homeobox geneATHB-7is induced by water deficit and by abscisic acid. Plant J,2002,10:375~381
    [144] Deng X, Phillips J, Meijer AH, et al. Characterization of five noveldehydration-responsive homeodomain leucine zipper genes from theresurrection plant Craterostigma plantagineum. Plant Mol Biol,2002,49:601~610
    [145] Zhang S, Haider I, Kohlen W, et al. Function of the HD-Zip I gene Oshox22inABA-mediated drought and salt tolerances in rice. Plant Mol Biol,2012,80:571~585
    [146] Manavella PA, Arce AL, Dezar CA, et al. Cross-talk between ethylene anddrought signalling pathways is mediated by the sunflower Hahb-4transcriptionfactor. Plant J,2006,48:125~137
    [147] Dezar CA, Gago GM, Gonzalez DH, et al. Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers droughttolerance to Arabidopsis thaliana plants. Transgenic Res,2005,14:429~440
    [148] Ariel F, Diet A, Verdenaud M, et al. Environmental regulation of lateral rootemergence in Medicago truncatula requires the HD-Zip I transcription factorHB1. Plant Cell,2010,22:2171~2183
    [149] Steindler C, Matteucci A, Sessa G, et al. Shade avoidance responses aremediated by the ATHB-2HD-zip protein, a negative regulator of geneexpression. Development,1999,126:4235~4245
    [150] Rueda EC, Dezar CA, Gonzalez DH, et al. Hahb-10, a sunflower homeobox-leucine zipper gene, is regulated by light quality and quantity, and promotesearly flowering when expressed in Arabidopsis. Plant Cell Physiol,2005,46:1954~1963
    [151] Sawa S, Ohgishi M, Goda H, et al. The HAT2gene, a member of the HD-Zipgene family, isolated as an auxin inducible gene by DNA microarray screening,affects auxin response in Arabidopsis. Plant J,2002,32:1011~1022
    [152] Delarue M, Prinsen E, Onckelen HV, et al. Sur2mutations of Arabidopsisthaliana define a new locus involved in the control of auxin homeostasis. PlantJ,1998,14:603~611
    [153]秦永芳,李登弟,李学宝.植物HD-Zip转录因子研究进展.细胞生物学杂志,2009,4:514~520
    [154] Baima S, Possenti M, Matteucci A, et al. The Arabidopsis ATHB-8HD-Zipprotein acts as a differentiation-promoting transcription factor of the vascularmeristems. Plant Physiol,2001,126:643~655
    [155] Ohashi-Ito K, Kubo M, Demura T, et al. Class III homeodomain leucine-zipperproteins regulate xylem cell differentiation. Plant Cell Physiol,2005,46:1646~1656
    [156] Itoh J, Hibara K, Sato Y, et al. Developmental role and auxin responsiveness ofClass III homeodomain leucine zipper gene family members in rice. PlantPhysiol,2008,147:1960~1975
    [157] Vernoud V, Laigle G, Rozier F, et al. The HD-ZIP IV transcription factor OCL4is necessary for trichome patterning and anther development in maize. Plant J,2009,59:883~894
    [158] Kubo H, Peeters AJ, Aarts MG, et al. ANTHOCYANINLESS2, a homeoboxgene affecting anthocyanin distribution and root development in Arabidopsis.Plant Cell,1999,11:1217~1226
    [159] Guan XY, Li QJ, Shan CM, et al. The HD-Zip IV gene GaHOX1from cotton isa functional homologue of the Arabidopsis GLABRA2. Physiol Plantarum,2008,134:174~182
    [160]黄泽军,黄荣峰.植物转录因子功能分析方法.农业生物技术学报,2002,10:295~300
    [161] Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interferenceby double-stranded RNA in Caenorhabditis elegans. Nature,1998,391:806~811
    [162] Smith NA, Singh SP, Wang M-B, et al. Gene expression: Total silencing byintron-spliced hairpin RNAs. Nature,2000,407:319~320
    [163] Kennerdell JR, Yamaguchi S, Carthew RW. RNAi is activated duringDrosophila oocyte maturation in a manner dependent on aubergine andspindle-E. Gene Dev,2002,16:1884~1889
    [164] Pontes O, Li CF, Nunes PC, et al. The Arabidopsis chromatin-modifyingnuclear siRNA pathway involves a nucleolar RNA processing center. Cell,2006,126:79~92
    [165] Svoboda P, Stein P, Filipowicz W, et al. Lack of homologous sequence-specificDNA methylation in response to stable dsRNA expression in mouse oocytes.Nucleic Acids Res,2004,32:3601~3606
    [166] Sijen T, Vijn I, Rebocho A, et al. Transcriptional and posttranscriptional genesilencing are mechanistically related. Curr Biol,2001,11:436~440
    [167] Bernstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonucleasein the initiation step of RNA interference. Nature,2001,409:363~366
    [168] Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of21-nucleotide RNAsmediate RNA interference in cultured mammalian cells. Nature,2001,411:494~498
    [169] Han Y, Grierson D. Relationship between small antisense RNAs and aberrantRNAs associated with sense transgene mediated gene silencing in tomato.Plant J,2002,29:509~519
    [170] Hannon GJ. RNA interference. Nature,2002,418:244~251
    [171] Zamore PD, Tuschl T, Sharp PA, et al. RNAi: double-stranded RNA directs theATP-dependent cleavage of mRNA at21to23nucleotide intervals. Cell,2000,101:25~34
    [172] Chuang CF, Meyerowitz EM. Specific and heritable genetic interference bydouble-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci U S A,2000,97:4985~4990
    [173] Shimada T, Otani M, Hamada T, et al. Increase of amylose content ofsweetpotato starch by RNA interference of the starch branching enzyme IIgene (IbSBEII). Plant Biotechnol,2006,23:85~90
    [174]李加瑞,赵伟,李全梓等. Waxy基因RNA沉默使转基因小麦种子中直链淀粉含量下降.遗传学报,2005,32:846~854
    [175]李子银,陈受宜.植物的功能基因组学研究进展.遗传,2000,22:57~60
    [176] Nakano A, Suzuki G, Yamamoto M, et al. Rearrangements of large-insertT-DNAs in transgenic rice. Mol Genet Genomics,2005,273:123~129
    [177]胡红红.水稻逆境相关转录因子的分离和功能鉴定:[博士学位论文].武汉:华中农业大学,2006
    [178]廖鸣娟,董爱华.植物转座子及其在功能基因组学中的应用.遗传,2000,22:345~348
    [179] Bensen RJ, Johal GS, Crane VC, et al. Cloning and characterization of themaize An1gene. Plant Cell,1995,7:75~84
    [180] Mena M, Ambrose BA, Meeley RB, et al. Diversification of C-functionactivity in maize flower development. Science,1996,274:1537~1540
    [181] Azpiroz-Leehan R, Feldmann KA. T-DNA insertion mutagenesis inArabidopsis: going back and forth. Trends Genet,1997,13:152~156
    [182] Koes R, Souer E, van Houwelingen A, et al. Targeted gene inactivation inpetunia by PCR-based selection of transposon insertion mutants. Proc NatlAcad Sci U S A,1995,92:8149~8153
    [183] Winkler RG, Frank MR, Galbraith DW, et al. Systematic reverse genetics oftransfer-DNA-tagged lines of Arabidopsis. Isolation of mutations in thecytochrome p450gene superfamily. Plant Physiol,1998,118:743~750
    [184]李祥,易自力,蔡能等.反义RNA及其在植物基因工程领域的应用.生物技术通讯,2003,14:162~164
    [185] Oeller PW, Lu MW, Taylor LP, et al. Reversible inhibition of tomato fruitsenescence by antisense RNA. Science,1991,254:437~439
    [186] Persson C, Wagner E, Nordstr m K. Control of replication of plasmid R1:kinetics of in vitro interaction between the antisense RNA, CopA, and its target,CopT. EMBO J,1988,7:3279
    [187] Terada R, Nakajima M, Isshiki M, et al. Antisense waxy genes with highlyactive promoters effectively suppress waxy gene expression in transgenic rice.Plant Cell Physiol,2000,41:881~888
    [188] Knutzon DS, Thompson GA, Radke SE, et al. Modification of Brassica seedoil by antisense expression of a stearoyl-acyl carrier protein desaturase gene.Proc Natl Acad Sci U S A,1992,89:2624~2628
    [189] Zhao R, Dielen V, Kinet JM, et al. Cosuppression of a plasma membraneH(+)-ATPase isoform impairs sucrose translocation, stomatal opening, plantgrowth, and male fertility. Plant Cell,2000,12:535~546
    [190]李艳,李毅,陈章良.转基因植物内源基因与外源基因共抑制问题研究进展.生物工程学报,1999,15:1~5
    [191] Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalconesynthase gene into petunia results in reversible co-suppression of homologousgenes in trans. Plant Cell,1990,2:279~289
    [192] Xie Q, Frugis G, Colgan D, et al. Arabidopsis NAC1transduces auxin signaldownstream of TIR1to promote lateral root development. Gene Dev,2000,14:3024~3036
    [193] Lee H, Xiong L, Gong Z, et al. The Arabidopsis HOS1gene negativelyregulates cold signal transduction and encodes a RING finger protein thatdisplays cold-regulated nucleo-cytoplasmic partitioning. Gene Dev,2001,15:912~924
    [194]杨致荣,王兴春,李西明等.高等植物转录因子的研究进展.遗传,2004,26:403~408
    [195] Gatz C. Chemical control of gene expression. Annu Rev Plant Physiol PlantMol Biol,1997,48:89~108
    [196] Aoyama T, Chua NH. A glucocorticoid-mediated transcriptional inductionsystem in transgenic plants. Plant J,1997,11:605~612
    [197] Lloyd AM, Schena M, Walbot V, et al. Epidermal cell fate determination inArabidopsis: patterns defined by a steroid-inducible regulator. Science,1994,266:436~439
    [198] Benson DA, Karsch-Mizrachi I, Lipman DJ, et al. GenBank. Nucleic AcidsRes,2006,34:16~20
    [199] Stoesser G, Tuli MA, Lopez R, et al. The EMBL nucleotide sequence database.Nucleic Acids Res,1999,27:18~24
    [200] Tateno Y, Miyazaki S, Ota M, et al. DNA Data Bank of Japan (DDBJ) incollaboration with mass sequencing teams. Nucleic Acids Res,2000,28:24~26
    [201] Barker WC, Garavelli JS, Huang H, et al. The protein information resource(PIR). Nucleic Acids Res,2000,28:41~44
    [202] Mewes HW, Frishman D, Gruber C, et al. MIPS: a database for genomes andprotein sequences. Nucleic Acids Res,2000,28:37~40
    [203] Barker WC, George DG, Mewes HW, et al. The PIR-International proteinsequence database. Nucleic Acids Res,1992,26:27~32
    [204] Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and itssupplement TrEMBL in2000. Nucleic Acids Res,2000,28:45~48
    [205] Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic AcidsRes,2000,28:235~242
    [206]张春霆.生物信息学的现状与展望.世界科技研究与发展,2000,22:17~20
    [207]黄科,曹家树.生物信息学.情报学报,2002,21:491~496
    [208] Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, et al. Arabidopsis CBF1overexpression induces COR genes and enhances freezing tolerance. Science,1998,280:104~106
    [209] Gao T, Wu Y, Zhang Y, et al. OsSDIR1overexpression greatly improvesdrought tolerance in transgenic rice. Plant Mol Biol,2011,76:145~156
    [210] Harris JC, Hrmova M, Lopato S, et al. Modulation of plant growth by HD-Zipclass I and II transcription factors in response to environmental stimuli. NewPhytol,2011,190:823~837
    [211] Schnable PS, Ware D, Fulton RS, et al. The B73maize genome: complexity,diversity, and dynamics. Science,2009,326:1112~1115
    [212] Agalou A, Purwantomo S, Overnas E, et al. A genome-wide survey of HD-Zipgenes in rice and analysis of drought-responsive family members. Plant MolBiol,2008,66:87~103
    [213] Finn RD, Mistry J, Schuster-Bockler B, et al. Pfam: clans, web tools andservices. Nucleic Acids Res,2006,34:247~251
    [214] Letunic I, Doerks T, Bork P. SMART6: recent updates and new developments.Nucleic Acids Res,2009,37:229~232
    [215] Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving thesensitivity of progressive multiple sequence alignment through sequenceweighting, position-specific gap penalties and weight matrix choice. NucleicAcids Res,1994,22:4673~4680
    [216] Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular Evolutionary GeneticsAnalysis (MEGA) software version4.0. Mol Biol Evol,2007,24:1596~1599
    [217] Bailey TL, Elkan C. The value of prior knowledge in discovering motifs withMEME. Proc Int Conf Intell Syst Mol Biol,1995,3:21~29
    [218] Guo AY, Zhu QH, Chen X, et al.[GSDS: a gene structure display server]. YiChuan,2007,29:1023~1026
    [219] Wei F, Coe E, Nelson W, et al. Physical and genetic structure of the maizegenome reflects its complex evolutionary history. PLoS Genet,2007,3: e123
    [220] Zhang X, Feng Y, Cheng H, et al. Relative evolutionary rates of NBS-encodinggenes revealed by soybean segmental duplication. Mol Genet Genomics,2011,285:79~90
    [221] Wang L, Guo K, Li Y, et al. Expression profiling and integrative analysis of theCESA/CSL superfamily in rice. BMC Plant Biol,2010,10:282
    [222] Livak KJ, Schmittgen TD. Analysis of relative gene expression data usingreal-time quantitative PCR and the2(T)(-Delta Delta C) method. Methods,2001,25:402~408
    [223] Juarez MT, Kui JS, Thomas J, et al. microRNA-mediated repression of rolledleaf1specifies maize leaf polarity. Nature,2004,428:84~88
    [224] Ingram GC, Magnard J-L, Vergne P, et al. ZmOCL1, an HDGL2familyhomeobox gene, is expressed in the outer cell layer throughout maizedevelopment. Plant Mol Biol,1999,40:343~354
    [225] Ingram GC, Boisnard-Lorig C, Dumas C, et al. Expression patterns of genesencoding HD-Zip IV homeo domain proteins define specific domains in maizeembryos and meristems. Plant J,2000,22:401~414
    [226] Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatoryelements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci,2005,10:88~94
    [227] Mukherjee K, Brocchieri L, Burglin TR. A comprehensive classification andevolutionary analysis of plant homeobox genes. Mol Biol Evol,2009,26:2775~2794
    [228] Moore RC, Purugganan MD. The early stages of duplicate gene evolution.Proc Natl Acad Sci U S A,2003,100:15682~15687
    [229] Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L.ssp. indica). Science,2002,296:79~92
    [230] Raes J, Vandepoele K, Simillion C, et al. Investigating ancient duplicationevents in the Arabidopsis genome. J Struct Funct Genomics,2003,3:117~129
    [231] Paterson AH, Bowers JE, Chapman BA. Ancient polyploidization predatingdivergence of the cereals, and its consequences for comparative genomics.Proc Natl Acad Sci U S A,2004,101:9903~9908
    [232] Swigonova Z, Lai J, Ma J, et al. Close split of sorghum and maize genomeprogenitors. Genome Res,2004,14:1916~1923
    [233] Cannon SB, Mitra A, Baumgarten A, et al. The roles of segmental and tandemgene duplication in the evolution of large gene families in Arabidopsisthaliana. BMC Plant Biol,2004,4:10
    [234] Jiang C, Gu X, Peterson T. Identification of conserved gene structures andcarboxy-terminal motifs in the Myb gene family of Arabidopsis and Oryzasativa L. ssp. indica. Genome Biol,2004,5: R46
    [235] Murat F, Xu JH, Tannier E, et al. Ancestral grass karyotype reconstructionunravels new mechanisms of genome shuffling as a source of plant evolution.Genome Res,2010,20:1545~1557
    [236] Salse J, Bolot S, Throude M, et al. Identification and characterization of sharedduplications between rice and wheat provide new insight into grass genomeevolution. Plant Cell,2008,20:11~24
    [237] Maere S, De Bodt S, Raes J, et al. Modeling gene and genome duplications ineukaryotes. Proc Natl Acad Sci U S A,2005,102:5454~5459
    [238] Blanc G, Hokamp K, Wolfe KH. A recent polyploidy superimposed on olderlarge-scale duplications in the Arabidopsis genome. Genome Res,2003,13:137~144
    [239] Johannesson H, Wang Y, Hanson J, et al. The Arabidopsis thaliana homeoboxgene ATHB5is a potential regulator of abscisic acid responsiveness indeveloping seedlings. Plant Mol Biol,2003,51:719~729
    [240] Lynch M, Conery JS. The evolutionary fate and consequences of duplicategenes. Science,2000,290:1151~1155
    [241] Ouyang SQ, Liu YF, Liu P, et al. Receptor-like kinase OsSIK1improvesdrought and salt stress tolerance in rice (Oryza sativa) plants. Plant J,2010,62:316~329
    [242] Xiang Y, Tang N, Du H, et al. Characterization of OsbZIP23as a key player ofthe basic leucine zipper transcription factor family for conferring abscisic acidsensitivity and salinity and drought tolerance in rice. Plant Physiol,2008,148:1938~1952
    [243] Zhang L, Xi D, Li S, et al. A cotton group C MAP kinase gene, GhMPK2,positively regulates salt and drought tolerance in tobacco. Plant Mol Biol,2011,77:17~31
    [244]萨姆布鲁克,黄培堂.分子克隆实验指南.科学出版社,2005
    [245] Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J,1998,16:735~743
    [246] Lu G, Gao C, Zheng X, et al. Identification of OsbZIP72as a positive regulatorof ABA response and drought tolerance in rice. Planta,2009,229:605~615
    [247] Heath RL, Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics andstoichiometry of fatty acid peroxidation. Arch Biochem Biophysi,1968,125:189~198
    [248]赵海泉.基础生物学实验指导:植物生理学分册.中国农业大学出版社,2008
    [249] Bates L, Waldren R, Teare I. Rapid determination of free proline forwater-stress studies. Plant Soil,1973,39:205~207
    [250]张志良.植物生理学实验指导.高等教育出版社,1990
    [251] Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network ofplants. Trends Plant Sci,2004,9:490~498
    [252] Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci,2002,7:405~410
    [253] Armengaud P, Thiery L, Buhot N, et al. Transcriptional regulation of prolinebiosynthesis in Medicago truncatula reveals developmental and environmentalspecific features. Physiol Plant,2004,120:442~450
    [254] Liu J, Zhu JK. Proline accumulation and salt-stress-induced gene expression ina salt-hypersensitive mutant of Arabidopsis. Plant Physiol,1997,114:591~596
    [255] Xiang Y, Huang Y, Xiong L. Characterization of stress-responsive CIPK genesin rice for stress tolerance improvement. Plant Physiol,2007,144:1416~1428
    [256] Song SY, Chen Y, Zhao MG, et al. A novel Medicago truncatula HD-Zip gene,MtHB2, is involved in abiotic stress responses. Environ Exp Bot,2012,80:1~9
    [257] Szekely G, Abraham E, Cseplo A, et al. Duplicated P5CS genes of Arabidopsisplay distinct roles in stress regulation and developmental control of prolinebiosynthesis. Plant J,2008,53:11~28
    [258] Peng Y, Zhang J, Cao G, et al. Overexpression of a PLDα1gene from Setariaitalica enhances the sensitivity of Arabidopsis to abscisic acid and improves itsdrought tolerance. Plant Cell Rep,2010,29:793~802
    [259] Xu GY, Rocha PS, Wang ML, et al. A novel rice calmodulin-like gene,OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity inArabidopsis. Planta,2011,234:47~59
    [260] Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signaltransduction in water-stress response. Plant Physiol,1997,115:327~334
    [261] Merlot S, Gosti F, Guerrier D, et al. The ABI1and ABI2protein phosphatases2C act in a negative feedback regulatory loop of the abscisic acid signallingpathway. Plant J,2001,25:295~303
    [262] Xiong L, Wang RG, Mao G, et al. Identification of drought tolerancedeterminants by genetic analysis of root response to drought stress and abscisicacid. Plant Physiol,2006,142:1065~1074
    [263] Valdes AE, Overnas E, Johansson H, et al. The homeodomain-leucine zipper(HD-Zip) class I transcription factors ATHB7and ATHB12modulate abscisicacid signalling by regulating protein phosphatase2C and abscisic acid receptorgene activities. Plant Mol Biol,2012,80:405~418