水稻回交导入系耐碱性的基因表达分析及2个相关基因的初步功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是全球一半以上人口的主要粮食作物,农民种植水稻依赖于土地。土地盐碱化已经成为影响农作物生长和产量的最主要因素之一。土地碱化与盐化往往相伴发生,碱胁迫使作物不仅受到盐的胁迫作用,还要受到高pH值的胁迫作用,对作物的生长发育的影响更大,但是至今植物耐碱机制仍不明确。
     培育耐盐耐碱作物品种无疑是最有效的盐碱地治理措施之一。通过回交导入方法可以改良现有品种不良性状,通常情况下比常规有性杂交稳定,年限时间短且效果较明显。基因表达芯片(Gene Expression Microarray)可以高通量的分析基因mRNA的表达量,发现重要基因,了解代谢途径,解读代谢机制。利用基因表达芯片进行功能基因组学研究已经成为目前最为活跃的研究热点之一。
     本文通过回交导入的方法获得耐碱回交导入系K83,并且通过与其对碱胁迫耐性较差的轮回亲本吉粳88的比较来探讨水稻的抗碱机制。本实验使用基因表达芯片检测两种对碱胁迫耐性不同的材料的基因表达差异,并且以碳酸氢钠(NaHCO_3)和碳酸钠(Na_2CO_3)两种碱性盐处理水稻幼苗,检测两种材料对碱胁迫应答的差异基因。我们发现未处理的两种材料间有1226个基因存在着表达变异,其中572个基因在K83中表达上调,654个基因下调。碱处理后,K83中有503个基因发生了表达改变,其中347个表达上调,156个表达下调;吉粳88中有778个基因发生了表达改变,其中591个表达上调,187个表达下调。胁迫后在两种材料中表达上调的基因中,只有34个基因在未处理K83中的表达高于吉粳88,这说明不仅材料之间组成型基因表达差异在耐碱性状上起作用,其受胁迫诱导的基因同时也对植物的耐碱性起决定作用。对筛选出来的差异表达基因进行生物信息学分析,包括代谢,催化活性,转运和转录因子活性等通路与水稻耐碱胁迫相关。应用实时定量PCR方法对其中一部分基因的表达水平进一步分析,所得结果与基因芯片结果基本吻合,证明芯片分析数据可靠,为下一步耐碱相关基因的克隆、功能分析等研究提供了基础。
     对苗期水稻进行非生物胁迫和外源激素处理,分析了基于芯片数据筛选出的差异表达候选基因的表达模式。结果显示,两个候选基因(Os01g0871600和Os12g0282000)受到非生物胁迫影响和激素诱导,此结果暗示候选基因可能在植物耐碱胁迫中起到一定作用。对候选基因进行了克隆和过表达载体的构建,并通过农杆菌介导转化到到水稻中,获得了大量的转基因阳性植株。经鉴定转基因植株中候选基因的表达量都有显著提高。苗期抗性实验结果表明,转基因植株抗性表现优于非转基因材料。本研究结果暗示根据芯片分析得到的耐性相关基因可能是潜在耐碱功能基因,可以用于水稻的耐碱性状改良。
Rice is a staple food for more than half of human population and to grow it,farmers largely depend on soil. Land salinization and alkalization is a majorenvironmental factor limiting plant growth and productivity. Alkalization is oftenassociated with salinization, alkaline stress not only included salt stress, but also withthe added influence of high-pH stress, so it affects plant growth badly, but so far onplant alkali resistance mechanism is not clear.
     One of the most effective measures to improve land salinization and alkalizationis to develop new salt/alkali-tolerant varieties. The introgression by backcross methodis the most effective method in the development of improved crop varieties,andcompared with traditional hybridization, it has a much shorter time and moreeffectively usually. Gene expression microarray makes it possible to high-throughputanalysis of the mRNA expression, finding key genes, understanding metabolicpathways. Using gene expression microarray to detect the function of genes havebecome very popular.
     To investigate the possible genetic basis of alkali tolerance in rice, we generatedan introgressed rice line (K83) with significantly greater alkali stress tolerance thanthe parental cultivar (Jijing88). Seedling treated with sodium bicarbonate (NaHCO_3)and sodium carbonate (Na_2CO_3), then we used microarray analysis to examine theglobal gene expression profiles of K83and Jijing88, and we found that more than1,200genes were constitutively and differentially expressed in K83in comparison toJijing88with572genes up-and654down-regulated. Upon alkali treatment, a total of347genes were found up-and156down-regulated in K83compared to591and187,respectively, in Jijing88. Among the up-regulated genes in both K83and Jijing88,only34were constitutively up-regulated in K83, suggesting that both the constitutivedifferentially expressed genes in K83and those induced by alkali treatment are mostlikely responsible for enhanced alkali tolerance. A gene ontology analysis based on allannotated, differentially expressed genes revealed that genes with expressionalterations were enriched in pathways involved in metabolic processes, catalyticactivity, and transport and transcription factor activities, suggesting that thesepathways are associated with alkali stress tolerance in rice. Further analysis of relativegene expression data using real-time quantitative PCR, real-time quantitative PCRresults basically agrees well with microarray results, it means microarray data arereliable. Our study results might have provided useful clues to gene cloning andfunctional studies of alkali tolerance in rice.
     Based on the microarray data, we identified some candidate genes. Theexpression patterns of candidate genes were examined in rice under various abioticstress and hormone treatments. The results showed that two candidate genes (Os01g0871600and Os12g0282000) induced by abiotic stress and hormone, andsuggested these candidate genes may play a role in plant alkali stress. The two geneswere cloned, and their over-expression recombinant plasmids were constructed.Transformation of rice was conducted by agrobacterium tumefaciens infection. Alarge number of positive transgenic plants were obtained, and which showedhigh-expression of the candidate genes. Transgenic plants showed significantly moretolerance than the non-transgenic control based on seedling resistance assays. Theresults of this study suggest that genes identified from microarray analysis may serveas a potential gene pool to identify functional genes that can be used for rice geneticimprovement towards enhanced tolerance to alkalization.
引文
[1] Shahbaz M, Ashraf M. Improving salinity tolerance in cereals[J]. Critical Reviewsin Plant Sciences,2013,32:237-249.
    [2] Bevan M, Mayer K, White O, et al. Sequence and analysis of the arabidopsisgenome[J]. Current Opinion in Plant Biology,2001,4:105-110.
    [3] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of PlantBiology,2008,59:651-681.
    [4] Hasegawa P M, Bressan R A, Zhu J K, et al. Plant cellular and molecularresponses to high salinity[J]. Annual Review of Plant Physiology and PlantMolecular Biology,2000,51:463-499.
    [5] Munns R. Comparative physiology of salt and water stress[J]. Plant, Cell&Environment,2002,25:239-250.
    [6] Zhu J K. Plant salt stress[J]. John Wiley&Sons,2007.
    [7] Parida A K, Das A B. Salt tolerance and salinity effects on plants[J].Ecotoxicology and Environmental Safety,2005,60:324-349.
    [8] Flowers T J. Improving crop salt tolerance[J]. Journal of Experimental Botany,2004,55:307-319.
    [9] Cramer G R, Nowak R S. Supplemental manganese improves the relative growth,net assimilation and photosynthetic rates of salt-stressed barley[J]. PhysiologiaPlantarum,1992,84:600-560.
    [10] Kawanabe S, Zhu T C. Degeneration and conservational trial of Aneurolepidiumchinense grassland in northern China[J]. Journal of Japanese Society ofGrassland Science,1991,37.
    [11] Yang C W, Shi D C, Wang D L. Comparative effects of salt stress and alkalistress on growth, osmotic adjustment and ionic balance of an alkali resistanthalophyte Suaeda glauca (Bge)[J]. Photosynthetica,2008,46:273-278.
    [12] Weng Y, Gong P, Zhu Z. Soil salt content estimation in the Yellow River deltawith satellite hyperspectral data[J]. Canadian Journal of Remote Sensing,2008,34:259-270.
    [13]路浩,王海泽.盐碱土治理利用研究进展[J].现代化农业,2004:10-12.
    [14] Yeo A, Flowers T. Salinity resistance in rice (Oryza sativa L.) and a pyramidingapproach to breeding varieties for saline soils[J]. Functional Plant Biology,1986,13:161-173.
    [15] Tejada M, Garcia C, Gonzalez J, et al. Use of organic amendment as a strategyfor saline soil remediation: influence on the physical, chemical and biologicalproperties of soil[J]. Soil Biology and Biochemistry,2006,38:1413-1421.
    [16] Fang H, Liu G, Kearney M. Georelational analysis of soil type, soil salt content,landform, and land use in the Yellow River Delta[J], China. Environmentalmanagement,2005,35:72-83.
    [17] Yang C, Jianaer A, Li C, et al. Comparison of the effects of salt-stress andalkali-stress on photosynthesis and energy storage of an alkali-resistant halophyteChloris virgata[J].2008,46(2):273-278.
    [18] Yang C, Shi D, Wang D. A characteristic of the growth and solute accumulationin shoots of an alkali-tolerant Kochia sieversiana under salt-alkaline mixedstress[J]. Plant Growth Regulation,2008,56:179-190.
    [19] Yang C, Wang P, Li C, et al. Comparison of effects of salt and alkali stresses onthe growth and photosynthesis of wheat[J]. Photosynthetica,2008,46:107-114.
    [20] Mittova V, Guy M, Tal M, et al. Response of the cultivated tomato and its wildsalt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress:Increased activities of antioxidant enzymes in root plastids[J]. Free RadicalResearch,2002,36:195-202.
    [21] Zhu J K. Plant salt tolerance[J]. Trends in Plant Science,2001,6:66-71.
    [22] Bajji M, Kinet J-M, Lutts S. Salt stress effects on roots and leaves of Atriplexhalimus L. and their corresponding callus cultures[J]. Plant Science,1998,137:131-142.
    [23] Poljakoff-Mayber A. Morphological and anatomical changes in plants as aresponse to salinity stress[J]. Plants in saline environments,1975,15:97-117.
    [24] Waller F, Achatz B, Baltruschat H, et al. The endophytic fungus Piriformosporaindica reprograms barley to salt-stress tolerance, disease resistance, and higheryield[J]. Proceedings of the National Academy of Sciences of the United Statesof America,2005,102(38):13386-13391.
    [25] Günthardt-Goerg M S, Vollenweider P. Linking stress with macroscopic andmicroscopic leaf response in trees: new diagnostic perspectives[J].Environmental pollution,2007,147:467-488.
    [26] Bradford K J. Manipulation of seed water relations via osmotic priming toimprove germination under stress conditions[J]. HortScience,1986,21(5):1105-1112.
    [27] Kaya M D, Ok u G, Atak M, et al. Seed treatments to overcome salt and droughtstress during germination in sunflower (Helianthus annuus L.)[J]. Europeanjournal of agronomy,2006,24:291-295.
    [28] Abdul Jaleel C, Gopi R, Sankar B, et al. Studies on germination, seedling vigour,lipid peroxidation and proline metabolism in Catharanthus roseus seedlingsunder salt stress[J]. South African Journal of Botany,2007,73:190-195.
    [29] Shumway S W, Bertness M D. Salt stress limitation of seedling recruitment in asalt marsh plant community[J]. Oecologia,1992,92:490-497.
    [30] Giri B, Mukerji K. Mycorrhizal inoculant alleviates salt stress in Sesbaniaaegyptiaca and Sesbania grandiflora under field conditions: evidence for reducedsodium and improved magnesium uptake[J]. Mycorrhiza,2004,14:307-312.
    [31] Almansouri M, Kinet J M, Lutts S. Effect of salt and osmotic stresses ongermination in durum wheat (Triticum durum Desf.)[J]. Plant and Soil,2001,231:243-254.
    [32] Jamil M, Deog Bae L, Kwang Yong J, et al. Effect of salt (NaCl) stress ongermination and early seedling growth of four vegetables species[J]. Journal ofCentral European Agriculture,2006,7:273-282.
    [33] Khan M, Ungar I. Effects of thermoperiod on recovery of seed germination ofhalophytes from saline conditions[J]. American Journal of Botany,1997,84:279-283.
    [34] Kent L, L uchli A. Germination and seedling growth of cotton: Salinity‐calcium interactions[J]. Plant, Cell&Environment,1985,8:155-159.
    [35] Garty B Z, Kosman E, Ganor E, et al. Emergency room visits of asthmaticchildren, relation to air pollution, weather, and airborne allergens[J]. Annals ofAllergy, Asthma&Immunology,1998,81:563-570.
    [36] Bethke P C, Drew M C. Stomatal and nonstomatal components to inhibition ofphotosynthesis in leaves of Capsicum annuum during progressive exposure toNaCl salinity[J]. Plant physiology,1992,99:219-226.
    [37] Ball M, Munns R. Plant responses to salinity under elevated atmosphericconcentrations of CO2[J]. Australian Journal of Botany,1992,40:515-525.
    [38] Sultana N, Ikeda T, Itoh R. Effect of NaCl salinity on photosynthesis and drymatter accumulation in developing rice grains[J]. Environmental andExperimental Botany,1999,42:211-220.
    [39] Iyengar E, Reddy M. Photosynthesis in highly salt tolerant plants[M]. Handbookof photosynthesis Marshal Dekar, Baten Rose, USA,1996,909.
    [40] Hernandez A, Adarve M J, Gil A, et al. Soil salivation from landfill leachates:Effects on the macronutrient content and plant growth of four grasslandspecies[J]. Chemosphere,1999,38:1693-1711.
    [41] Alamgir A, Ali M. Effect of salinity on leaf pigments, sugar and proteinconcentrations and chloroplast ATPase activity of rice (Oryza sativa L.)[J].Bangladesh Journal of Botany,1999,28:145-150.
    [42] Chen W, Feng C, Guo W, et al. Comparative effects of osmotic-, salt-and alkalistress on growth, photosynthesis, and osmotic adjustment of cotton plants[J].Photosynthetica,2011,49:417-425.
    [43] Pardo J M, Reddy M P, Yang S, et al. Stress signaling throughCa2+/calmodulin-dependent protein phosphatase calcineurin mediates saltadaptation in plants[J]. Proceedings of the National Academy of Sciences,1998,95:9681-9686.
    [44] Cramer G R, Lynch J, L uchli A, et al. Influx of Na+, K+, and Ca2+into roots ofsalt-stressed cotton seedlings effects of supplemental Ca2+[J]. Plant physiology,1987,83:510-516.
    [45] Khan M A, Ungar I A, Showalter A M. Effects of salinity on growth, ion content,and osmotic relations in Halopyrum mucronatum (L.) Stapf[J]. Journal of PlantNutrition,1999,22:191-204.
    [46] Khan M A, Ungar I A, Showalter A M. Effects of salinity on growth, waterrelations and ion accumulation of the subtropical perennial halophyte, Atriplexgriffithii var. stocksii[J]. Annals of Botany,2000,85:225-232.
    [47] Gulzar S, Khan MA. Seed germination of a halophytic grass Aeluropuslagopoides[J]. Annals of Botany,2001,87:319-324.
    [48] Saneoka H, Shiota K, Kurban H, et al. Effect of salinity on growth and soluteaccumulation in two wheat lines differing in salt tolerance[J]. Soil science andplant nutrition,1999,45:873-880.
    [49] Lee T M, Liu C H. Correlation of decreased calcium contents with prolineaccumulation in the marine green macroalga Ulva fasciata exposed to elevatedNaCl contents in seawater[J]. Journal of experimental botany,1999,50:1855-1862.
    [50] Ferreira R G, Távora F, Ferreyra Hernandez F F. Dry matter partitioning andmineral composition of roots, stems and leaves of guava grown under salt stressconditions[J]. Pesquisa Agropecuária Brasileira,2001,36:79-88.
    [51] Wang R. Plant functional types and their ecological responses to salinization insaline grasslands, Northeastern China[J]. Photosynthetica,2004,42:511-519.
    [52] Thomas J C, Mcelwain E F, Bohnert H J. Convergent induction of osmoticstress-responses abscisic acid, cytokinin, and the effects of NaCl[J]. Plantphysiology,1992,100:416-423.
    [53]许振柱,周广胜.植物氮代谢及其环境调节研究进展[J].应用生态学报,2004,15:511-516.
    [54] Baki G, Siefritz F, Man H M, et al. Nitrate reductase in Zea mays L. undersalinity[J]. Plant, Cell&Environment,2001,23:515-521.
    [55] Flores P, Botella M, Martinez V, et al. Ionic and osmotic effects on nitratereductase activity in tomato seedlings[J]. Journal of plant physiology,2000,156:552-557.
    [56] Soussi M, Lluch C, Ocana A, et al. Comparative study of nitrogen fixation andcarbon metabolism in two chick-pea (Cicer arietinum L.) cultivars under saltstress[J]. Journal of experimental botany,1999,50:1701-1708.
    [57] Parida A K, Das A B. Effects of NaCl stress on nitrogen and phosphorousmetabolism in a true mangrove Bruguiera parviflora grown under hydroponicculture[J]. Journal of plant physiology,2004,161:921-928.
    [58] Popova O V, Ismailov S F, Popova T N, et al. Salt-induced expression ofNADP-dependent isocitrate dehydrogenase and ferredoxin-dependent glutamatesynthase in Mesembryanthemum crystallinum[J]. Planta,2002,215:906-913.
    [59] Singh S C, Sinha R P, Hader D. Role of lipids and fatty acids in stress tolerancein cyanobacteria[J]. Acta protozoologica,2002,41:297-308.
    [60] Moellering E R, Muthan B, Benning C. Freezing tolerance in plants requires lipidremodeling at the outer chloroplast membrane[J]. Science,2010,330:226-228.
    [61] Debianchi S, Ballottari M, Dallosto L, et al. Regulation of plant light harvestingby thermal dissipation of excess energy[J]. Biochemical Society Transactions,2010,38:651.
    [62] Grienenberger E, Geoffroy P, Mutterer J, et al. The interplay of lipid acylhydrolases in inducible plant defense[J]. Plant signaling&behavior,2010,5:1181-1186.
    [63] Misra N, Gupta A K. Effect of salinity and different nitrogen sources on12theactivity of antioxidant enzymes and indolent alkaloid content in Catharanthusroseus seedlings[J]. Journal of Plant Physiology,2006,163:11-18.
    [64] Hassanein A. Alterations in protein and esterase patterns of peanut in response tosalinity stress[J]. Biologia plantarum,1999,42:241-8.
    [65] Wu J, Seliskar D M, Gallagher J L. Stress tolerance in the marsh plant Spartinapatens: impact of NaCl on growth and root plasma membrane lipidcomposition[J]. Physiologia Plantarum,1998,102:307-17.
    [66] Bohnert H J, Jensen R G. Strategies for engineering water-stress tolerance inplants[J]. Trends in Biotechnology,1996,14:89-97.
    [67] Shalata A, Mittova V, Volokita M, et al. Response of the cultivated tomato and itswild salt-tolerant relative Lycopersiconpennellii to salt-dependent oxidativestress: The root antioxidative system[J]. Physiologia Plantarum,2001,112:487-494.
    [68] Zhu Z, Wei G, Li J, et al. Silicon alleviates salt stress and increases antioxidantenzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.)[J].Plant Science,2004,167:527-533.
    [69] Meloni D A, Oliva M A, Martinez C A, et al. Photosynthesis and activity ofsuperoxide dismutase, peroxidase and glutathione reductase in cotton under saltstress[J]. Environmental and Experimental Botany,2003,49:69-76.
    [70]陈俊.碱地肤幼苗抗氧化酶系统对盐碱混合胁迫的生理响应特点[D].长春:东北师范大学,2006.
    [71] Hernandez J, Jimenez A, Mullineaux P, et al. Tolerance of pea (Pisum sativum L.)to long-term salt stress is associated with induction of antioxidant defences[J].Plant, Cell&Environment,2001,23:853-862.
    [72] Gossett D R, Millhollon E P, Lucas M. Antioxidant response to NaCl stress insalt-tolerant and salt-sensitive cultivars of cotton[J]. Crop Science,1994,34:706-714.
    [73] Botella M A, Quesada M A, Kononowicz A K, et al. Characterization and in situlocalization of a salt-induced tomato peroxidase mRNA[J]. Plant molecularbiology,1994,25:105-14.
    [74] Walbot V, Cullis C A. Rapid genomic change in higher plants[J]. Annual reviewof plant physiology,1985,36:367-396.
    [75] Bohnert H J, Nelson D E, Jensen R G. Adaptations to environmental stresses[J].The plant cell,1995,7:1099.
    [76] Fujita Y, Fujita M, Shinozaki K, et al. ABA-mediated transcriptional regulation inresponse to osmotic stress in plants[J]. Journal of Plant Research,2011,124:509-525.
    [77] Chaves M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell[J]. Annals of Botany,2009,103:551-560.
    [78] Kovács Z, Simon-Sarkadi L, Sz cs A, et al. Differential effects of cold, osmoticstress and abscisic acid on polyamine accumulation in wheat[J]. Amino acids2010,38:623-631.
    [79] Pospisilova J, Haisel D, Vankova R. Responses of transgenic tobacco plants withincreased proline content to drought and/or heat stress[J]. American Journal ofPlant Sciences,2011,2:318-324.
    [80] James R A, Munns R, Von Caemmerer S, et al. Photosynthetic capacity is relatedto the cellular and subcellular partitioning of Na+, K+and Cl-in salt-affectedbarley and durum wheat[J]. Plant, Cell&Environment,2006,29:2185-2197.
    [81] Garthwaite A J, Von Bothmer R, Colmer T D. Salt tolerance in wild Hordeumspecies is associated with restricted entry of Na+and Cl into the shoots[J].Journal of experimental botany,2005,56:2365-2378.
    [82] Hasegawa P M, Bressan R A, Zhu J-K, et al. Plant cellular and molecularresponses to high salinity[J]. Annual review of plant biology,2000,51:463-499.
    [83] Khatkar D, Kuhad M. Short-term salinity induced changes in two wheat cultivarsat different growth stages[J]. Biologia plantarum,2000,43:629-632.
    [84] Wang Y, Nii N. Changes in chlorophyll, ribulose bisphosphate carboxylaseoxygenase, glycine betaine content, photosynthesis and transpiration inAmaranthus tricolor leaves during salt stress[J]. Journal of Horticultural Scienceand Biotechnology,2000,75:623-627.
    [85] Zhu B, Su J, Chang M, et al. Overexpression of a Δ-pyrroline-5-carboxylatesynthetase gene and analysis of tolerance to water-and salt-stress in transgenicrice[J]. Plant Science,1998,139:41-48.
    [86] Holmstr m K O, Somersalo S, Mandal A, et al. Improved tolerance to salinityand low temperature in transgenic tobacco producing glycine betaine[J]. Journalof experimental botany,2000,51:177-185.
    [87] Spychalla J P, Desborough S L. Superoxide dismutase, catalase, and α-tocopherolcontent of stored potato tubers[J]. Plant physiology,1990,94:1214-1218.
    [88] Roxas V P, Lodhi SA, Garrett D K, et al. Stress tolerance in transgenic tobaccoseedlings that overexpress glutathione S-transferase/glutathione peroxidase[J].Plant and Cell Physiology,2000,41:1229-1234.
    [89] Willekens H, Chamnongpol S, Davey M, et al. Catalase is a sink for H2O2and isindispensable for stress defence in C3plants[J]. EMBO Journal,1997,16:4806-4816.
    [90] Vaidyanathan R, Kuruvilla S, Thomas G. Characterization and expression patternof an abscisic acid and osmotic stress responsive gene from rice[J]. Plant Science,1999,140:21-30.
    [91] Gómez-Cadenas A, Tadeo F R, Primo-Millo E, et al. Involvement of abscisic acidand ethylene in the responses of citrus seedlings to salt shock[J]. PhysiologiaPlantarum,1998,103:475-484.
    [92] Popova L P, Stoinova Z G, Maslenkova LT. Involvement of abscisic acid inphotosynthetic process in Hordeum vulgare L. during salinity stress[J]. Journalof Plant Growth Regulation,1995,14:211-218.
    [93] Thomas J C, McElwain E F, Bohnert H J. Convergent induction of osmoticstress-responses: Abscisic acid, cytokinin, and the effects of NaCl[J]. Plantphysiology,1992,100:416-423.
    [94] Gupta S, Chattopadhyay M K, Chatterjee P, et al. Expression of abscisicacid-responsive element-binding protein in salt-tolerant indica rice (Oryza sativaL. cv. Pokkali)[J]. Plant molecular biology,1998,37:629-637.
    [95] Leung J, Giraudat J. Abscisic acid signal transduction[J]. Annual review of plantbiology,1998,49:199-222.
    [96] Gómez-Cadenas A, Arbona V, Jacas J, et al. Abscisic acid reduces leaf abscissionand increases salt tolerance in citrus plants[J]. Journal of Plant GrowthRegulation,2002,21:234-240.
    [97] Pedranzani H, Racagni G, Alemano S, et al. Salt tolerant tomato plants showincreased levels of jasmonic acid[J]. Plant Growth Regulation,2003,41:149-158.
    [98] Adams P, Thomas J C, Vernon D M, et al. Distinct cellular and organismicresponses to salt stress[J]. Plant and Cell Physiology,1992,33:1215-1223.
    [99] Zhu J K. Regulation of ion homeostasis under salt stress[J]. Current Opinion inPlant Biology,2003,6:441-445.
    [100] Cheeseman J M. Mechanisms of salinity tolerance in plants[J]. Plant Physiol,1988,87:547-550.
    [101] Chinnusamy V, Zhu J-K. Epigenetic regulation of stress responses in plants[J].Current Opinion in Plant Biology,2009,12:133-139.
    [102] Mirouze M, Paszkowski J. Epigenetic contribution to stress adaptation inplants[J]. Current Opinion in Plant Biology,2011,14:267-274.
    [103] Boyko A, Kovalchuk I. Genome instability and epigeneticmodification-heritable responses to environmental stress[J]? Current Opinion inPlant Biology,2011,14:260-266.
    [104] Pecinka A, Dinh H Q, Baubec T, et al. Epigenetic regulation of repetitiveelements is attenuated by prolonged heat stress in Arabidopsis[J]. The Plant Cell,2010,22:3118-3129.
    [105] Boyko A, Blevins T, Yao Y, et al. Transgenerational adaptation of Arabidopsis tostress requires DNA methylation and the function of Dicer-like proteins[J].PLoS One,2010,5: e9514.
    [106] Verhoeven K J, Jansen J J, van Dijk P J, et al. Stress-induced DNA methylationchanges and their heritability in asexual dandelions[J]. New Phytologist,2010,185:1108-1118.
    [107] Dowen R H, Pelizzola M, Schmitz R J, et al. Widespread dynamic DNAmethylation in response to biotic stress[J]. Proceedings of the NationalAcademy of Sciences,2012,109:2183-2191.
    [108] Yaish M W, Colasanti J, Rothstein S J. The role of epigenetic processes incontrolling flowering time in plants exposed to stress[J]. Journal ofexperimental botany,2011,62:3727-3735.
    [109] Buhtz A, Pieritz J, Springer F, et al. Phloem small RNAs, nutrient stressresponses, and systemic mobility[J]. BMC Plant Biology,2010,10:64.
    [110] Sunkar R, Chinnusamy V, Zhu J, et al. Small RNAs as big players in plantabiotic stress responses and nutrient deprivation[J]. Trends in Plant Science,2007,12:301-309.
    [111] Shukla L I, Chinnusamy V, Sunkar R. The role of microRNAs and otherendogenous small RNAs in plant stress responses[J]. Biochimica et BiophysicaActa (BBA)-Gene Regulatory Mechanisms,2008,1779:743-748.
    [112] Yan Y, Zhang Y, Yang K, et al. Small RNAs from MITE-derived stem-loopprecursors regulate abscisic acid signaling and abiotic stress responses in rice[J].The Plant Journal,2011,65:820-828.
    [113] Harlan H V, Pope M N. The use and value of back-crosses in small-grainbreeding[J]. Journal of Heredity,1922,13:319-322.
    [114] Bai J Y, Zhang Q, Jia X P. Theory and application of marker-assistedintrogression[J]. Hereditas,2007,29:259-264.
    [115] Dwivedi S L, Crouch J H, Nigam S N, et al. Molecular breeding of groundnutfor enhanced productivity and food security in the semi-arid tropics:opportunities and challenges[J].2003,153-221.
    [116] Haussmann, Parzies H K, Presterl T, et al. Plant genetic resources in cropimprovement[J]. Plant Genetic Resources: Characterisation and Utilisation,2004,2:3-21.
    [117] D Eyaz. A genomic library of Lycopersicon pennellii in L. esculentum: a tool forfne mapping of genes[J]. Euphytica,1994,79:175-179.
    [118] D Eyaz. An introgression line population of Lycopersicon pennellii in thecultivated tomato enables the identifcation and fne mapping of yield-associatedQTL[J]. Genetics,1995,141:1147-1162.
    [119] Fridman E Ptazd. A recombinant hotspot delimits a wild-species quantitativetrait locus for tomato sugar content to484bp within an invertase gene[J].Proceedings of the National Academy of Sciences,2000,97:4718-4723.
    [120] Howell P M Mdald. Towards developing intervarietal substitution lines inBrassica napus using marker-assisted selection[J]. Genome,1996,39:348-358.
    [121] Ramsay L D, Bohuon E J R, Arthur A E, et al. The construction of a substitutionlibrary of recombinant backcross lines in Brassica oleracea for the precisionmapping of quantitative trait loci[J]. Genome.1996,39:558-567.
    [122] Keurentjes J J, Bentsink L, Alonso-Blanco C, et al. Development of anear-isogenic line population of Arabidopsis thaliana and comparison ofmapping power with a recombinant inbred line population[J]. Genetics,2007,175:891-905.
    [123] Winter P, Benko-Iseppon A-M, Hüttel B, et al. A linkage map of the chickpea(Cicer arietinum L.) genome based on recombinant inbred lines from a C.arietinum×C. reticulatum cross: localization of resistance genes for fusariumwilt races4and5[J]. Theoretical and Applied Genetics,2000,101:1155-1163.
    [124] Zheng T, Wang Y, Ali A, et al. Genetic effects of background-independent locifor grain weight and shape identified using advanced reciprocal introgressionlines from Lemont×Teqing in rice[J]. Crop Science,2011,51:2525-2534.
    [125] Bian J M, Jiang L, Liu L L, et al. Construction of a new set of rice chromosomesegment substitution lines and identification of grain weight and related traitsQTLs[J]. Breeding Science,2010,60:305-313.
    [126] Doi K In, Yoshimura A. The construction of chromosome introgression lines ofAfrican rice (Oryza glaberrima Steud.) in the background of japonica (O. sativaL.)[J]. Rice Genet Newsl,1997,14:39-41.
    [127] Sobrizal I K, Sanchez P L, Doi K, et al. Development of Oryza glumaepatulaintrogression line in rice[J]. Rice Genet Newsl,1999,16:107-108.
    [128] Gutierrez A, CarabalíS, Giraldo O, et al. Identification of a rice stripe necrosisvirus resistance locus and yield component QTLs using Oryza sativa×O.glaberrima introgression lines[J]. BMC Plant Biology,2010,10:6.
    [129] Hirabayashi H, Sato H, Nonoue Y, et al. Development of introgression linesderived from Oryza rufipogon and O. glumaepatula in the genetic backgroundof japonica cultivated rice (O. sativa L.) and evaluation of resistance to riceblast[J]. Breeding Science,2010,60:604-612.
    [130] Urano K, Kurihara Y, Seki M, et al. Omics analyses of regulatory networks inplant abiotic stress responses[J]. Current Opinion in Plant Biology,2010,13:132-138.
    [131] Fujita M, Fujita Y, Noutoshi Y, et al. Crosstalk between abiotic and biotic stressresponses: a current view from the points of convergence in the stress signalingnetworks[J]. Current Opinion in Plant Biology,2006,9:436-442.
    [132] Seki M, Kamei A, Yamaguchi-Shinozaki K, et al. Molecular responses todrought, salinity and frost: common and different paths for plant protection[J].Current Opinion in Biotechnology,2003,14:194-199.
    [133] Schulze A, Downward J. Navigating gene expression using microarrays-atechnology review[J]. Nature cell biology,2001,3:190-195.
    [134] Gautier L, Cope L, Bolstad B M, et al. affy-analysis of Affymetrix GeneChipdata at the probe level[J]. Bioinformatics,2004,20:307-315.
    [135] Schena M, Shalon D, Davis R. et al. Quantitative monitoting of gene expressionpatterns with a complementary DNA microaway[J]. Science1995,270:235.
    [136] Branco-Price C, Kawaguchi R, Ferreira R B, et al. Genome-wide analysis oftranscript abundance and translation in arabidopsis seedlings subjected tooxygen deprivation[J]. Annals of Botany,2005,96:647-660.
    [137] Seki M, Narusaka M, Ishida J, et al. Monitoring the expression profiles of7000Arabidopsis genes under drought, cold and high-salinity stresses using afull-length cDNA microarray[J]. Plant Journal,2002,31:279-292.
    [138] Zhou J, Wang X, Jiao Y, et al. Global genome expression analysis of rice inresponse to drought and high-salinity stresses in shoot, flag leaf, and panicle[J].Plant molecular biology,2007,63:591-608.
    [139] Kant P, Gordon M, Kant S, et al. Functional-genomics-based identification ofgenes that regulate Arabidopsis responses to multiple abiotic stresses[J]. Plant,Cell and Environment,2008,31:697-714.
    [140] Todaka D, Nakashima K, Shinozaki K, et al. Toward understandingtranscriptional regulatory networks in abiotic stress responses and tolerance inrice[J]. Rice,2012,5:6.
    [141] Takasaki H, Maruyama K, Kidokoro S, et al. The abiotic stress-responsiveNAC-type transcription factor OsNAC5regulates stress-inducible genes andstress tolerance in rice[J]. Molecular Genetics and Genomics,2010,284:173-183.
    [142] Gao Z, He X, Zhao B, et al. Overexpressing a putative aquaporin gene fromwheat, TaNIP, enhances salt tolerance in transgenic Arabidopsis[J]. Plant andCell Physiology,2010,51:767-775.
    [143] Dinneny J R, Long T A, Wang J Y, et al. Cell identity mediates the response ofArabidopsis roots to abiotic stress[J]. Science Signalling,2008,320:942.
    [144] Houde M, Diallo A O. Identification of genes and pathways associated withaluminum stress and tolerance using transcriptome profiling of wheatnear-isogenic lines[J]. BMC genomics,2008,9:400.
    [145] Matzke A J M, Matzke M A. Position effects and epigenetic silencing of planttransgenes[J]. Current Opinion in Plant Biology,1998,1:142-148.
    [146] Ashraf M. Inducing drought tolerance in plants: recent advances[J].Biotechnology advances,2010,28:169-183.
    [147] Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNAfingerprinting[J]. Nucleic Acids Res,1995,23:4407-4414.
    [148] Wang Y M, Dong Z Y, Zhang Z J, et al. Extensive de novo genomic variation inrice induced by introgression from wild rice (Zizania latifolia Griseb.)[J].Genetics,2005,170:1945-1956.
    [149] Porebski S, Bailey L G, Baum B R. Modification of a CTAB DNA extractionprotocol for plants containing high polysaccharide and polyphenolcomponents[J]. Plant Molecular Biology Reporter,1997,15:8-15.
    [150] Apostol B L, Black W C, Reiter P, et al. Population genetics with RAPD-PCRmarkers: the breeding structure of Aedes aegypti in Puerto Rico[J]. Heredity1996,76:325-334.
    [151] Rohlf F. NTSYSpc: Numerical Taxonomy System, ver.2.1. Setauket[D], NewYork: Exeter Publishing, Ltd2002.
    [152] Bolstad B M, Irizarry R A, strand M, et al. A comparison of normalizationmethods for high density oligonucleotide array data based on variance andbias[J]. Bioinformatics,2003,19:185-193.
    [153] Irizarry R A, Bolstad B M, Collin F, et al. Summaries of Affymetrix GeneChipprobe level data[J]. Nucleic Acids Res,2003,31: e15.
    [154] Bolstad B M, Irizarry R A, Astrand M, et al. A comparison of normalizationmethods for high density oligonucleotide array data based on variance andbias[J]. Bioinformatics,2003,19:185-193.
    [155] Irizarry R A, Hobbs B, Collin F, et al. Exploration, normalization, andsummaries of high density oligonucleotide array probe level data[J].Biostatistics,2003,4:249-264.
    [156] R: A language and environment for statistical computing[D]. R Foundation forStatistical Computing. Vienna,2011.
    [157] Smyth G K. Linear models and empirical bayes methods for assessingdifferential expression in microarray experiments[J]. Stat Appl Genet Mol Biol,2004,3:3.
    [158] Smyth G K, Michaud J, Scott H S. Use of within-array replicate spots forassessing differential expression in microarray experiments[J]. Bioinformatics,2005,21:2067-2075.
    [159] Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical andpowerful approach to multiple testing[J]. Journal of the Royal Statistical SocietySeries B,1995,57:289-300.
    [160] Zheng Q, Wang X J. GOEAST: a web-based software toolkit for Gene Ontologyenrichment analysis[J]. Nucleic Acids Research,2008,36:358-363.
    [161] Livak K J, Schmittgen T D. Analysis of relative gene expression data usingreal-time quantitative PCR and the2-ΔΔCT method[J]. methods,2001,25:402-408.
    [162] Kawaura K, Mochida K, Ogihara Y. Genome-wide analysis for identification ofsalt-responsive genes in common wheat[J]. Functional&Integrative Genomics,2008,8:277-286.
    [163] Walia H, Wilson C, Zeng L, et al. Genome-wide transcriptional analysis ofsalinity stressed japonica and indica rice genotypes during panicle initiationstage[J]. Plant molecular biology,2007,63:609-623.
    [164] Rensink W A, Iobst S, Hart A, et al. Gene expression profiling of potatoresponses to cold, heat, and salt stress. Functional and Integrative Genomics2005,5:201-207.
    [165] Kawasaki S, Borchert C, Deyholos M, et al. Gene expression profiles during theinitial phase of salt stress in rice[J]. Plant Cell,2001,13:889-905.
    [166] Jin H, Kim H R, Plaha P, et al. Expression profiling of the genes induced byNa2CO3and NaCl stresses in leaves and roots of Leymus chinensis[J]. PlantScience,2008,175:784-792.
    [167] Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, et al. OsDREB genes in rice, Oryzasativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression[J]. Plant Journal,2003,33:751-763.
    [168] Hu H, Dai M, Yao J, et al. Overexpressing a NAM, ATAF, and CUC (NAC)transcription factor enhances drought resistance and salt tolerance in rice[J].Proceedings of the National Academy of Sciences of the United States ofAmerica,2006,103:12987-12992.
    [169] M ller I S, Gilliham M, Jha D, et al. Shoot Na+exclusion and increased salinitytolerance engineered by cell type-Specific alteration of Na+transport inArabidopsis[J]. Plant Cell,2009,21:2163-2178.
    [170] Oraby H, Ahmad R. Physiological and biochemical changes of CBF3transgenicoat in response to salinity stress[J]. Plant Science,2012,185:331-339.
    [171] Seki M, Narusaka M, Ishida J, et al. Monitoring the expression profiles of7000Arabidopsis genes under drought, cold and high-salinity stresses using afull-length cDNA microarray[J]. The Plant Journal,2002,31:279-292.
    [172] Wang H, Ahan J, Wu Z, et al. Alteration of nitrogen metabolism in rice variety'Nipponbare' induced by alkali stress[J]. Plant and Soil,2012,355:131-147.
    [173] Walia H, Wilson C, Condamine P, et al. Comparative transcriptional profiling oftwo contrasting rice genotypes under salinity stress during the vegetativegrowth stage[J]. Plant physiology,2005,139:822-835.
    [174] Sun W, Xu X, Zhu H, et al. Comparative transcriptomic profiling of asalt-tolerant wild tomato species and a salt-sensitive tomato cultivar[J]. Plantand Cell Physiology,2010,51:997-1006.
    [175] Zheng J, Fu J, Gou M, et al. Genome-wide transcriptome analysis of two maizeinbred lines under drought stress[J]. Plant molecular biology,2010,72:407-421.
    [176] Fu X Z, Gong X Q, Zhang Y X, et al. Different Transcriptional Response toXanthomonas citri subsp. citri between Kumquat and Sweet Orange withContrasting Canker Tolerance[J]. PLoS ONE,2012,7: e41790.
    [177] Olinevich O, Khokhlova L. Effects of abscisic acid, low temperature, and plantage on cytoskeleton and phosphorylated proteins[J]. Biochemistry (Moscow),2003,68:678-687.
    [178] Wang C, Zhang L, Yuan M, et al. The microfilament cytoskeleton plays a vitalrole in salt and osmotic stress tolerance in Arabidopsis[J]. Plant Biology,2009,12:70-78.
    [179] Zhou Y, Yang Z, Guo G, et al. Microfilament Dynamics is Required for RootGrowth under Alkaline Stress in Arabidopsis[J]. Journal of Integrative PlantBiology,2010,52:952-8.
    [180] Tronchet M, BalaguéC, Kroj T, et al. Cinnamyl alcohol dehydrogenases-C andD, key enzymes in lignin biosynthesis, play an essential role in diseaseresistance in Arabidopsis[J]. Molecular Plant Pathology,2010,11:83-92.
    [181] Vanholme R, Demedts B, Morreel K, et al. Lignin biosynthesis and structure[J].Plant physiology,2010,153:895-905.
    [182] Ca o-Delgado A, Penfield S, Smith C, et al. Reduced cellulose synthesisinvokes lignification and defense responses in Arabidopsis thaliana[J]. ThePlant Journal,2003,34:351-362.
    [183] Brunings A, Datnoff L, Ma J, et al. Differential gene expression of rice inresponse to silicon and rice blast fungus Magnaporthe oryzae[J]. Annals ofApplied Biology,2009,155:161-170.
    [184] Ishimaru Y, Bashir K, Fujimoto M, et al. Rice-specific mitochondrialiron-regulated gene (MIR) plays an important role in iron homeostasis[J].Molecular plant,2009,2:1059-1066.