土壤水分对3个造林树种光合生理生化特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水分是影响植物生长、分布和生态修复的主要限制因子。水分时空分布不均是我国水资源的主要特点,尤其是我国北方半干旱黄土丘陵地区水分匮乏严重,生态脆弱。本文针对我国干旱半干旱区干旱缺水的主要特征,以山杏(Prunus sibirica)、沙棘(Hippophaerhamnoides)、油松(Pinus tabulaeformis)3个树种为试验试料,采用盆栽试验和自然干旱处理的方法测定了3个树种在土壤干旱逐渐加剧过程中各气体交换参数的光响应过程和CO_2响应过程,以及不同生理生化指标的响应过程及变化规律。
     阐明了土壤干旱逐渐加剧过程中净光合速率(Pn)、蒸腾速率(Tr)、水分利用效率(WUE)、胞间CO_2浓度(Ci)、气孔导度(Gs)等气体交换参数的光响应过程,揭示光合生理光响应过程发生变化的机理和机制,明确3个树种光合特征生理参数发生明显变化的土壤水分临界点及这种变化与土壤水分的定量关系,确定维持不同树种较高Pn和WUE的土壤水分范围;阐明了土壤干旱逐渐加剧过程3个树种CO_2响应过程及其特征参数对土壤水分的响应及其发生显著变化的机制,确定了3树种光合作用CO_2响应过程与土壤水分的定量关系。
     采用直角双曲线模型、非直角双曲线模型、指数方程和直角双曲线修正模型对3个树种的光响应过程和CO_2响应过程及光合作用生理参数进行拟合分析,探讨了不同模型在拟合分析不同土壤水分下3个树种光响应过程和CO_2响应过程及其特征参数的适用性。
     测定了3个树种在土壤干旱逐渐加剧过程中8个生理生化指标的变化,明确3个树种在土壤干旱过程中主要生理生化指标水平的变化过程及其差别,探索3个树种抗旱能力及其生理生化指标与土壤水分的定量关系。通过对3个树种光响应、CO_2响应过程和生理生化指标随着土壤水分的连续降低的变化过程及响应特征的研究,为深入了解3个树种的水分生理生态特征和抗旱机理,为指导3个树种在干旱缺水地区的物种配置、合理栽培及系统构建提供一定的理论依据,同时为不同光合作用模型的适用性评价提供试验证据。主要研究成果如下:
     (1)3个树种叶片气体交换参数对土壤水分和光强具有明显的阈值响应
     根据光合速率、蒸腾速率和水分利用效率等气体交换参数与土壤水分的关系分析结果,初步明确了3个树种以提高光合生产力与水分利用效率为核心的适宜土壤水分条件、土壤水分最大亏缺及适宜的光照强度范围。
     ①山杏、沙棘和油松生长适宜的土壤水分范围分别为:52.3%~84.8%、50.2%~84.6%、44.3%~83.6%。适宜的光照强度范围分别为:500~1300、300~1500、300~1500μmol·m-2·s-1。土壤水分最大亏缺值越低,表明植物在干旱胁迫条件下对干旱的忍耐能力越强。由3个树种的土壤水分最大亏缺值可以看出他们的抗旱性从高到低依次为:油松、沙棘、山杏。
     ②3个树种的表观量子效率(Φ)、暗呼吸速率(Rd)和光补偿点(LCP)受土壤水分含量的影响显著,对土壤水分具有明显的阈值响应特征。3个树种对弱光的利用能力由高到低依次为:油松、山杏、沙棘。
     (2)土壤水分显著影响植物叶片光合作用-CO_2响应过程及其生理参数
     维持山杏、沙棘和油松叶片具有较高光合速率(Pn)及羧化效率(CE)的土壤相对含水量(RWC)分别为46.3%~81.9%、42.8%~83.5%和35.3%~84.2%范围内;当RWC超出此范围,土壤水分升高或降低均明显降低山杏、沙棘和油松叶片的光合能力(Pnmax)、CE和CO_2饱和点(CSP)。山杏、沙棘和油松光合作用-CO_2响应适宜的土壤水分范围分别在46.3%~81.9%、42.8%~83.5%和35.3%~84.2%之间。3个树种对低的CO_2的同化能力由大到小依次为:油松、沙棘、山杏。
     (3)不同土壤水分条件下的3个树种的光合作用的光响应过程和CO_2响应过程及其生理特征参数的模型模拟
     ①用直角双曲线模型、非直角双曲线模型、指数方程和直角双曲线修正模型对3个树种光响应数据的模拟效果在不同土壤水分下具有明显差别。当山杏RWC在52.3%~84.8%、沙棘在50.2%~84.6%和油松在44.3%~83.6%范围内时,4个模型均能较好地拟合3个树种的光响应过程及其特征参数如表观量子效率(Φ)、光补偿点(LCP)和暗呼吸速率(Rd)。其中,以非直角双曲线模型拟合值与实测值最为接近;当RWC超出3个树种生长适宜范围时,只有直角双曲线修正模型可以较好地拟合3个树种的光响应过程及其特征参数。
     ②当山杏、沙棘和油松土壤水分范围分别在46.3%~81.9%、42.8%~83.5%和35.3%~84.2%之间时,直角双曲线模型、非直角双曲线模型、指数方程和直角双曲线修正模型均能较好地拟合3树种光合作用的CO_2响应过程及其特征参数CE、CO_2补偿点(CCP)和光呼吸速率(Rp),对CE、CCP和Rp的拟合精度以非直角双曲线模型>直角双曲线修正模型>指数方程>直角双曲线模型;当土壤水分含量超出正常生长范围时,只有直角双曲线修正模型能较好地拟合3树种CO_2响应过程及其特征参数。
     (4)不同土壤水分下3个树种叶片生理生化指标的变化及其与土壤水分的定量关系
     随着干旱程度加剧,3个树种叶片相对含水量(LRWC)及叶绿素(Chl)含量持续下降,细胞膜透性逐渐增大;其中,以山杏和沙棘变化幅度较大,油松最小;3个指标发生显著变化的土壤相对含水量(RWC)临界值,油松为61.3%、山杏和沙棘分别为52.3%和54.3%。丙二醛(MDA)含量先升高后降低,轻度干旱胁迫时MDA含量的降低与保护酶活性升高有关,极度干旱胁迫时MDA含量的降低与MDA自身的降解有关;3个树种超氧化物歧化酶(SOD)与过氧化物酶(POD)两种抗氧化酶活性,随RWC降低先升高后降低,SOD活性、POD活性对干旱胁迫的响应程度和防御作用存在差异,即在抵御轻、中度干旱胁迫时SOD发挥着重要作用,干旱胁迫加剧时POD活性作用更大;维持较高抗氧化酶活性的RWC范围,油松为34.6%~85.6%、山杏和沙棘分别为52.3%~87.2%和39.9%~87.7%;在不同土壤干旱程度下,油松的抗氧化酶活性水平高于沙棘和山杏。3个树种两种渗透调节物质脯氨酸(Pro)与可溶性糖(Ss)的含量随RWC降低而增加,油松的增加幅度大于山杏和沙棘;Pro含量的增加速度大于Ss含量。3个树种可通过渗透调节、抗氧化酶活性升高等途径增强对干旱逆境的耐受性和适应性;通过模糊隶属函数值法对3个树种的抗旱能力进行了综合评价,3个树种的抗旱能力为油松>沙棘>山杏。
Water is the main factor which limited plant growth, distribution and ecologicalrestoration. The main features of water resources is that the distribution is uneven in time andspace in our country. Especially in northern China semi-arid loess hilly area, water scarcity issevere and ecology is fragile. In this paper according to the main features of China's arid andsemi-arid drought and water shortage, we used Prunus sibirica、Hippophae rhamnoides andPinus tabulaeformis as the test samples, using potted experiment and natural drought method,light response process and CO_2response process of gas exchange parameters were determined,as well as response process and change rules of eight physiological and biochemical indexeswere determined.
     Light response process of gas exchange parameters, such as net photosynthetic rate(Pn)、transpiration rate(Tr)、water use efficiency (WUE)、intercellular CO_2concentration(Ci)、stomatal conductance(Gs)in three tree species and the mechanisms of thephotosynthetic physiological light response process were revealed in the process of graduallyintensified soil drought, the soil moisture critical point of the photosynthetic characteristicparameters changed significantly and the quantitative relationship of thus change and the soilmoisture were clear, the soil moisture range of the three trees to maintain higher Pnand WUEwere determined.
     CO_2response process of the three trees and the response of characteristic parameters tosoil water and the mechanisms of the characteristic parameters changed significantly wererevealed, the quantitative relationship of photosynthetic CO_2response process and itscharacteristic parameters were determined in the process of gradually intensified soil drought.
     The light response process and CO_2response process and the photosyntheticphysiological parameters of the three tree species were fitted by rectangular hyperbolic model,non-rectangular hyperbolic model, exponential equation and modified rectangular hyperbolicmodel, the applicability of different models to fit the photosynthesis process of the three treespecies was discussed in different soil moisture conditions.
     The variation and the difference of eight physiological and biochemical indexes of thethree tree species were determined in the process of intensified soil drought, droughtresistance of the three tree species and the quantitative relationship of the physiological and biochemical indices and the soil moisture were explored. Through the study of the variationand response characteristics of the light response process and CO_2response process and thephysiological and biochemical indices in the three tree species, a theoretical basis could beprovided to understand the hydrological and ecological characteristics and drought resistancemechanism deeply, to guide species configuration, reasonable cultivationin and systemconstruction in arid areas; at the same time the test evidence could be provide to evaluate theapplicability of different photosynthetic models. The main results are as follows:
     (1)Leaf gas exchange parameters of the three tree species had obvious thresholdresponses to soil moisture and light intensity
     According to the analysis results of the relation between gas exchange parameters suchas net photosynthetic rate、transpiration rate、water use efficiency and the soil moisture,suitable soil moisture conditions, the biggest soil moisture deficit and suitable light intensityrange of the three tree species to improve photosynthetic productivity and water use efficiencywere clear initially.
     ①The suitable soil moisture ranges for P.sibirica、H. rhamnoides、P. tabulaeformis were52.3%~84.8%、50.2%~84.6%、44.3%~83.6%, respectively. Suitable light intensity rangesfor them were500~1300、300~1500、300~1500μmol·m-2·s-1, respectively. The lower thebiggest soil moisture deficit value, the stronger drought tolerance ability under drought stress.From the biggest soil moisture deficit value we could see that their drought resistance fromhigh to low were in the order of P. tabulaeformis、H. rhamnoides、P. sibirica.
     ②The apparent quantum yield(Φ)、dark respiration rate(Rd)and light compensationpoint(LCP)of the three species were affected significantly by soil moisture contents, they allhad clear threshold response characteristics to the soil moisture. The order from high to low ofthe ability to utilize low light of the three species were P. tabulaeformis、H. rhamnoides、P.sibirica.
     (2)Soil moisture significantly affected leaf photosynthetic CO_2response process and thephysiological parameters
     The suitable soil moisture ranges of photosynthetic CO_2response for P. sibirica、H.rhamnoides、P. tabulaeformis were in the ranges of46.3%~81.9%、42.8%~83.5%and35.3%~84.2%, respectively. When RWC exceeded these ranges, photosynthetic capacity(Pnmax)、CE and CO_2saturation point(CSP)significantly reduced when the soil moistureincreased or reduced. The order of the ability to assimilate low CO_2of the three species from high to low were P. tabulaeformis、H. rhamnoides、P. sibirica.
     (3)Model simulation of photosynthetic light response process and CO_2response processand their characteristic parameters
     ①Effect of light response data fitted by rectangular hyperbola model、non-rectangularhyperbola model、exponential equation and modified rectangular hyperbola model hadsignificant differences under different soil moisture conditions. The photosynthetic lightprocess and its characteristic parameters such as the apparent quantum yield(Φ)、darkrespiration rate(Rd)and light compensation point (LCP)were well fitted by the4modelswhen RWC of P. sibirica were from52.3%to84.8%、that of H. rhamnoides were from50.2%to84.6%、that of P. tabulaeformis were from44.3%to83.6%,and the values fitted bynon-rectangular hyperbola model were the most close to measured values. Only the modifiedrectangular hyperbola model could well fit the light response process and its characteristicparameters when RWC were ouside of the above ranges.
     ②The photosynthetic CO_2response process and its characteristic parameters CE、CO_2compensation point (CCP) and light respiration rate (Rp) were well fitted by rectangularhyperbola model、non-rectangular hyperbola model、exponential equation and modifiedrectangular hyperbola model when RWC of P. sibirica were from46.3%to81.9%、that of H.rhamnoides were from42.8%to83.5%、that of P. tabulaeformis were from35.3%to84.2%,the fitting precision was that non-rectangular hyperbola model> modified rectangularhyperbola model> exponential equation> rectangular hyperbola mode. Only the modifiedrectangular hyperbola model could well fit the photosynthetic CO_2response process and itscharacteristic parameters when the soil moisture content exceeded the above ranges.
     (4)Changes of physiological and biochemical indexes in the three species and thequantitative relationship of the changes and the soil moisture under different soil moistureconditions
     Leaf relative water content (LRWC) and the chlorophyll (Chl) content decreased whilethe cell membrane permeability increased gradually in the three tree species following therelative water content (RWC) of soil reduced. The changes of the tested responses in P.sibirica and H. rhamnoides were bigger than those in P. tabulaeformis.LRWC, Chl contentand the cell membrane relative permeability changed significantly when the soil RWC werelower than61.3%,52.3%, and54.3%for P. tabulaeformis, P. sibirica and H. rhamnoides,respectively.The content of malondidehyde (MDA) increased and then declined, the decrease of MDA content under light drought stress condition was related with the protective enzymeactivity increase, and the decrease under severe drought stress condition was related withMDA itself degradation.The activity of SOD and POD in the three tree species increased firstand then decreased following the soil water reduced.The response time and the defensive roleof SOD and POD to drought stress were different. SOD played an more important role in theearly drought stress and POD played a bigger role in the late drought stress when droughtstress was intensified.The soil RWC required to maintain higher enzyme activity were34.6%~85.6%,52.3%~87.2%and39.9%~87.7%for P. tabulaeformis, P. sibirica, and H.rhamnoides, respectively. The Pro content and the Ss content increased following the soilwater reduced, with the higher level in P. tabulaeformis. The Pro increased faster than Ss. Sowe conclude that the three tree species enhance their tolerance and adaptability to droughtstress by osmotic adjustment and protective enzyme system.The comprehensive evaluationwas made about the drought-resistant capability of the three tree species by using the subjectfunction method. The order was P. tabulaeformis>H. rhamnoides>P. sibirica.
引文
安玉艳,梁宗锁,郝文芳.杠柳幼苗对不同强度干旱胁迫的生长与生理响应.生态学报.2011,31(3):716-715.
    卜令铎,张仁和,常宇,薛吉全,韩苗苗.苗期玉米叶片光合特性对水分胁迫的响应.生态学报,2010,30(5):1184-1191.
    蔡海霞,吴福忠,杨万勤.干旱胁迫对高山柳和沙棘幼苗光合生理特征的影响.生态学报,2010,30(9):2430-2436.
    蔡永萍,李玲,李合生等.霍山县3种石斛叶片光合特性及其对光强的响应.中草药,2005,36(4):586–590.
    曹慧,韩振海,许学峰.水分胁迫下苹果属植物叶片叶绿素降解的膜脂过氧化损伤作用.中国农业科学,2004,36(10):1191-1195.
    曹军胜,刘广全.油松光合特性的研究.安徽农业科学,2005,33(4):608–609.
    曹雪丹,李文华,鲁周民,张忠良,吴万兴.北缘地区枇杷春季光合特性研究.西北林学院学报,2008,23(6):33-37.
    曹仪植,宋占午.植物生理学.兰州:兰州大学出版社,1998.
    常宗强,冯起,苏永红,吴雨霞,司建华,席海洋.额济纳绿洲胡杨的光合特征及其对光强和CO2浓度的响应.干旱区地理,2006,29(4):496–502.
    陈根云,俞冠路,陈悦,许大全.光合作用对光和二氧化碳响应的观测方法探讨.植物生理与分子生物学学报,2006,32(6):691-696.
    陈建,张光灿,张淑勇,王梦军.辽东楤木光合和蒸腾作用对光照和土壤水分的响应过程.应用生态学报,2008,19(6):1185-1190.
    陈少裕.膜脂过氧化与植物逆境胁迫.植物学通报,1989,6(4):211-217.
    陈少裕.膜脂过氧化对植物细胞的伤害.植物生理学通迅,1991,27(2):84-90.
    陈新军,张光灿,周泽福,马树生,李小磊,张淑勇.黄土丘陵区紫丁香叶片气体交换参数的日变化及光响应.中国水土保持科学,2004,2(4):102-107.
    陈雄,吴冬秀,王根轩,任红旭. CO2浓度升高对干旱胁迫下小麦光合和抗氧化酶活性的影响.应用生态学报,2000,11(6):881-884.
    陈志辉,张良诚,吴光林.水分胁迫对柑橘光合作用的影响.浙江农业大学学报,1992,18(2):60-66.
    从心黎,黄绵佳,杨意伯.干旱胁迫对红掌离体叶片生理指标的影响.广西农业科学,2007,38(6):669-672.
    崔晓阳,宋金凤,张艳华.不同土壤水势条件下水曲柳幼苗的光合作用特征.植物生态学报,2004,28(6):794-802.
    邓慧平,吴正方,周道玮.全球气候变化对小兴安岭阔叶红松林影响的动态模拟研究.应用生态学报,2000,11(1):43-46.
    杜金伟,崔世茂,金丽萍,李海涛,宋阳,李红杰,赵恒栋.水分胁迫对山杏渗透调节物质积累及保护酶活性的影响.内蒙古农业大学学报,2009,30(2):88-93.
    杜秀敏,殷文璇,赵彦修.植物中活性氧的产生及清除机制.生物工程学报,2001,17(2):121-125.
    董志新,韩清芳,贾志宽,任广鑫.不同苜蓿品种光合速率对光和CO2浓度的响应特征.生态学报,2007,27(6):2272-2277.
    樊巍.农林复合系统的林网对冬小麦水分利用效率影响的研究.林业科学,2000,36(4):16-20.
    樊卫国.刺梨对土壤干旱胁迫的生理响应.中国农业科学,2003,36(10):1243-1248.
    冯宝春,陈学森,杨红花,郭光智,郭斐.干旱胁迫对枣树叶片生理的影响.林业科技,2009,34(4):10-13.
    冯慧芳,薛立,任向荣,傅静丹,郑卫国,史小玲.4种阔叶幼苗对PEG模拟干旱的生理响应.生态学报,2011,31(2):371-382.
    冯建灿,张玉洁.低温胁迫对喜树幼苗SOD活性、MDA和脯氨酸含量的影响.林业科学研究,2002,15(2):197-202.
    冯玉龙,冯志立,曹坤芳.砂仁叶片光破坏的防御.植物生理学报,2001,27(8):483-488.
    冯玉龙,曹坤芳,冯志立.生长光强对4种热带雨林树苗光合机构的影响.植物生理与分子生物学学报,2002,28(2):153–160.
    付士磊,周永斌,何兴元,陈玮.干旱胁迫对杨树光合生理指标的影响.应用生态学报,2006,17(11):2016-2019.
    付为国,李萍萍,卞新民,吴沿友,曹秋玉.镇江北固山湿地芦苇光合日变化的研究.西北植物学报,2006,26(3):496-501.
    高吉寅,胡荣海,路漳,杨国良.水稻等品种苗期抗旱生理指标的探讨.中国农业科学,1984(4):41-46.
    高峻,孟平,吴斌,张劲松,褚建民.杏—丹参林药复合系统中丹参光合和蒸腾特性的研究.北京林业大学学报,2006,28(2):64-67.
    高丽,杨劼,刘瑞香.不同土壤水分条件下中国沙棘雌雄株光合作用、蒸腾作用及水分利用效率特征.生态学报,2009,29(11):6025-6034.
    郭江红,王百田,田晶会.黄土半干旱区土壤水分对侧柏叶片水气交换影响.水土保持学报,2004,18(2):157-160.
    郭连旺,沈允钢.高等植物光合机构避免强光破坏的保护机制.植物生理学通讯,1996,32(1):1-8.
    郭连旺,许大全.自然条件下珊瑚树(Viburnum odoratissimum)叶片光合作用的光抑制.植物生理学报,1994,20(1):46-54.
    郭连旺,许大全,沈允钢.棉花叶片光合作用的光抑制和光呼吸的关系.科学通报,1995,40(20):1885-1888.
    郭延平,张良诚,洪双松.温州蜜柑叶片光合作用的光抑制.园艺学报,1999,26(5):281-286.
    韩蕊莲,李丽霞,梁宗锁.干旱胁迫下沙棘叶片细胞膜透性与渗透调节物质研究.西北植物学报,2003,23(1):23-27.
    郝建军,康宗利,于洋.植物生理学实验技术.北京:化学工业出版社,2006.
    贺康宁,张光灿,田阳,史常青,宋吉红.黄土半干旱区集水造林条件下林木生长适宜的土壤水分环境.林业科学,2003,39(1):10-16.
    侯小改,段春燕,刘素云,刘改秀,薛娴.不同土壤水分条件下牡丹的生理特性研究.华北农学报,2007,22(3):80-83.
    侯小改,段春燕,刘改秀,尹伟伦,王华芳.土壤含水量对牡丹光合特性的影响.华北农学报,2006,21(2):91-94.
    胡新生,王世绩.树木水分胁迫生理与耐旱性研究进展及展望.林业科学,1998,34(2):78-89.
    胡文海,胡雪华,曾建军,段智辉,叶子飘.干旱胁迫对2个辣椒品种光合特性的影响.华中农业大学学报,2008,27(6):776-781..
    黄红英,窦永新,孙蓓育,邓斌,吴国江,彭长连.两种不同生态型麻疯树夏季光合特性的比较.生态学报,2009,29(6):2861-2867.
    黄华,梁宗锁,韩蕊莲,王培榛.干旱胁迫条件下油松幼苗生长及抗旱性的研究.西北林学院学报,2004,19(2):1-4.
    黄永红,陈学森,冯宝春.果树水分胁迫研究进展.山东农业大学学报(自然科学版).2005,36(3):481-484.
    黄玉清,王晓英,陆树华,汪青,赵平.岩溶石漠化治理优良先锋植物种类光合、蒸腾及水分利用效率的初步研究.广西植物,2006,26(2):171-177.
    贾彩凤,李艾莲.药用植物金荞麦的光合特性研究.中国中药杂志,2008,33(2):129-132.
    贾虎森,蔡世英,李德全,韩亚琴.土壤干旱胁迫下钙处理对芒果幼苗光合作用的影响果树科学.2000,17(1):52-56.
    蒋高明,韩兴国,林光辉.大气CO2浓度升高对植物的直接影响-国外十余年来模拟实验研究之主要手段及基本结论.植物生态学报,1997,21(6):489-502.
    蒋明义,郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用.植物生理学通迅,1996,32(2):144-150.
    姜卫兵,高光林,俞开锦,汪良驹,马凯.水分胁迫对果树光合作用及同化代谢的影响研究进展.果树学报,2002,19(6):416-420.
    姜英淑,陈书明,王秋玉,卢宝明.干旱胁迫对2个欧李种源生理特征的影响.林业科学,2009,45(6):6-10.
    焦裕媚,韦小丽.两种光响应及CO2响应模型在喀斯特树种中的应用.贵州农业科学,2010,38(4):162-167.
    柯世省,金则新,陈贤田.浙江天台山七子花等6种阔叶树光合生态特性.植物生态学报,2002,26(3):363-371.
    郎莹,张光灿,张征坤,刘顺生,刘德虎,胡小兰.不同土壤水分下山杏光合作用光响应过程及其模拟.生态学报,2011,31(16):4499-4508.
    李崇巍,贾志宽,林玲.几种苜蓿新品种抗旱性的初步研究.干旱地区农业研究,2002,20(4):21-25.
    李凤霞,郭建平,高素华.不同土壤湿度下柠条光合速率对CO2浓度和辐射强度响应的模拟研究.农业环境科学学报,2006,25(1):81-85.
    李广敏,关军锋.作物抗旱生理与节水技术研究.北京:气象出版社,2001.
    李合生.现代植物生理学.北京:高等教育出版社,2001.
    李合生.现代植物生理学.北京:高等教育出版社,2002.
    李吉跃, Terence J. Blake.多重复干旱循环对苗木气体交换和水分利用效率的影响.北京林业大学学报,1999,21(3):1-8.
    李建明,邹志荣.温室番茄节水灌溉指标的研究.沈阳农业大学学报,2002,31(1):110-112.
    李丽霞,赵吉强,韩蕊莲.干旱胁迫对沙棘抗氧化酶的影响.烟台大学学报:自然科学与工程版,2006,19(1):30-35.
    李玲,余光辉,曾富华.水分胁迫下植物脯氨酸累积的分子机理.华南师范大学学报.2003(1):126-134.
    李荣生,许煌灿,尹光天,杨锦昌,李双忠.植物水分利用效率的研究进展.林业科学研究,2003,16(3):366-371.
    李绍鹏.芒果叶片抗旱性鉴定初步研究.热带作物研究,1993(4):56-59.
    李文华,朱清科,赖亚飞,李宏生,徐怀同,刘广全.陕北黄土高原丘陵沟壑区沙棘的光合特性研究.干旱地区农业研究,2007,25(1):135-139.
    李霞,阎秀峰,于涛.水分胁迫对黄檗幼苗保护酶活性及脂质过氧化作用的影响.应用生态学报,2005,16(12):2353-2356.
    李燕,孙明高,孔艳菊,薛立.皂角苗木对干旱胁迫的生理生化反应.华南农业大学学报,2006,27(3):66-69.
    栗燕,黎明,袁晓晶,李永华.干旱胁迫下菊花叶片的生理响应及抗旱性评价.石河子大学学报,2011,29(1):30-34.
    黎燕琼,刘兴良,郑绍伟,陈泓,岳永杰,慕长龙,刘军.岷江上游干旱河谷四种灌木的抗旱生理动态变化.生态学报,2007,27(3):870-878.
    李扬,黄建辉.库布齐沙漠中甘草对不同水分和养分供应的光合生理响应.植物生态学报,2009,33(6):1112-1124.
    廖建雄,王根轩.干旱、CO2和温度升高对春小麦光合、蒸发蒸腾及水分利用效率的影响.应用生态学报,2002,13(5):547-550.
    林舜华,项斌,高雷明. CO2倍增对几种植物的生态生理影响.植物生态学报,1995,16(1):1-4.
    刘家尧,衣艳君,白克智,梁峥. CO2倍增环境生长的小麦幼苗对盐胁迫的生理反应.生态学报,1998,18(4):408-412.
    刘锦春,钟章成,何跃军,金静.重庆石灰岩地区十大功劳的光合响应研究.西南师范大学学报(自然科学版),2005,30(2):316-320.
    刘锦春,钟章成,何跃军.水分胁迫对重庆石灰岩地区不同龄级柏木幼苗气体交换的影响.生态学报,2007,27(9):3601-3608.
    刘孟雨,陈培元.水分胁迫条件下气孔与非气孔因素对小麦光合的限制.植物生理学通讯,1990(4):24-27.
    刘鹏,赵世杰,孟庆伟.冷锻炼对甜椒叶片光合作用及其低温光抑制的影响.植物生理与分子生物学学报,2002,28(1):51-58.
    刘琴,孙辉,何道文.干旱和高温对植物胁迫效应的研究进展.西华师范大学学报,2005,26(4):364-368.
    刘世荣,蒋有绪,郭泉水.大气CO2浓度增加对树木生长和生理的可能影响.东北林业大学学报,1997,25(3):30-37.
    刘宇锋,萧浪涛,童建华,李晓波.非直线双曲线模型在光合光响应曲线数据分析中的应用.中国农学通报,2005,121(8):76-79.
    卢从明,张其德,匡廷云.水分胁迫抑制水稻光合作用的机理.作物学报,1994,20(5):601-606.
    陆佩玲,罗毅,刘建栋,于强.华北地区冬小麦光合作用的光响应曲线的特征参数.应用气象学报,2000,11(2):236-241.
    罗华建,刘星辉.水分胁迫对枇杷光合特性的影响.果树科学,1999,16(2):126-130.
    孟平,张劲松,高峻.山茱萸幼树光合及水分生理特性.林业科学研究,2005,18(1):47-51.
    欧立军,陈波,邹学校.干旱对辣椒光合作用及相关生理特性的影响.生态学报,2012,32(8):2612-2619.
    潘瑞炽.植物生理学.北京:高等教育出版社,2004.
    彭立新,李德全,束怀瑞.园艺植物干旱胁迫生理及耐旱机制研究进展.西北植物学报,2002,22(5):1275-1281.
    阮成江,李代琼.黄土丘陵区沙棘林几个水分生理生态特征研究.林业科学研究,2002,15(1):41-46.
    单长卷,韩蕊莲,梁宗锁.干旱胁迫下黄土高原4种乡土禾草抗氧化特性.生态学报,2012,32(4):1174-1184.
    桑子阳,马履一,陈发菊.干旱胁迫对红花玉兰幼苗生长和生理特性的影响.西北植物学报,2011,31(1):109-115.
    山仑,徐萌.节水农业及其生理生态基础.应用生态学报,1991,2(1):70-76.
    山仑.提高农田水分利用效率的途径.植物生理学通讯,1997,33(6):475-476.
    沈允钢,施教耐,许大全.动态光合作用.北京:科学出版社,1998.
    师生波,李惠梅,王学英,岳向国,徐文华,陈桂琛.青藏高原几种典型高山植物的光合特性比较.植物生态学报,2006,30(1):40-46.
    孙国荣,刘波,赵光伟.烤烟伸根期的光合特性及其对土壤水分的响应.植物研究,2002,22(1):46-50.
    孙景宽,张文辉,陆兆华,刘新成.沙枣和孩儿拳头幼苗气体交换特征与保护酶对干旱胁迫的响应.生态学报,2009,29(3):1330-1340.
    孙景生. CO2浓度增加对植物生长及其水分利用效率的影响.世界农业,1996,3(1):46-47.
    孙群,胡景江.植物生理学研究技术.杨凌:西北农林科技大学出版社,2005.
    孙宪芝,郑成淑,王秀峰.木本植物抗旱机理研究进展.西北植物学报,2007,27(3):629-634.
    孙伟,王德利,王立,杨允菲.贝加尔针茅不同枝条叶片蒸腾特性与水分利用效率对瞬时CO2和光照变化的响应.生态学报,2004,24(11):2437-2443.
    谈锋,周彦兵,梁莉.杜仲叶片对土壤水分胁迫的适应性研究.1996,21(3):266-270.
    覃鹏,刘叶菊,刘飞虎.干旱胁迫对烟草叶片丙二醛含量和细胞膜透性的影响.亚热带植物科学,2004,33(4):8-10.
    田晶会,贺康宁,王百田.不同土壤水分下黄土高原侧柏生理生态特点分析.水土保持学报,2005,19(2):175-178.
    田魏龙,蒋志荣.不同沙棘品种对干旱胁迫的生理生化响应.中国沙漠,2011,31(5):1212-1220.
    王建林,于贵瑞,王伯伦,齐华,徐正进.北方粳稻光合速率、气孔导度对光强和CO2浓度的响应.植物生态学报,2005,29(1):16-25.
    王克勤.集水造林与水分生态.北京:中国林业出版社,2002.
    王克勤,王斌瑞,王震洪.金矮生苹果水分利用效率研究.生态学报,2002,22(5):723-728.
    王克勤,王立.不同土壤水分下金矮生苹果叶片蒸腾速率研究.西南林学院学报,1999,19(1):9-13.
    王满莲,冯玉龙,李新.紫茎泽兰和飞机草的形态和光合特性对磷营养的响应.应用生态学报,2006,17(4):602–606.
    王淼,郝占庆,姬兰柱,周广胜.高CO2浓度对温带三种针叶树光合光响应特性的影响.应用生态学报,2002,13(6):646-650.
    王霞,侯平,尹林克.柽柳植物对干旱胁迫的生理响应和适应性的研究.干旱区研究,2000,10(3):13-17.
    王孝威,段艳红,曹慧,郑王义.水分胁迫对短枝型果树光合作用的非气孔限制.西北植物学报,2003,23(9):1609-1613.
    王琰,陈建文,狄晓艳.不同油松种源光合和荧光参数对水分胁迫的响应特征.生态学报,2011,31(23):7031-7038.
    王宇超,王得祥,彭少兵,何帆.干旱胁迫对木本滨藜生理特性的影响.林业科学,2010,46(1):61-67.
    王云龙,许振柱,周广胜.水分胁迫对羊草光合产物分配及其气体交换特征的影响.植物生态学报,2004,28(6):803-809..
    韦记青,蒋水元,唐辉,蒋运生,漆小雪,王满莲.岩黄连光合与蒸腾特性及其对光照强度和CO2浓度的响应.广西植物,2006,26(3):317-320.
    魏良民.几种旱生植物水分生理特性的比较研究.新疆大学学报(自然科学版),1991,8(2):75-78.
    文建雷,刘志龙,王姝清.水分胁迫条件下元宝枫的光合特征及水分利用效率.西北林学院学报,2003,18(2):1-3.
    吴海卿,段爱旺,杨传福.冬小麦对不同土壤水分的生理和形态响应.华北农学报,2000,15(1):92-96.
    吴林,李亚东,刘洪章,郝瑞.水分逆境对沙棘生长和叶片光合作用的影响.吉林农业大学学报,1996,18(4):45-49.
    吴强盛,夏仁学.果树对水分胁迫反应研究进展.亚热带植物科学,2003,32(2):72-76.
    伍维模,董合林,危常洲,陈康谓,杨仁碧,支金虎.南疆陆地棉与海岛棉光合-光响应及叶绿素荧光特性分析.西北农业学报,2006,15(4):141-146.
    武勇,陈存及,刘宝,张国防,彭东辉,李生.干旱胁迫下柚木叶片生理指标的变化.福建林学院学报,2006,26(2):103-106.
    夏江宝,田家怡,张光灿,李田.黄河三角洲贝壳堤岛3种灌木光合生理特征研究.西北植物学报,2009,29(7):1452-1459.
    夏江宝,张光灿,孙景宽,刘霞.山杏叶片光合生理参数对土壤水分和光照强度的阈值效应.植物生态学报,2011,35(3):322-329.
    夏江宝,张光灿,刘刚,韩炜,陈建,刘霞.不同土壤水分条件下紫藤叶片生理参数的光响应.应用生态学报,2007,18(1):30-34.
    夏江宝,张光灿,刘京涛,刘庆,陈建.美国凌霄光合生理参数对水分与光照的响应.北京林业大学学报,2008,30(5):13-18.
    夏鹏云,吴军,乔俊鹏,苏金乐.干旱胁迫对大叶冬青叶片生理特性的影响.河南农业大学学报,2010,44(1):47-51.
    夏阳.水分逆境对果树脯氨酸和叶绿素含量变化的影响.甘肃农业大学学报,1993,28(1):26-31.
    肖文发,徐德应,刘世荣,韩景军.杉木人工林叶光合与蒸腾作用的时空特征.林业科学,2002,38(5):38-46.
    熊伟,王彦辉,于澎涛.树木水分利用效率研究综述.生态学杂志,2005,24(4):417-421.
    许大全.气孔运动与光合作用.植物生理学通讯,1984,(6):6-12.
    许大全.光合作用效率.上海:上海科学技术出版社,2002.
    杨建民,王中英.短枝型与普通型苹果叶片光合特性比较研究.中国农业科学,1994,27(4):31-36.
    杨健民,王中英.水分胁迫对新红星苹果幼树光合作用的影响.河北林学院学报.1993,8(2):903-906.
    杨俊霞,郭宝林,鲁韧强,梁海永,郭庆港,王颖丽.美国黑莓的土壤含水量对美国黑莓光合特性的影响.果树学报,2003,20(2):116-119.
    杨文斌,任建民,贾翠萍.柠条抗旱生理生态与土壤水分关系的研究.生态学报,1997,17(3):239-244.
    姚华,赵晓英,李晓梅,赵法,董正武.四种灌木幼苗对水分胁迫的生理响应.生态科学,2009,28(6):537-542.
    叶子飘.光响应模型在超级杂交稻组合-Ⅱ优明86中的应用.生态学杂志,2007,26(8):1323-1326.
    叶子飘.光合作用对光和CO2响应模型的研究进展.植物生态学报,2010,34(6):727-740.
    叶子飘,高峻.丹参羧化效率在其CO2补偿点附近的变化.西北农林科技大学学报(自然科学版),2008,36(5):160-164.
    叶子飘,高峻.光响应和CO2响应新模型在丹参中的应用.西北农林科技大学学报(自然科学版),2009,37(1):129-134.
    叶子飘,王健林.植物光合-光响应模型的比较分析.井冈山学院学报(自然科学版),2009,30(4):9-13.
    叶子飘,于强.一个光合作用光响应新模型与传统模型的比较.沈阳农业大学学报,2007,38(6):771-775.
    叶子飘,于强.冬小麦旗叶光合速率对光强度和CO2浓度的响应.扬州大学学报(农业与生命科学版),2008,29(3):33-37.
    叶子飘,于强.光合作用光响应模型的比较.植物生态学报,2008,32(6):1356-1361.
    叶子飘,于强.光合作用对胞间和大气CO2响应曲线的比较.生态学杂志,2009,28(11):2233-2238.
    殷宏章.光合作用研究进展.北京:科学出版社,1976.
    余叔文,汤章城.植物生理与分子生物学.北京:科学出版社,1998.
    曾小美,袁琳,沈允钢.拟南芥连体和离体叶片光合作用的光响应.植物生理学通讯,2002,38(1):25-26.
    章崇玲,曾国平,陈建勋.干旱胁迫对菜苔叶片保护酶活性和膜脂过氧化的影响.植物资源与环境学报,2000,9(4):23-26.
    张光灿,贺康宁,刘霞.黄土高原半干旱区林木生长适宜土壤水分环境的研究.水土保持学报,2001,15(4):1-5.
    张光灿,刘霞,贺康宁.黄土半干旱区刺槐和侧柏林地土壤水分有效性及生产力分级研究.应用生态学报,2003,14(6):858-862.
    张光灿,刘霞,贺康宁,王百田.金矮生苹果叶片气态交换参数对土壤水分的响应.植物生态学报.2004,28(1):66-72.
    张昆,万勇善,刘凤珍,张尔群,王溯.花生幼苗光和特性对弱光的响应.应用生态学学报,2009,20(12):2989-2995.
    张弥,吴家兵,关德新,施婷婷,陈鹏师,纪瑞鹏.长白山阔叶红松林主要树种光合作用的光响应曲线.应用生态学报,2006,17(9):1575-1578.
    张其德,卢从明,冯丽洁,林世青,匡廷云,白克智. CO2加富对紫花苜蓿光合作用原初转换的影响.植物学报,1996,38(1):77-82.
    张其德,卢从明,刘丽娜. CO2倍增对不同基因型大豆光合色素含量和荧光诱导动力学参数的影响.植物学报,1997,39(10):946-950.
    张仁和,郑友军,马国胜,张兴华,路海东,史俊通,薛吉全.干旱胁迫对玉米苗期叶片光合作用和保护酶的影响.生态学报,2011,31(5):1303-1311.
    张淑勇,张光灿,陈建,刘刚,李小磊,刘霞.土壤水分对五叶爬山虎光合与蒸腾作用的影响.中国水土保持科学,2006,4(4):62-66.
    张淑勇,周泽福,张光灿,王梦军,战海霞.水分胁迫下天然次生灌木山桃和山杏光合气体交换特征.西北植物学报,2008,28(12):2492-2499.
    张卫强,贺康宁,朱艳艳,周毅,巩玉霞,唐道锋.黄土半干旱区油松苗木蒸腾特性与影响因子的关系.中国水土保持科学,2007,5(1):49-54.
    张喜焕,刘宁,郭建民.杨梅属两种植物光合特性对CO2浓度升高响应的比较研究.贵州科学,2006,24(2):71-74.
    张小全,徐德应,赵茂盛,陈仲庐. CO2增长对杉木中龄林针叶光合生理生态的影响.生态学报,2000,20(5):390-396.
    张中峰,黄玉清,莫凌,尤业明,焦继飞.岩溶植物光合一光响应曲线的两种拟合模型比较.武汉植物学研究,2009,27(3):340-344.
    朱万泽,王金锡.引种台湾桤木的水分生理特性.武汉植物学研究,2004,22(6):539-545.
    朱万泽,吴永波,薛建辉.贡嘎山地区黄背栎的光合特性.南京林业大学学报(自然科学版),2006,30(1):25-28.
    赵黎芳,张金政,张启翔,石雷,鲁韧强.水分胁迫下扶芳藤幼苗保护酶活性和渗透调节物质的变化.植物研究,2003,23(4):437-442.
    赵世杰,史国安,董新纯.植物生理学实验指导.北京:中国农业科学技术出版社,2002.
    郑炳松.现代植物生理生化研究技术.北京:气象出版社,2006.
    郑丕尧.作物生理学导论.北京:北京农业大学出版社,1992.
    邹春静,韩士杰,徐文铎,李道棠.沙地云杉生态型对干旱胁迫的生理生态响应.应用生态学报,2003,14(9):1446-1450.
    Adriano S, Bartolomeo D, Cristos X, Andrea M. Effects of different irradiance levels on someantioxidant enzymes and on malondialdehyde content during rewatering in olive tree.Plant Science,2004,166:293-302.
    Anjum S A, Xie X Y, Wang L C, Saleem M F, Chen M, Wang L. Morphological,physiological and biochemical responses of plants to drought stress. African Journal ofAgricultural Research,2011,6:2026-2032.
    Awada T, Radoglou K, Fotelli MN, Constantinidou HIA. Ecophysiology of seedlings of threeMediterra-nean pine species in contrasting light regimes. Tree Physiology,2003,23:33-41.
    Azcon-Bieto J, Farquhar G D, Caballero A. Effect of temperature, oxygen concentration, leafage and seasonal variations on the CO2compensation point of Lolium perenne L. Planta,1981,152:497-504.
    Baly E C. The kinetics of photosynthesis. Proceedings of the Royal Society SerB (BiologicalSciences),1935,117:218-239.
    Bassman J, Zwier J C. Gas exchange characteristics of Populus trichocaarpa, popul usdeltoids and Populus trichocarpa P. deltoids clone. Tree Physiology,1991,8:145-159.
    Beerling D J. Carbon isotope discrimination and stomatal responses of mature Pinus sylvestrisL. trees exposed in situ for three years to elevated CO2and temperature. Acta Oecologica,1997,18:697-712.
    Bernacchi GJ, Pimentel C, Long SP. In vivo temperature response functions of parametersrequired to model RuBP-limited photosynthesis. Plant, Cell&Environment,2003,26,1419-1430.
    Berry J A, Bjorkman O. Photosynthetic response and adaptation to temperature in higherplants. Annu. Rev. Plant Physio1.,1980,31:491-543.
    Bertamini M, Nedunchezhian N. Photoinhibition of photosynthesis in mature and youngleaves of grapevine. Plant Science,2003,164(4):635-644.
    Blackman FF. Optima and limiting factors. Annals of Botany,1905,19:281-295.
    Blokhina O, Virolainen E, Fagerstedt K V. Antioxidants, oxidative damage and oxygendeprivation stress: a review. Annals of Botany,2003,91:179-194.
    Bowes G. Growth at elevated CO2: photosynthetic responses mediated through Rubisco. Plant,Cell and Environment,1991,14:795-806.
    Boyer J S. Plant productivity and environment. Science,1982,218:443-448.
    Brevedan E R. Effects of moisture deficits on14C translocation in corn (Zes mays L.). Plantphysiol.,1973,52:436-439.
    Ceulemans R, Mousseau M. Effects of elevated atmospheric CO2on woody plants. NewPhyto,1994,127:425-446.
    Chen CP, Zhu XG, Long SP. The effect of leaf-level spatial variability in photosyntheticcapacity on biochemical parameter estimates using the Farquhar Model: a theoreticalanalysis. Plant Physiology,2008,148:1139-1147.
    Chen Z, Spreitzer R J. How various factors influence the CO2/O2specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase. Photosynth Res.,1992,31:157-164.
    Clifford S C, Stronach I M, Black C R, Jones P R S, Ali S N A, Crout N M J. Effects ofelevated CO2, drought and temperature on the water relations and gas exchange ofgroundnut (Arachis hypogaea) stands grown in controlled environment glasshouses.Physiologia Plantarum,2000,110(2):78-88.
    Cutler J M. Influence of water deficits and osmotic adjustment on leaf elongation in rice.Crop Sci,1980,20:314-318.
    Ehleringer J R, Klassen S, Clayton C. Carbon isotope discrimination and transpirationefficiency in common bean. Crop. Sci.,1991,31:1611-1615.
    Ethier G J, Livingston NJ. On the need to incorporatesensitivity to CO2transfer conductanceinto the Farqu-har-von Caemmerer-Berry leaf photosynthesis model. Plant, Cell&Environment,2004,27:137-153.
    Evandro N S, Sérgio L F S, Ricardo A V, Joaquim A G S. The role of organic and inorganicsolutes in the osmotic adjustment of drought-stressed Jatropha curcas plants.Environmental and Experimental Botany,2010,69:279-285.
    Farage P K, Long S P. The occurrence of photoinhibition in an overwintering crop of oil-seedrape (Brassia napus L.) and its correlation with changes in crop growth. Planta,1991,185:279-286.
    Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S M A. Plant drought stress: effectsmechanisms and management.2009,29(1):185-212.
    Farquhar GD, von Caemmerers S, Berry JA. A biochemical model of photosynthetic CO2assimilation in leaves of C3species. Planta,1980,149:78-90.
    Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis. Ann. Rev. PlantPhysiol.,1982,33:317-321.
    Flexas J, Medrano H. Drought-inhibition of photosynthesis in C3plants: stomatal andnon-stomatal limitations revisited. Annals of Botany,2002,89(2):183-189.
    Folkers A, Huve K, Ammann C, Dindorf T, Kesselmeier J, Kleist E, Kuhn U, Uerlings R,Wildt J. Methanol emissions from deciduous tree species: dependence on temperatureand light intensity. Plant Biology,2008,10:65-75.
    Forrester M L, Krotkov G, Nelson C D. Effect of oxygen on photosynthesis, photorespirationand respiration in detached leaves. I. Soybean. Plant Physiol.,1966,41:422–427
    Fridorich I. Superoxide dismutase. Ann.Rev.Biochem,1975,44:147-159.
    Gebre M, Kuhns R, Brandle R. Organic solute accumulation and dehydration tolerance inthree water stressed Populus deltoids clones.Tree Physiol,1994,14:575-587.
    Ghannoum O, Phillips NG, Conroy JP, Smith RA, Attard RD, Woodfield R, Logan BA, LewisJD, Tissue DT. Exposure to preindustrial, current and future atmospheric CO2andtemperature differentially affects growth and photosynthesis in Eucalyptus. GlobalChange Biology,2010,16:303-319.
    Ghannoum O, Phillips NG, Sears MA, Logan BA, Lewis JD, Conroy JP, Tissue DT.Photosynthetic responses of two eucalypts to industrial-age changes in atmospheric [CO2]and temperature. Plant, Cell and Environment,2010,33:1671-1681.
    Grant RF, Kimball BA, Brooks TJ, Wall GW, Pinter PJ, Hunsaker DJ, Adamsen FJ, LeavittSW, Thonpson TL, Matthias AD. Modeling interactions among carbon dioxide, nitrogen,and climate on energy exchange of wheat in a free air carbon dioxide experiment. AgronJ,2001,93:638-649.
    Gummuluru S, Hobbs S L A, Jana S. Physiological responses of drought tolerant and droughtsusceptible durum wheat genotypes. Photosynthetica,1998,23:479-485.
    Gunderson C A. Foliar gas exchange responses of two deciduous hardwoods during3years ofgrowth in elevated CO2. Plant, Cell and Environ.,1993,16:797-807.
    Han JH, Cho JG, Son IC, Kim SH, Lee IB, Choi IM, Kin D. Effects of elevated carbondioxide and temperature on photosynthesis and fruit characteristics of ‘Niitaka’ Pear(Pyrus pyrifolia Nakai). Horticulture. Environment. Biotechnology.2012,53:357-361.
    Hanks RJ. Limitations to efficient water use crop production. New York: American Society ofAgronomy Inc,1983.
    Harley PC, Sharkey TD. An improved model of C3photosynthesis at high CO2: reversed O2sensitivity explained by lack of glycerate reentry into the chloroplast. PhotosynthesisResearch,1991,27:169-178.
    Harley PC, Thomas RB, Reynolds JF, Strain BR. Modelling photosynthesis of cotton grownin elevated CO2. Plant, Cell and Environment,1992,15:271-282.
    Hong Z. Removal of feed back inhibition of△1-pyrroling-5-carboxylate synthase results inincreased proline accumulation and protection of plants from osmotic stress. PlantPhysiol,2000,122:1129-1136.
    Hu JC,Cao WX,Zhang J B,Jiang D,Feng J. Quantifying responses of winter wheatphysiological processes to soil water stress for use in growth simulation modeling.Pedosphere,2004,14(4):509-518.
    Huber SC, Rogers H H, Israel D W. Effect of CO2enrichment on photosynthesis andphotosynthate partitioning in soybean leaves. Physiologia Plantarum,1984,62:95-101.
    IPCC. Climate change2007: the physical science basis, summary for policymaker. Geneva:IPCC,2007:4-21.
    Johnson DW, Ball T, Walker RF. Effects of elevated CO2and nitrogen on nutrient uptake inpondrosa pine seedlings. Plant Soil.,1995,168:535-545.
    Joseph MC, Peter BR. Leaf-level light compensation points in shade-tolerant woody seedlings.New Phytologist,2005,166:710-713.
    Kallarackal J, Milburn J A, Baker, D. A. Aust. J. of plantphys,1990,17:79-90.
    Kiefer J C, Wolfowitz J. Optium design in regression problem. Annals of MathematicalStatistics.1959,30:271-294.
    King JL, Edwards GE, Cousins AB. The efficiency of the CO2-concentrating mechanismduring single-cell C4photosynthesis. Plant, Cell and Environment,2012,35:513-523.
    Kirkham M B, He H, Bolger T P, Lawlor DJ, Kanemasu ET. Leaf photosynthesis and wateruse of big bluestem under elevated carbon dioxide. Crop. Sci.,1991,31:1589-1594.
    Kramer P J, kozlowskiT T. Physiology of woody plants. London Academic Press,1979,443-444.
    Krause GH, Schmude C, Garden H, Koroleva OY, Winter K. Effects of solar ultravioletradiation on the potential efficiency of photosystemⅡ. in leaves of tropical plants. PlantPhysiology,1999,121:1349-1358.
    Lal A, Ku M S B, Edwards G E. Analysis of inhibition of photosynthesis due to water stressin the C3species Hordeum vulgare and Vicia faba: Electron transport, CO2fixation andcarboxylation capacity. Photosynthesis Research,1996,49:57-69.
    Larcher W. Physiological Plant Ecology. Berlin: Springer-Verlag,1980.
    Lawlor DW. Limitation to photosynthesis in water stress leaves: stomata vs. metabolism andthe role of ATP. Ann Bot,2002,89:1-15.
    Leveren Z J W, Jarvus PG. Photosynthesis in Sitka spruce Ⅷ. The effects of light flux densityand direction on the rate of net photosynthesis and the stomata conductance of needles.Journal of Applied Ecology,1979,16:919-932.
    Lewis JD, Tinger T. Seasonal patterns of photosynthetic light response in Douglas-firseedling subjected to elevated atmospherics CO2and temperature. Tree Physiology,1999,19:243-252.
    Llusià J, Pe uelas J, Munné-Bosch S. Sustained accumulation of methyl salicylate altersantioxidant protection and reduces tolerance of holm oak to heat stress. PhysiologiaPlantarum,2005,124:353-361.
    Lobell D B, Asner G P. Climate and management contributions to recent trends in USagricultural yields. Science,2003,299:1032.
    Lombardini L, Restrepo-Diaz H, Volder A. Photosynthetic light response and epidermalcharacteristics of sun and shade pecan leaves. Journal of the Americal Society forHorticultural Science,2009,134:372-378.
    Long SP, Humphries S. Photoinhibition of photosynthesis in nature. Ann Rev Plant PhysiolPlant Mol Biol,1994,45:633-662.
    Long SP, Bernacchi CJ. Gas exchange measurements, what can they tell us about theunderlying limitations to photosynthesis? Procedures and sources of error. Journal ofExperimental Botany,2003,54:2393-2401.
    Marshall B, Biscoe P V. A model for C3leaves describing the dependence of netphotosynthesis on irradiance. Journal of Experiment Botany,1980,120:29-39.
    Melanied J, Thomasc H. Nickel toxicity in mycorrhizal birch seedlings infected withLactarius rufus or Scleroderma flavidum. I. Effects on growth, photosynthesis,respiration and transpiration. New Phytol.,1988,108:451-459.
    Mcelrone AJ, Forseth IN. Photosynthetic responses of a temperate Liana to Xylella fastidiosainfection and water stress. J. Phytopathology,2004,152:9-20.
    Medrano H, Keys AJ, Lawlor DW, Parry MAJ, Bieto JA, Delgado E. Improving plantproduction by selection for survival at low CO2concentrations. J. Exp.Bot.,1995,46:1389-1396.
    Midgley GF, Moll EJ. Gas exchange in arid adapted shrubs: when is efficient water use adisadvantage? South African J. of Botany,1993,59:491-495.
    Midgley GF,Aranibar JN,Mantlana KB, Macko S. Photosynthetic and gas exchangecharacteristics of dominant woody plants on a moisture gradient in an African savanna.Global Change Biology,2004,10:309-317.
    Mielke MS, Oliva MA, Barros NF, Penchel RM, Martinez CA, Fonseca S, Almeida A C. Leafgas exchange in a clonal eucalypt plantation as related to soil moisture, leaf waterpotential and microclimate variables. Trees,2000,14:263-270
    Miko UFK, Graham DF.Investigation of the CO2dependence of quantum yield and respirationin eucalyptus pauciflora. Plant Physiology,1987,83:1032-1036.
    Mitton JB, Garant MC, Yoshino AM. Variation in all ozymes and stomatal size in Pinyon(Pinus edulis, Pinaceae), associated with soil moisture. American Journal of Botany,1998,85:1262-1265.
    Morecroft MD, Woodward FI. Experimental investigations on the environmentaldetermination of δ13C at different altitude. Journal of Experimental Botany,1990,41:1303-1308.
    Morison JIL, Gifford RM. Stomatal sensitivity to carbon dioxide and humidity. Plant Physiol.,1983,71:789-796.
    Mousseau M, Saugier B. The effect of increased CO2on gas exchange and growth of foresttree species. Journal of Experimental Botany,1992,43:1121-1130.
    Murray DR. Plant response to carbon dioxide. AmJ Bot,1995,82:690-697.
    Nasser G, Adell S. Response to drought stress of two strawberry cultivars (cv. Kurdistan andSelva). Hort. Environ. Biotechnol.,2011,52:6-12.
    Neumann PM. The role of cell wall adjustment in plant resistance to water deficit. CropScience,1995,35:1258-1266.
    Posada JM, Lechowicz MJ, Kitajima K. Optimal photosynthetic use of light by tropical treecrowns achieved by adjustment of individual leaf angles and nitrogen content. Annals ofBotany,2009,103:795-805..
    Powles SB. Photoinhibition of photosynthesis induced by visible light. Annu. Rev. PlantPhysiol.,1984,35:15-44.
    Prado C, Moraes J. Photosynthetic capacity and specific leaf mass in twenty woody species ofCerrado vegetation under field condition. Photosynthetica,1997,33:103-112.
    Prioul JL, Chartier P. Partitioning of transfer and carboxylation components of intracellularresistance to photosynthetic CO2fixation:a critical analysis of the methods used. Annalsof Botany,1977,41:789-800.
    Reddy AR, Chaitanya KV, Vivekanandan M. Drought-induced responses of photosynthesisand antioxidant metabolism in higher plants. Journal of Plant Physiology,2004,161:1189-1202.
    Richardson A, Berlyn G.Changes in foliar spectral reflectance and chlorophyll fluorescenceof four temperate species following branch cutting. Tree Physiology,2002,22:499-506.
    Robert ES, Mark A, John SB. Kok effect and the quantum yield of photosynthesis. PlantPhysiology,1984,75:95-101.
    Salvucci ME, Crafts-Brandner SJ. Inhibition of photosynthesis by heat stress: the activationstate of Rubisco as a limiting factor in photosynthesis. Physiol. Plant,2004,120:179-186.
    Selote DS, Khanna RC.Drought acclimation confers oxidative stress tolerance by inducingcoordinated antioxidant defense at cellular and subcellular level in leaves of wheatseedlings.Physiologia Plantarum,2006,127:494-506.
    Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL. Fitting photosynthetic carbon dioxideresponse curves forC3leaves. Plant, Cell&Environment,2007,30:1035-1040.
    Smith EW, Tolbert NE, Ku HS. variables affecting the CO2compensation poit. Plant physiol,1976,58:143-146.
    Smith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK,Seemann JR, Nowak RS. Elevated CO2increases productivity and invasive speciessuccess in an arid ecosystem. Nature,2000,408:79-82.
    Springer CJ, Thomas RB. Photosynthetic responses of forest understory tree species tolong-term exposure to elevated carbon dioxide concentration at the Duke Forest FACEexperiment. Tree Physiology,2007,27:25-32.
    Stanhill G. Water use efficiency. Advances in Agronomy,1986,39:53-85.
    Takahama U,Oniki T.A peroxidase,phenolics,ascorbate system can scavenge hydrogenperoxide in plant cell.Physiol Plant,1997,101(3):845-852.
    Takahiro E, Toshinori O, Masasyuki T, Yoshifumi Y. Estimation of net photosynthetic ratebased on insitu hyperspectral data. Agricultural and forest methodology,2002,41:564-570.
    Tearl D. Crop water relations. Lonon: A Wiley-Inter Science Publication,1982.
    Teskey RO, Fites JA, Samuelson LJ, Bongarten BC. Stomatal limitations to netphotosynthesis in pinus taeda L. under different environmental conditions. TreePhysiology,1986,2:131-142.
    Thomas SC, Jasienski M, Bazzaz FA. Early vs. asymptotic growth responses of herbaceousplants to elevated CO2. Ecology,1999,80:1552-1567.
    Thomley JHM. Mathematical Models in Plant Physiology. London: Academic Press,1976.
    Thornley JHM. Dynamic model of leaf photosynthesis with acclimation to light and nitrogen.Annals of Botany,1998,81:431-430.
    Tyree MT, Alexander JD. Plant water relations and the effects of elevated CO2: A review andsuggestions for future research. Vegetatio,1993,104:47-63.
    Undersander DJ. Management of sorghum under limited irrigation. Agron. J.,1986,78:28-32.
    von Caemmerer S, Farquhar GD. Some relationships between the biochemistry ofphotosynthesis and the gas exchange of leaves. Planta,1981,153:376-387.
    von Caemmerer S. Biochemical Models of Leaf Photosynthesis, Techniques in Plant SciencesNo.2. CSIRO Publishing, Collingwood, Victoria, Australia,2000.
    Wainer GG, Alan CC, Deucimar PL, Adinan AS, Clarice A M. Membrane permeability andrelative water content in nuts plants submitted to fast water deficit. Global Science andTechnology,2011,4:131-139.
    Wallin G, Sk rby L, Selldén G. Long-term exposure of Norway spruce, Picea abies (L.)Karst., to ozone in opentop chambers. III. Effects on the light response of netphotosynthesis in shoots of different ages. New Phytol.,1992,121:387-394.
    Watling JR, Press MC, Quick WP. Elevated CO2induces biochemical and ultrastructuralchanges in leaves of the C4cereal sorghum. Plant Physiology,2000,123:1143-1152.
    Wu FZ, Bao WK, Li FL, Wu N. Effects of water stress and nitrogen supply on leaf gasexchange and fluorescence parameters of sophora davidii seedlings. Photosynthetica,2008,46:40-48.
    Ye ZP. A new model for relationship between irradiance and the rate of photosynthesis inOryza sativa. Photosynthetica,2007,45:637-640.
    Ye ZP, Zhao ZH. Primary application on a light-response model to describe light responsecurve of Bidens pilosa leaf net photosynthesis, grown at two different light intensities.Proceedings of the6th Conference of Bio-mathematics. World Academic Press, England,UK.2008,889-892.
    Yu Q, Zhang YQ, Liu YF, Shi PL. Simulation of the stomatal conductance of winter wheat inresponse to light, temperature and CO2changes. Annals of Botany,2004,93:435-441.
    Zhang GC, Liu X, He KN. Fitting soil moisture environment of trees growth on Loess Plateauin semi-arid region. Journal of Soil and Water Conservation,2001,15:1-5.
    Zhang SY,Zhang GC,Gu SY,Xia JB,Zhao JK. Critical responses of photosyntheticefficiency of goldspur apple tree to soil water variation in semiarid loess hilly area.Photosynthetica,2010,48:589-595.
    Ziska LH, Teramura AH. Intraspecific variation in the response of rice (Oryza sativa L.) toincreased CO2-photosynthetic, biomass and reproductive characteristics. Physiol Plant,1992,84:269-276.