小鼠Myostatin基因表达载体的构建及体外表达鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     随着现代生活习惯的改变和生活质量的提高,很多人开始胖起来,肥胖症已渐渐成为危害全球人类健康的重要疾病,与2型糖尿病、高血压、心脑血管疾病、脂代谢异常、胰岛素抵抗、非酒精性肝病、哮喘以及关节炎等等多种疾病的发生发展密切相关。脂肪细胞中脂质的过度积聚是肥胖症形成其中的中心环节,多种因素参与过程其中,但是发病机制还不完全清楚,因此关于此方面的研究,对肥胖症的防治有重要意义并逐渐成为热门的课题。1997年美国基因学家发现肌肉生长抑素(Myostatin)及其基因(MSTN),对肌肉生长具有抑制作用,目前研究者普遍认为肌肉是全身最大的耗能组织之一,肌肉生长抑素的缺乏可导致肌肉异常增生,同时可能出现肌肉耗能增加,从而调控能量的分配,对认识肥胖的发病机制可能有重大的意义。本研究拟用质粒构建技术及基因表达技术,构建该基因的表达载体,期待用于观察MSTN基因过表达对肥胖小鼠体重、内脏脂肪含量、糖脂代谢等的影响,进而进一步通过该工具观察探讨MSTN与肥胖症的关系。
     方法:
     1小鼠MSTN蛋白表达质粒pcDNA3.1(+)-mMSTN的构建:
     1.1mMSTN cDNA插入片段的扩增:从ICR小鼠肌肉组织中提取总RNA,经RT-PCR,获得大量拷贝的MSTN cDNA,然后插入pEASY-T1克隆载体中,经BamHI、ApaI双酶切后,获得带有酶切位点的小鼠MSTN表达序列片段。
     1.2载体片段的获得:以pcDNA3.1(+)质粒转化TOP10感受态细菌,得到该质粒的大量拷贝后,大量提取,经BamH I、Apa I双酶切后,进行琼脂糖电泳回收,获得用于构建mMSTN表达质粒的载体片段。
     1.3应用T4DNA连接酶,将带有酶切位点的mMSTN扩增片段,与pcDNA3.1(+)质粒酶切以后的载体片段进行连接,构建成pcDNA3.1(+)-mMSTN质粒。
     2pcDNA3.1(-)-mZAG表达质粒的体外鉴定:应用阳离子脂质体转染方法将pcDNA3.1(+)-mMSTN质粒瞬时转染到小鼠3T3-L1前脂肪细胞中,48h后收集细胞提起RNA,逆转录合成cDNA后,用real-time PCR方法观察细胞中MSTN的表达情况。
     结果:
     1.成功克隆小鼠MSTN cDNA全序列,并将其与pcDNA3.1(+)载体片段连接,构建成pcDNA3.1(+)-mMSTN表达质粒。
     2.在体外培养的小鼠3T3-L1前脂肪细胞系中,证实MSTN表达质粒pcDNA3.1(+)-mMSTN可以在脂肪细胞中良好表达。
     结论:
     1成功构建了pcDNA3.1(+)-mMSTN表达质粒,在体外能良好表达鼠源MSTN蛋白,是研究MSTN作用的一种有效工具。
Object:
     Obesity has emerged as a worldwide health issue, and has close relationship with many diseases, including type2diabetes, hypertension, coronary heart disease, stroke, dysregulation of lipid metabolism, insulin resistance, non-alcoholic liver disease, asthma and arthritis, etc. The much more fat accumulation in adipocytes is the core factor in occurrence of development of obesity. In1997, myostatin was found by American scientists, which could inhibit the growth of skeletal muscles. So far, the skeletal muscles were considered as one of the most important issues that consume the energy, and without the function of inhibiting muscles growth by myostatin may increase the energy consumption in muscles. The pathway probably indicates a new direction to study the pathogenesis of obesity. In this study, we constructed pcDNA3.1(+)-mMSTN vector containing murine MSTN full coding sequence. We will observe the influence of MSTN overexpression on the weight, epididymal fat, glucose and lipid metabolism in obesity mices in the future. Furthermore we will compare the relationship between MSTN level and obesity.
     Methods:
     1The construction of pcDNA3.1(+)-mMSTN plasmid containing murine MSTN full coding sequence:Total RNA from BALB/c mice were extracted from murine liver, transcribed reversly into cDNA, then amplified and gained high copies of murine MSTN cDNA full sequences. The pcDNA3.1(+) plasmid were performed to high copies. BamH I、 Apa I were used to cut the plasmid to have the vector fragments. Then we ligated the murine MSTN cDNA sequences and the vector fragments by T4lignase and constructed the pcDNA3.1(+)-mMSTN plasmid containing murine MSTN coding sequence successfully.
     2The identification of pcDNA3.1(+)-mMSTN plasmid containing murine MSTN coding sequence in vitro:The plasmid was transfected into murine3T3-L1cells by liposome transfection method and gathered the RNA from the cells after48hours, then observed MSTN expression of cDNA by real-time PCR method.
     Results:
     1Murine MSTN coding sequence was amplified successfully and ligated with vector fragments by T4ligase. The construction of pcDNA3.1(+)-mMSTN plasmid containing murine MSTN coding sequence was succeed.
     2pcDNA3.1(+)-mMSTN plasmid was transfected into murine3T3-LI cells by liposome transfection method. It was confirmed that pcDNA3.1(+)-mMSTN plasmid could well expressed in murine3T3-L1adipocytes..
     Conclusion:
     1mMSTN expression plasmid pcDNA3.1(+)-mMSTN was constructed successfully and could express murine MSTN protein in vitro murine preadipocytes3T3-L3cells and in vivo mices. This is a convenient tool for MSTN study.
引文
[1]Bays HE. Current and investigational antiobesity agents and obesity therapeutic targets. Obes Res.2004,12:1197-1211
    [2]Attie, A.D. and P.E. Scherer, Adipocyte metabolism and obesity. J Lipid Res,2009. 50 Suppl:p. S395-9.
    [3]Zoccali, C., The obesity epidemics in ESRD:from wasting to waist? Nephrol Dial Transplant,2009.24(2):p.376-80.
    [4]Ginter, E. and V. Simko, Adult obesity at the beginning of the 21st century: epidemiology, pathophysiology and health risk. Bratisl Lek Listy,2008.109(5):p. 224-30.
    [5]Glimet, T., J.P. Masse, and D. Kuntz, [Obesity and arthritis of the knee]. Rev Rhum Mal Osteoartic,1990.57(3):p.207-9.
    [6]Hill, M.J., D. Metcalfe, and P.G. McTernan, Obesity and diabetes:lipids,'nowhere to run to'. Clin Sci (Lond),2009.116(2):p.113-23.
    [7]Caterson, I.D., Medical management of obesity and its complications. Ann Acad Med Singapore,2009.38(1):p.22-7.
    [8]Heyden, S. and K.A. Schneider, Obesity and hypertension:epidemiological aspects of the relationship. J Hum Hypertens,1990.4(4):p.431-5.
    [9]Komorowski J, Stepien H.The role of the endocannabinoid system in the regulation of endocrine function and in the control of energy balance in humans. Postepy Hig Med Dosw.2007,61:99-105.
    [10]Rader DJ. Effect of insulin resistance, dyslipidemia, and intra-abdominal adiposity on the development of cardiovascular disease and diabetes mellitus. Am J Med.2007,120:S12-18.
    [11]Firdaus M, Mathew MK, Wright J. Health promotion in older adults:the role of lifestyle in the metabolic syndrome. Geriatrics.2006,61:18-25
    [12]Fonseca VA. The metabolic syndrome, hyperlipidemia, and insulin resistance. Clin Cornerstone.2005,7:61-72
    [13]Jacobs DR, Jeson R. Fast food and sedentary lifestyle:a combination that lead to obesity. Am J Clin Nutr.2006,83:189-190
    [14]Gale SM, Castracane VD, Mantzoros CS. Energy homeostatis,obesity and eating disorders:recent advances in endocrinology. J Nutr.2004,134:295-298
    [15]Hellstrom PM, Geliebter A, Naslund E, et al. Peripheral and central signals in the control of eating in normal, obese and binge-eating human subjects. Br J Nutr.2004, 92:S47-S57
    [16]Stunkard, A.J., et al., An adoption study of human obesity. N Engl J Med,1986. 314(4):p.193-8.
    [17]Kuhajda FP, Jenner K, Wood FD, et al. Fatty acid synthesis:a potential selectincve target for antineoplastic therapy. Proc Natl Acad Sci USA.1994, 91:6379-6383
    [18]Sztaltyd C, Komaromy MC, Kraemer FB, et al. Overpression hormone-sensitive lipase prevents triglyceride accumulation in adipocyte. J Clin Invest.1995, 95:2652-2661
    [19]Prins JB. Adipose tissue as an endocrine organ. Best Pract Res Clin Endocrinol Metab.2002, Dec;16(4):639-651.
    [20]Jazet IM, Piji H, Meinders AE. Adipose tissues as an endocrine organ:impact on insulin resistance. Neth J Med.2003,6:194-212
    [21]McPherron, A.C. and S.J. Lee, Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A,1997.94(23):p.12457-61.
    [22]Szabo, G, et al., A deletion in the myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice. Mamm Genome,1998.9(8):p.671-2.
    [23]Mitchell, M.D., et al., Myostatin is a human placental product that regulates glucose uptake. J Clin Endocrinol Metab,2006.91(4):p.1434-7
    [24]Lin, J., et al., Myostatin knockout in mice increases myogenesis and decreases adipogenesis. Biochem Biophys Res Commun,2002.291(3):p.701-6.
    [25]Zhao, B., R.J. Wall, and J. Yang, Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance. Biochem Biophys Res Commun,2005.337(1):p.248-55.
    [26]Guo, T., et al., Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity. PLoS ONE,2009.4(3):p. e4937.
    [27]De Chiana TM, et al. A growth deficiency phenotype in heterozygous mice carrying an insulin-like growth factor Ⅱ gene disrupted by targeting. Nature 2000> 345:78-80. [28]McPherron AC, Lee S J. Double muscling in cattle due to mutations in the
    myostatin gene. Proc Natl Acad Sci USA,1997,94(23):12457-61. [29]Green H,O.Kehinde et al. An established preadipocyte cell line and its differentiation in culture. Ⅱ factors affecting the adipose convertsion. Cell 1975;5:19-27
    [30]Green H,O.Kehinde et al. Spontaneous heritable changes leading to increase adipose conversion in 3T3 cells. Cell 1976;7:105-113
    [31]Green H, M Meuth et al. An establish pre-adipose cell line and its differentiation in culture. Cell 1974;3:127-133
    [1]. McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A 1997;94(23):12457-1.
    [2]. McPherron AC, Lee SJ. Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest 2002;109(5):595-1.
    [3]. Mitchell MD, Osepchook CC, Leung KC, McMahon CD, Bass JJ. Myostatin is a human placental product that regulates glucose uptake. J Clin Endocrinol Metab 2006;91(4):1434-7.
    [4]. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997;387(6628):83-90.
    [5]. Thomas M, Langley B, Berry C, et al. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 2000;275(51):40235-3.
    [6]. Saunders MA, Good JM, Lawrence EC, Ferrell RE, Li WH, Nachman MW. Human adaptive evolution at Myostatin (GDF8), a regulator of muscle growth. Am J Hum Genet 2006;79(6):1089-7.
    [7]. Schneyer AL, Sidis Y, Gulati A, Sun JL, Keutmann H, Krasney PA. Differential antagonism of activin, myostatin and growth and differentiation factor 11 by wild-type and mutant follistatin. Endocrinology 2008;149(9):4589-5.
    [8]. Casas E, Keele JW, Fahrenkrug SC, Smith TP, Cundiff LV, Stone RT. Quantitative analysis of birth, weaning, and yearling weights and calving difficulty in Piedmontese crossbreds segregating an inactive myostatin allele. J Anim Sci 1999;77(7):1686-2.
    [9]. Lee SJ, McPherron AC. Myostatin and the control of skeletal muscle mass. Curr Opin Genet Dev 1999;9(5):604-7.
    [10]. Zhu X, Hadhazy M, Wehling M, Tidball JG, McNally EM. Dominant negative myostatin produces hypertrophy without hyperplasia in muscle. FEBS Lett 2000;474(1):71-5.
    [11]. Sakuma K, Watanabe K, Sano M, Uramoto I, Totsuka T. Differential adaptation of growth and differentiation factor 8/myostatin, fibroblast growth factor 6 and leukemia inhibitory factor in overloaded, regenerating and denervated rat muscles. Biochim Biophys Acta 2000;1497(1):77-8.
    [12]. McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A 1997;94(23):12457-1.
    [13]. Hosoyama T, Yamanouchi K, Nishihara M. Role of serum myostatin during the lactation period. J Reprod Dev 2006;52(4):469-8.
    [14]. Schuelke M, Wagner KR, Stolz LE, et al. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 2004;350(26):2682-8.
    [15]. Ohsawa Y, Hagiwara H, Nakatani M, et al. Muscular atrophy of caveolin-3-deficient mice is rescued by myostatin inhibition. J Clin Invest 2006;116(11):2924-4.
    [16]. Solomon AM, Bouloux PM. Modifying muscle mass-the endocrine perspective. J Endocrinol 2006;191(2):349-60.
    [17]. Yablonka-Reuveni Z. Myostatin blockade:a new way to enhance skeletal muscle repair in old age? Mol Ther 2007;15(8):1407-9.
    [18]. Tsuchida K. Targeting myostatin for therapies against muscle-wasting disorders. Curr Opin Drug Discov Devel 2008; 11 (4):487-4.
    [19]. Carnac G, Ricaud S, Vernus B, Bonnieu A. Myostatin:biology and clinical relevance. Mini Rev Med Chem 2006;6(7):765-70.
    [20]. Kim JS, Petrella JK, Cross JM, Bamman MM. Load-mediated downregulation of myostatin mRNA is not sufficient to promote myofiber hypertrophy in humans:a cluster analysis. J Appl Physiol 2007;103(5):1488-5.
    [21]. Castro-Gago M, Gomez-Lado C, Eiris-Punal J, Carneiro I, Arce VM, Devesa J. Muscle myostatin expression in children with muscle diseases. J Child Neurol 2007;22(1):38-40.
    [22]. Zhao B, Wall RJ, Yang J. Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance. Biochem Biophys Res Commun 2005;337(1):248-5.
    [23]. Rodgers BD, Weber GM, Kelley KM, Levine MA. Prolonged fasting and cortisol reduce myostatin mRNA levels in tilapia larvae; short-term fasting elevates. Am J Physiol Regul Integr Comp Physiol 2003;284(5):1277-6.
    [24]. Antony N, Bass JJ, McMahon CD, Mitchell MD. Myostatin regulates glucose uptake in BeWo cells. Am J Physiol Endocrinol Metab 2007;293(5):1296-2.
    [25]. Mitchell MD, Osepchook CC, Leung KC, McMahon CD, Bass JJ. Myostatin is a human placental product that regulates glucose uptake. J Clin Endocrinol Metab 2006;91 (4):1434-7.
    [26]. McPherron AC, Lee SJ. Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest 2002;109(5):595-1.
    [27]. Lin J, Arnold HB, Della-Fera MA, Azain MJ, Hartzell DL, Baile CA. Myostatin knockout in mice increases myogenesis and decreases adipogenesis. Biochem Biophys Res Commun 2002;291(3):701-6.
    [28]. Feldman BJ, Streeper RS, Farese RV, Yamamoto KR. Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects. Proc Natl Acad Sci U S A 2006;103(42):15675-80.
    [29]. Zhao B, Wall RJ, Yang J. Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance. Biochem Biophys Res Commun 2005;337(1):248-5.
    [30]. Grobet L, Poncelet D, Royo LJ, et al. Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mamm Genome 1998;9(3):210-3.
    [31]. Grobet L, Martin LJ, Poncelet D, et al. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 1997;17(1):71-4.
    [32]. Smith JA, Lewis AM, Wiener P, Williams JL. Genetic variation in the bovine myostatin gene in UK beef cattle:allele frequencies and haplotype analysis in the South Devon. Anim Genet 2000;31(5):306-9.
    [33]. Karim L, Coppieters W, Grobet L, Valentini A, Georges M. Convenient genotyping of six myostatin mutations causing double-muscling in cattle using a multiplex oligonucleotide ligation assay. Anim Genet 2000;31(6):396-9.
    [34]. Jeanplong F, Sharma M, Paterson KA, Morris CA, Kambadur R. Polymorphism in dinucleotide repeat (BTAFJ1) upstream to the bovine myostatin locus. Anim Genet 2000;31(5):340-1.
    [35]. Zhang ZL, He JW, Qin YJ, et al. Association between myostatin gene polymorphisms and peak BMD variation in Chinese nuclear families. Osteoporos Int 2008;19(1):39-7.