基于抗病毒治疗与艾滋病疫情关联的统计模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
艾滋病是全世界广受关注的公共卫生和社会问题,世界各国均不同程度的采用抗病毒治疗来应对艾滋病的危害。当前的治疗工作对艾滋病疫情控制有着较为重要的影响,治疗一方面能降低个体的病毒载量(VL)从而降低了艾滋病病毒传播的机会,艾滋病(AIDS)患者的发病率和死亡率明显下降,患者的免疫功能得到重建,生存质量得到了改善。但另一方面,从长期的效果看,高效逆转录治疗只能控制病毒的活动复制,不能将感染者体内的病毒完全清除,需长期或终身服药。长期或终身服药的药物毒副作用不仅降低病人的生活质量,同时可能产生广泛的耐药性,而且治疗延长了病人的生命并改善了身体健康状况从而增加将艾滋病病毒(HIV)传染给别人的可能性。所以,针对HIV的抗病毒治疗(ART)是否有利于(或不利于)HIV疫情控制,或在什么条件下是有利于疫情的控制是目前关于HIV个体的ART和疫情控制关系方面具有挑战性的研究领域。本研究以既往针对HIV的免疫-病毒动力学和药物动力学模型的研究为基础,引入长期治疗带来的个体VL变化会对治疗效果和疫情造成的影响。抗病毒治疗不仅提高患者的生存时间,同时也降低了诊断后的疾病进展危险,最终对HIV感染的整个自然进程产生显著影响。而在不同的高效抗逆转录病毒治疗(HAART)的长期治疗策略中,如何控制治疗的相关副作用与疾病发生危险的平衡是我们重点关注的。
     第一部分,ART的个体VL模型。为了仔细评估治疗的副作用和持续(或间断)性治疗的弊端,模拟和预测感染HIV后疾病的进展,我们改进了传统的HIV动力学模型,引入影响病毒感染进展的期望寿命、治疗效用、耐药和敏感性等变量,利用一系列包括不同迭代动力学模拟的方法来研究最佳的初始治疗时间、更换方案时间、最佳CD4计数阈值、治疗方案的持续、耐药和依从性,拟合治疗情况下病毒载量的进展和不同治疗策略的模型。通过量效关系构造病毒动力学与药物动力学结合的模型,研究不同的用药方式下个体药物浓度与效应的关系,进而分析感染者个体的VL、健康或被感染的CD4+T细胞计数的发展变化,确定模型的关键参数,在此基础上建立微观的病毒动力学和宏观疫情的复合模型,利用理论分析和数值模拟的方法来研究复合模型的动态行为,探讨预防干预措施和不同治疗措施的有效性,预测HIV疫情的发展趋势。
     第二部分,AIDS疫情估计宏观统计模型。本部分针对已有的考虑微观的病毒动力学和宏观的传染病动力学的复合模型的研究,重点关注抗病毒治疗对疫情发展的影响,在宏观的动力学模型中引入治疗的起始时刻、抗药性、药效等刻画治疗的因素,并研究他们之间的相互作用。本部分建立了反映微观的病毒动力学和宏观感染模型两类系统的桥梁,通过此桥梁来研究个体水平的抗病毒治疗工作对我国HIV感染率的影响。我们在模型中引入传染力的变化、病程进展变化等新的因子来减少变量数,运用拉丁超立方抽样法(LHS)和部分秩相关系数(PRCCs)来检验再生数R0的独立性和敏感性,发现了对2015年的疫情和R0能产生影响的重要参数。同时根据血液中的CD4水平,我们将感染者和病人分为不同的阶段,并将其抗病毒治疗的过程和结构用数学模型表达出来。可以证明当Rol时,这个疾病将会持续存在。
     我们研究了两种不同情况下ART的效果:一经确诊就立即开展ART和当CD4水平低于350/uL时才开展ART(这是当前的治疗政策)。发现疾病的治疗存在一个关健的阈值,如果疾病的传播力(VL)低于这个值的话,那么就病毒的再生数而言,确诊后立即开展ART的效果会比现在的治疗政策好;然而,如果疾病的VL大于这个关健值的话,当前的治疗政策效果就会优于立即治疗的效果。这个研究结果同时还提示我们新的信息:如果疾病的感染性相对较低的话(即相对较好的治疗效果),扩大ART的覆盖率就会降低病毒的再生数和新发HIV感染率;然而如果疾病的感染性相对较高时,扩大ART的覆盖率反而会导致HIV新发感染数的增加,这和异性传播中的情况是一样的。所以,如果ART效果是相对较好的,那就采取立即治疗的方案,否则还是当前的治疗政策更合理。
     利用男男同性性行为人群(MSM)的疫情数据,我们得到再生数估测值、干预参数值以及高危人群数量。本研究得到再生数R0为3.88(95%CI3.69-4.07),可知传播系数β0远大于异性传播与一般高危人群的传播。此外,本研究发现MSM人群HIV诊断率远低于其他高危人群。同时,MSM的治疗覆盖率低于国家调查的平均值,模拟结果显示强化高危人群教育以及增加监测及检测强度可以降低疾病传播速度。根据疾病的感染性及感染者(病人)行为改变,扩大治疗覆盖率可以减少HIV的新发感染。而敏感性分析提示对治疗效果影响最大的参数为感染率β0以及患者疾病相关的死亡率α,。而且,高效的药物可以减少HIV感染者每种高危行为的传播率,且加强教育可以减少与HIV患者的接触率,提高安全套的使用率。意味着高效药物、及时的教育可以有效控制艾滋病病毒的流行。
     本研究中,我们还运用时空模型的趋势面分析、空间自相关分析、回归分析等方法对云南省的AIDS疫情进行了分析和预测,很多因素的地理分布不同会导致HIV/AIDS在不同地区有不同分布,比如铁路分布、静脉吸毒人群分布、商业性行为人群分布等,通过模型分析能进一步得出聚集地区发病的诱因所在,为决策提供科学依据。
     本文的主要创新点包括:在模型中考虑了长期治疗带来的个体病毒进展对体内药物浓度、治疗效果和疫情造成的影响,创新性的研究了不同的服药方式对HIV病毒演化、耐药产生的影响。探讨抗病毒治疗时机选择、覆盖率、个体/平均病毒载量的变化对HIV感染和病死率的影响;以高危人群队列和全国HIV疫情、实验室检测实际数据为基础,利用Bayes统计推断方法进行模型的参数估计;对我国目前MSM人群的HIV传播基本再生数(R0)做了系统估计,并对其敏感性做了评价,得到了各个参数对R0的影像,可为实施各项干预措施提供依据。
As AIDS epidemic has become one of the most serious global public health and social event, HAART was used in AIDS patients in various degree for every country in the world. The present treatment policy can effectively suppress virus replication and rebuild the immune function of HIV-infected people, and also can improve quality of life and reduce morbidity and mortality of patients, however, HAART can not clear the virus completely. Patients need to take medicine for life. Drug adverse effects and resistance may appear with the long-term medicine-taking, which could reduce the living quality. Moreover, antiviral therapy can prolong the lifespan of HIV infected individuals, which consequently make them have more opportunities to infect others. So in terms of individual therapy and epidemic control, whether antiviral therapy is effective for infection control, or in what circumstance antiviral therapy is effective for infection control is still controversial and need a further study. Based on previous immune-virus dynamics and pharmacokinetic modeling,this study introduces the influence of virologic load variation on treatment effect and HIV epidemic with long-term treatment. Antiviral therapy can extend the life expectancy of HIV infected individuals, reduce the risk of clinical progression of disease, and ultimately produce a significant influence on the whole natural progression. In different long-term policies of HAART, what we focus on is how to keep the balance between drug adverse effects and the risk of HIV new infection.
     Section1:a virologic load model with individual antiviral therapy. In order to estimate side effect of antiviral therapy, disadvantages of continuous(or discontinuous) therapy, and simulate and predict the progression of disease, we improve the traditional virus dynamic model and introduce several variations like the life expectancy, treatment effect, drug resistance and sensibility. We use a series of ways, including different iterative dynamic models, to investigate optimal initial treatment time, the optimal time to switch therapy, the optimal CD4cell threshold value, the continuity, drug resistance and adherence of treatment policy, and simulate the model of the progression of virologic load under antiviral therapy and the model of different therapy policies. We study the relationship between individual drug concentration and effect in different medications through formulating the model combined virus dynamic model with pharmacokinetic model. Then we can analyze individual virus load, the change of well or infected CD4cell counts, and confirm pivotal parameters, finally on the base of which we formulate the complex model about microscopic virus dynamic model and macroscopical HIV epidemic. We use the way of theoretical analysis and numerical modeling to investigate dynamics of the complex model, the effectiveness of intervening measures and different therapy policies and predict the development tendency of HIV epidemic.
     Section2:The statistic model for estimating AIDS epidemic. This section mainly focused on the development of the epidemic of AIDS by a composite model, combining micro virus dynamics models with macro infectious disease dynamics models. In the macro dynamic modes, we introduced starting time, resistance, efficacy of the treatment and analyzed relations among them. This study established a bridge between these two modeling system, which is helpful to investigate the impact that antiviral therapy based on individuals has on HIV infected rate of China.
     In order to reduce the number of variables we introduced two factors to describe variation rate in infectiousness and disease progression rates respectively, used Latin Hypercube Sampling (LHS) and partial rank correlation coefficients (PRCCs) to examine the dependence and sensitivity of the reproduction number RO and the expected number of HIV-positive individuals in2015and got important influencing parameters. Meanwhile, according to the CD4+T cell counts in the blood, we divided the HIV-positive individuals to several stages and formulated a mathematical model with antiviral therapy. It proved that the disease-free equilibrium is globally asymptotically stable when Ro<1, whilst the system is uniformly persistence when R0>1.
     We studied the effect of antiviral therapy in two situations:antiviral therapy started immediately once diagnosed and started when CD4+T count is less than350cells per μL. There exists a critical value for the infectiousness below which immediate treatment once diagnosed is better than the current policy in terms of the reproduction number. Whereas, current policy exhibits better than immediate treatment if the infectiousness is greater than the critical level. The result also indicated when the infectiousness is relatively low (relatively good treatment efficacy) increasing treatment coverage will decrease the reproduction number and lead to new HIV infection decline, whilst increasing treatment coverage will result in an increase in new HIV infection for the relatively great infectiousness, which is in agreement with that for heterogeneous transmission. This indicates that if treatment efficacy is relatively good our conclusions suggest immediate treatment with high uptake rate, otherwise the current policy is reasonable.
     Using the data on the number of individuals living with HIV (not AIDS) or AIDS by year among MSM, we obtained estimates of the reproduction number, intervention parameter values and the high-risk population size. Our estimated reproduction number Ro is3.88(95%CI3.69-4.07). From the estimated parameters we know that the transmission coefficient β0is much larger than the estimation for heterosexual transmission and general high-risk population. Our estimation also shows that the diagnose rate among MSM is much lower than that for other high-risk population. Meanwhile, we estimated that the antiviral therapy coverage rate among MSM in2011is less than the estimation by China. Simulation results show that strengthening education to high-risk population and increasing surveillance and testing can slow down the spread of disease. Increasing treatment uptake rate may lead to HIV new infection decline, depending on infectiousness and behavior changes. Further, sensitivity analysis implies the most influential parameters are infection rate β0and disease related death rate for HIV-positive individuals α1. Note that high efficacy drug can reduce the transmission probability of HIV per high-risk behavior, and the education may reduce the contact rate and increase the condom use rate. This means that a high effective drug and timely education may effectively control HIV epidemic.
     In this study, we also applied trend surface analysis, spatial autocorrelation analysis and regression analysis to analysis and predict the epidemic of AIDS in Yunnan province, China, and found that many factors, such as the geographical distribution of railways, drug of abuse and commercial sexual actor, could contribute to different distribution of AIDS in different areas. Our modeling provided a further study to find the inducement of illness onset for gathering areas.
     The main original points in this study:First, in our statistic model we took into account the influence of individual virus progression with long-term therapy on the drug concentration, treatment effect and AIDS epidemic. Meanwhile, we tried to figure out the effect taking drugs in different ways on the evolution of HIV and the generation of resistance. Second, what influences the optimal initial treatment time, treatment courage, the change of individual or average virologic load have on the morbidity and mortality of patients were also discussed. Third, based on the data of high-risk groups queue, national AIDS epidemic and lab testing, Bayes statistic method was used to estimate the parameters of the model. At last, we estimated the HIV reproduction number(R0) of MSM systemically, evaluated the sensibility of Ro and got the influence that each parameter had on Ro, which could help us to make interventions.
引文
1. Centers for Disease Control Prevention. Pneumocystis pneumonia-Los Angeles. Morbidity and Mortality Weekly Report.1981;30:250-252.
    2. Barre"-Sinoussi F, Chermann JC, Rey F, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science. 1983;220(4599):868-871.
    3. Gallo RC, Salahuddin SZ, Popovic M, et al. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science. 1984;224(4648):500-503.
    4. Levy J, Hoffman A, Kramer S, et al. Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science (New York, NY).1984;225(4664):840-842.
    5. Coffin J, Haase A, Levy JA, et al. Human immunodeficiency viruses. Science. 1986;232(4751):697.
    6. UNAIDS, WHO. AIDS Epidemic Update:December 2009. Geneva:WHO Regional Office Europe; 2009
    7. Bhaskaran K, Hamouda O, Sannes M, et al. Changes in the risk of death after HIV seroconversion compared with mortality in the general population. JAMA. 2008;300(1):51-59.
    8. Boulle A, Bock P, Osler M, et al. Antiretroviral therapy and early mortality in South Africa. Bulletin of the World Health Organization.2008;86(9):678-687.
    9. UNAIDS. Report on the global HIV/AIDS epidemic. Geneva:Joint United Nations Programme on HIV/AIDS; 2008
    10. PengZ, Cheng Y, Kathleen H., et al. Spatial distribution of HIV/AIDS in Yunnan province, People's Republic of Chim.Geospatial Health,2011,5(2):177-182.
    11. Hallett TB, Stover J, Mishra V, et al. Estimates of HIV incidence from household-based prevalence surveys. Aids.2009;24(1):147-152.
    12. Gouws E, Stanecki KA, Lyerla R, et al. The epidemiology of HIV infection among young people aged 15-24 years in southern Africa. Aids.2008;22:S5.
    13. PengZ, Yang H, Jessie N, et al.HIV Incidence and Predictors Associated with Retention in a Cohort of Men Who Have Sex with Men in Yangzhou, Jiangsu Province, China. Plos one,2012,7(12):e52731.
    14. Piot P, Bartos M, Ghys PD, et al. The global impact of HIV/AIDS. Nature. 2001;410(6831):968-973.
    15. Thompson MA, Aberg JA, Cahn P, et al. Antiretroviral treatment of adult HIV infection: 2010 recommendations of the International AIDS Society-USA panel. Jama. 2010;304(3):321-333.
    16. Ruxrungtham K, Brown T, Phanuphak P. HIV/AIDS in Asia. The Lancet. 2004;364(9428):69-82.
    17.中国疾病预防控制中心性病艾滋病预防控制中心.中国艾滋病/性病综合防治数据信息年报.北京2012.
    18.中华人民共和国卫生部,联合国艾滋病规划署,世界卫生组织.2011年中国艾滋病疫情估计.北京:2012,3.
    19.彭志行,王璐,郭巍,等.工作簿方法及其在艾滋病疫情估计中的应用.中华预防医学杂志,2011,10:957-959.
    20. Ghys PD, Saidel T, Vu HT, et al. Growing in silence:selected regions and countries with expanding HIV/AIDS epidemics. Aids.2003;17:S45.
    21. Garrett L. Challenge of Global Health. The Foreign Aff.2007;86:14.
    22. PROFILES C. Cohort profile:Antiretroviral Therapy in Lower Income Countries (ART-LINC):international collaboration of treatment cohorts. International journal of epidemiology.2005;34:979-986.
    23. Violari A, Cotton MF, Gibb DM, et al. Early antiretroviral therapy and mortality among HIV-infected infants. The New England journal of medicine.2008;359(21):2233-2244.
    24. Stover J, Bertozzi S, Gutierrez JP, et al. The global impact of scaling up HIV/AIDS prevention programs in low-and middle-income countries. Science. 2006;311(5766):1474-1476.
    25. Sterne J, May M, Costagliola D, et al. Timing of initiation of antiretroviral therapy in AIDS-free HIV-1-infected patients:a collaborative analysis of 18 HIV cohort studies. The Lancet.2009;373(9672):1352-1363.
    26. Boerma J, Stanecki KA, Newell ML, et al. Monitoring the scale-up of antiretroviral therapy programmes:methods to estimate coverage. Bulletin of the World Health Organization. 2006;84(2):145-150.
    27. Kitahata MM, Gange SJ, Abraham AG, et al. Effect of early versus deferred antiretroviral therapy for HIV on survival. The New England journal of medicine. 2009;360(18):1815-1826.
    28. Zhang F, Haberer JE, Wang Y, et al., The Chinese free antiretroviral treatment program: challenges and responses. AIDS,2007.21 Suppl 8:S143-8.
    29. Walensky RP, Wolf LL, Wood R, et al. When to start antiretroviral therapy in resource-limited settings. Annals of internal medicine.2009; 151(3):157-166.
    30. Fu-jie Z, Au M, Haberer J, et al. Overview of HIV drug resistance and its implications for China. Chinese medical journal.2006; 119(23):1999-2004.
    31. John S, Lori B, Carlos A. Estimating the impact and cost of the WHO 2010 recommendations for antiretroviral therapy. AIDS Research and Treatment. 2011;doi:10.1155/2011/738271.
    32. Hecht R, Stover J, Bollinger L, et al. Financing of HIV/AIDS programme scale-up in low-income and middle-income countries,2009-31. The Lancet.376(9748):1254-1260.
    33. Bendavid E, Brandeau ML, Wood R, et al. Comparative effectiveness of HIV testing and treatment in highly endemic regions. Archives of internal medicine.170(15):1347-1354.
    34. Baggaley RF, Garnett GP, FergusonNM. Modelling the impact of antiretroviral use in resource-poor settings. PloS Med.2006,3(4):e124.
    35. McCormick AW, Walensky RP, Lipsitch M, et al. The effect of antiretroviral therapy on secondary transmission of HIV among men who have sex with men. Clinical Infectious Diseases.2007;44(8):l 115-1122.
    36. Vernazzaa P, Hirschelb B, Bermasconic E, et al. Les personnes seropositives ne souffrant d'aucune autre MST et suivant un traitement antiretroviral efficace ne transmettent pas le VIH par voie sexuelle. Bulletin des medecins suisses.2008;89:5.
    37. Garnett GP, Baggaley RF. Treating our way out of the HIV pandemic:could we, would we, should we. Lancet.2009;373(9657):9-11.
    38. Over M, Marseille E, Sudhakar K, et al. Antiretroviral therapy and HIV prevention in India: modeling costs and consequences of policy options. Sexually Transmitted Diseases. 2006;33(10):S145.
    39.张静,林彬,林琳,等.山东省部分艾滋病患者抗病毒治疗效果及耐药性研究.中国流行病学杂志,2007.28(11):1108-11.
    40.李韩平,刘伟,刘海霞,等.广西壮族自治区133例艾滋病患者抗病毒治疗效果评价.中华流行病学杂志,.2007.28(4):338-42.
    41.朱新朋,李宏,刘宏,等.河南省接受抗病毒治疗的艾滋病患者耐药性及CD4+T淋巴细胞计数影响因素的研究.中华流行病学杂志,2008.29(12):1181-84.
    42. Zhang F, Haberer J, Wei H, et al., Drug resistance in the Chinese National Pediatric Highly Active Antiretroviral Therapy Cohort:implications for paediatric treatment in the developing world. Int J STD AIDS,2009.20(6):406-9.
    43. Ma Y, Zhang F, Zhao Y, et al., Cohort profile:the Chinese national free antiretroviral treatment cohort. Int J Epidemiol,2010.39(4):973-9.
    44.彭志行,鲁佳菲,王岚,等.中国艾滋病抗病毒治疗的流行病学研究,中华流行病学杂志,2012,9(33):977-982.
    45.马知恩,周义仓,王稳地,等.传染病动力学的数学建模与研究.北京:科学出版社;2004
    46. Bernouli D. Essai d'une Nouvelle. Analyse de la Mortalite Cause par la Petite Verole et des Avantages de 1'inoculation Prevenir. Memories de Mathematiques et de Physique, in Histoire de I'Academie Royale des Sciences. Paris,1760,1-45.
    47. Hamer WH. Epidemic Disease in England:the Evidence of Variability and Persistency. Lancet,1906, ii:733-739.
    48. Ross R. The Prevention of Malaria.2nd Ed. John Murray, London,1911.
    49. Kermack WO, McKendrick AG. Contributions to the mathematical theory of epidemics:V. Analysis of experimental epidemics of mouse-typhoid; a bacterial disease conferring incomplete immunity. J Hyg (Lond).1939;39(3):271-288. PMCID:2199446.
    50. En'ko PD. The Epidemic Course of some Infectious Diseases. Vrach,1889,10, St Petersburg: 1008-1063.
    51. Greenwood M. On the statistical measure of infectiousness. Journal of Hygiene, Cambrige, 1931,31:336-351.
    52. Bailey, N. The mathematical theory of infectious diseases and its applications. London and High Wycombe:Charles Griffin and Company Ltd,1975.
    53. RAnderson. PopulationDynamics of Infectious Diseases.Theory and Applications. New York:Chapman and Hall,1982.
    54. R Anderson, R May.infectious diseases of human:dynamics and control. Oxford: OxfordUni versity Press.1991.
    55.方积乾,陆盈主编.现代医学统计学.北京:人民卫生出版社,2002,4:430-438.
    56. Longini Jr IM, Ackerman E, Elveback LR. An optimization model for influenza A epidemics. Mathematical Biosciences.1978;38(1-2):141-157.
    57. Hethcote HW. Optimal ages of vaccination for measles. Mathematical Biosciences. 1988;89(1):29-52.
    58. A.Sani, D.P.Kroese, Controlling the number of HIV infectives in a mobile population. Math.Biosci,2008; 213:103-112.
    59. B.Grenfell, O.Pybus, J.Cog, J.Wood, J.Daly, J.Mumford, E.Holmes, Unifying the epidemiological and evolutionary dynamics of pathogens, Science,2004,303:327-332.
    60. Ho DD, Neumann AU, Perelson AS, et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature,1995,373:123-126.
    61. Wei X, Ghosh SK, Taylor ME, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature,1995,373:117-122.
    62. Perelson AS, Neumann AU, Markowitz M, et al. HIV-1 dynamics in vivo:virion clearance rate, infected cell life-span, and viral generation time. Science,1996,271:1582-1586.
    63. Perelson AS, Essunger P, Cao Y, et al. Decay characteristics of HIV-1 infected compartments during combination therapy. Nature,1997,387:188-191.
    64. Davidian M and Giltinan DM. Nonlinear Models for Repeated Measurement Data. New York: Chapman & Hall,1995.
    65. Vonesh EF and Chinchilli VM. Linear and Nonlinear Models for the Analysis of Repeated Measurements. New York:Marcel Dekker,1996.
    66. Ding AA and Wu H. A comparison study of models and fitting procedures for biphasic viral dynamics in HIV-1 infected patients treated with antiviral therapies. Biometrics,2000,56: 16-23.
    67. Wu H, Kuritzkes DR, McClernon DR, et al. Characterization of viral dynamics in Human Immunodeficiency Virus Type 1-infected patients treated with combination antiretroviral therapy:relationships to host factors, cellular restoration and virological endpoints. Journal of Infectious Diseases,1999,179(4):799-807.
    68. Luzuriaga K, Wu H, McManus M, et al. Dynamics of HIV-1 replication in vertically-infected infants. Journal of Virology,1999,73:362-367.
    69. ding AA and Wu H. Relationships between antiviral treatment effects and biphasic viral decay rates in modeling HIV dynamics. Mathematical Biosciences,1999,160:63-82.
    70. ding AA and Wu H. Assessing antiviral potency of anti-HIV therapies in vivo by comparing viral decay rates in viral dynamic models. Biostatistics,2001,2:13-29.
    71. McCluskey CC. A model of HIV/AIDS with staged progressionand amelioration. Mathematical Biosciences,2003,181:1-16.
    72. Ma Z,Liu J,Li J. Stability analysis for differential infectivity epidemic models. Nonlinear analysis:real world applications,2003,4(5):841-856.
    73. Baryarama F,Mugisha JY. Comparison of Single-Stage and StagedProgression Models for HIV/AIDS Transmission. International Journal of Mathematics and Mathematical Sciences,2007,10:1-11.
    74. Hyman JM,Li J, Stanley EA. Modeling the impact of randomscreening and contact tracing in reducing the spread of HIV. Math Biosci,2003,181:17-54.
    75. Hyman JM,Li J. The reproductive number for an HIV modelwith differential infectivity and staged progression. Linear Algebra and its Applications,2005,398:101-116.
    76. Neammanee K,Pianskool S,Chonchaiya R. On the AIDS incubationdistribution. Statistics & Probability Letters,2005,73:13-23.
    77. Healy B,Degruttola V. Hidden Markov models for settings with interval-censored transition times and uncertain time origin:application toHIV genetic analyses. Biostatistics,2007,8(2):438-452.
    78. J Stover, N Walker, N C Grassly, M Marston. Projecting the demographic impact of AIDS and the number of people in need of treatment:updates to the Spectrum projection package. Sex Transm Infect,2006;82 (Suppl III):45-50.
    79. Yang Y, Xiao Y. Threshold dynamics for an HIV model in periodic environments. J. Math. Anal. Appl.2010,361:59-68
    80. Siegfried N, Uthman O, Rutherford G. Optimal time for initiation of antiretroviral therapy in asymptomatic, HIV-infected, treatment-naive adults. Cochrane Database Syst Rev. 2010(3):CD008272.
    81. Mandilia S. Cause and time to treatment failure of HAART and cost of care in UK NPMS-HHC clinics,1996-2002. HIV Med,2006,7(9).
    82. Perelson A S, Nelson P W. Mathematical analysis of HIV-1 dynamics in vivo. SIAM Review, 1999,41:3-44.
    83. Buchbinder SP, Katz MH, Hessol NA, O'Malley PM, et al. Long-term HIV-1 infection without immunologic progression. AIDS,1994,8:1123-1128.
    84. Xiao Y, Tang S. Dynamics of infection with nonlinear incidence in a simple vaccination model. Nonlinear Analysis:Real World Applications,2010,11:4154-4163.
    85. Huang Y, Rosenkranz, Wu H, Modeling HIV dynamics and antiviral responses with consideration of time-varying drug exposures, sensitivities and adherence. Math Biosci,2003, 184:165-186.
    86. Hui J, Chen L. Impulsive vaccination of SIR epidemic models with nonlinear incidence rates. Disc Cont. Dyna. Systems, Series B,2004,4:595-605.
    87. Hyman J M, Jia Li, Stanley EA. The differential infectivity andstaged progression models for the transmission of HIV. Mathematical Biosciences,1999,155:77-1091
    88. HulinWu,WaiYuan Tan. Modeling the HIV epidemic:a statespace approach. Mathematical and Computer modeling,2000,32:197-215.
    89. F. Baryarama, J.Y.T. Mugisha, L.S. Luboobi.A mathematical model for the dynamics of HIV/AIDS with gradual behaviour change. Computationaland Mathematical Methods in Medicine,2006 (7) 1:15-26.
    90. Granich R, et al. Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission:a mathematical model. The Lancet,2009, 373(9657):48-57.
    91. Baggaley R, N Ferguson, and G Garnett. The epidemiological impact of antiretroviral use predicted by mathematical models:A review. Emerg Themes Epidemiol,2005.2(9): 1742-7622.
    92. Brandy Rapatski. Mathematical epidemiology of HIV/AIDS in Cuba during the period 1986-2000. Mathematical Biosciences and Engineering,2006.3(3):545-556.
    93. Cassels S, S Clark, and M Morris. Mathematical Models for HIV Transmission Dynamics: Tools for Social and Behavioral Science Research. AIDS Journal of Acquired Immune Deficiency Syndromes,2008.47:p. S34.
    94. Liu H,Yu J,Zhu G. Global behaviour of an age-infection-structured HIV model with impulsive drug-treatment strategy.Journal of Theoretical Biology,2008,253(4):749-754.
    95. Chaturvedi DK. Dynamic model of HIV/AIDS population of AgraRegion. International journal of environmental research andpublic health,2005,2(3):420-429.
    96. Zhou Y, Shao Y, Ruan Y, et al. Modeling and prediction of HIV in China:transmission rates structured by infection ages. Mathematical biosciences and engineering:MATH BIOSCI ENG,2008.5(2):403-418.
    97.刘慧君,肖群鹰.城市HIV传播动力学模型及其应用.现代预防医学.2007,24(34):4619-4621.
    98.张民珍,陆立星,曲淑霞.一类具有说服率的HIV/AIDS流行病模型.数学的实践与认识.2007,16(36):107-110.
    99. Jia, Y, et al. Estimates of HIV prevalence in a highly endemic area of China:Dehong Prefecture, Yunnan Province. International Journal of Epidemiology,2008,37(6):1287.
    100. James M. Hyman, Jia Li, E. Ann Stanley.Modeling the impact of random screening and contacttracing in reducing the spread of HIV. Mathematical Biosciences,2003,181:17-54.
    101. KwonYM,Yeun EJ,Kim HY,et al. Application of the Transtheoretical Model to Identify Aspects Influencing Condom Use AmongKoreanCollege Students. Western Journal of NursingResearch,2008,8:1-14.
    102. Mukandavire Z,Bowa K,Garira W. Modelling circumcision andcondom use as HIV/AIDS preventive control strategies.Mathematical and Computer Modelling,2007,46:1353-1372.
    103. Hsieh YH,Sheu SP. The effects of density-dependent treatmentand behavior change on the dynamics of HIV transmission. Math Biol,2001,43:69-80.
    104. Ghani AC,Garnett GP. Risks of acquiring and transmitting sexually transmitted diseases in sexual partner networks. SexTransm Dis,2000,27:579-587.
    105. Jie Lou, Jianhong Wu, Li Chen, et al. A sex-role-preference model for HIV transmissionamong men whohave sex with men in China. BMC Public Health,2009, 9(Suppl 1):S1-S10.
    106. Nicolas Bacaer, Xamxinur Abdurahman,Jianli Ye. Modeling the HIV/AIDS epidemic among injecting drug users and sex workers in Kunming, China. Bulletin of Mathematical Biology, 2006,68:525-550.
    107. Lewis F,Greenhalgh D. Three stage AIDS incubation period:aworst case scenario using addict-needle interaction assumptions. Math Biosci,2001,169(1):53-87.
    108. Huang XC,Villasana M. An extension of the Kermack-McKendrick model for AIDS epidemic. Journal of the Franklin Institute,2005,342:341-351.
    109. Dunn DT,Tess BH,Rodrigues LC,et al. Mother-to-child transmission of HIV:implications of variation in maternal infectivity. AIDS,1998,12(16):2211-2217.
    110. Dube S, Boily MC, Gregson SA. Different strategies to reducemother-to-child transmission (MTCT) of HIV-1 in,Zimbabwe:adecision analysis model. International Conference on AIDS,2004,15:11-16.
    111. Coffee M, LurieMN, Garnett GP. Modelling the impact of migration on the HIV epidemic in South Africa. AIDS,2007,21:343-350.
    112. Sani A, Kroese DP, Pollett PK. Stochastic models for the spreadof HIV in a mobile heterosexual population. MathematicalBiosciences,2007,208:98-124.
    113. Musgrave J, Russell E. Mathematical models for HIV among a group of intravenous drug users in one Canadian city. Science,2009:1-15.
    114. Wang N, Wang L, Wu Z, et al. Estimating the number of people living with HIV/AIDS in China:2003-09. International Journal of Epidemiology.2010;39(suppl 2):ii21-ii8.
    115. Gao L, Zhang L, Jin Q. Meta-analysis:prevalence of HIV infection and syphilis among MSM in China. Sexually transmitted infections.2009;85(5):354-8
    116. Fung Chow EP, Wilson DP, Zhang L. The Next Era of HIV in China:Rapidly Spreading Epidemics Among Men Who Have Sex With Men. Journal of Acquired Immune Deficiency Syndromes.2010;55(4):32-4.
    117. Qian H, Schumacher J, Chen H, Ruan Y. Injection drug use and HIV/AIDS in China:Review of current situation, prevention and policy implications. Harm reduction journal. 2006;3(4):1-8.
    118. Wu Z, Xu J, Liu E, et al. HIV and syphilis prevalence among men who have sex with men:a cross-sectional survey of 61 cities in China. Clinical Infectious Diseases,2013,4 (Accepted).
    119. Zhou Y, Shao Y, Run Y, et al.Modeling andPrediction of HIV in China:Transmission rates structured by infection ages,Mathematical Biosciences and Engineering,2008,5:403-418.
    120. J. M. Gran, L. Wasmuth, E. J. Amundsen, et al. Growth rates in epidemic models: Application to a model for HIV/AIDS progression,Statistics in Medicine,2008,23: 4817-4834.
    121. Xiao Y, Tang S, Zhou Y, et al. Predictingan HIV/AIDS epidemic and measuring the effect on it of populationmobility in mainland China. Journal of Theoretical Biology,http://www.sciencedirect.com/science/article/pii/S0022519312005152.
    122. Zhang F, Dou Z, Ma Y, et al. Effect of earlier initiation ofantiretroviral antiviral therapy and increased antiviral therapy coverage on HIVrelatedin China:a national observational cohort study. The Lancet,2011,11(7):516-524,.
    123. Ministry of Health, People's Republic of China, Joint United Nations Programmeon HIV/AIDS, World Health Organization.2007 Estimates for the HIV/AIDSEpidemic in China.Bejing, China, December 2007.
    124. Lou J, Wu J, Chen L, et al. A sex-role-preference model forHIV transmission among men who have sex with men in China. BMC PublicHealth,2009,9, suppl.1.
    125. Xu X, Xiao Y, Wang N. Modeling sexual transmission of HIV/AIDS in Jiangsuprovince, China. Mathematical Methods in the Applied Sciences,2013,36(2):234-248.
    126. Tang S, Xiao Y, Yang Y, et al. Community-based measures for mitigating the 2009 H1N1 pandemic in China, Plos One,2010,5:e10911.
    127. Sun X, Xiao Y, Peng Z, et al. A Mathematical Model for HIV/AIDS Epidemic among Men Who Have Sex with Men in China with Antiviral therapy. Abstract and Applied Analysis, 2013 (Submitted).
    128. Smith H, Zhao X. Robust persistence for semidynamical systems, Nonlinear Analysis,2001, 47(9):6169-6179,.
    129. PengZ, Yang H, Jessie N, et al. HIV Incidence and Predictors Associated with Retention in a Cohort of Men Who Have Sex with Men in Yangzhou, Jiangsu Province, China. Plos one,2012,7(12):e52731.
    130. Tong G. MSM volunteers participation in HIV/AIDS prevention activities. PublicPublication. 2001.
    131. H. Nishiura, "Correcting the actual reproduction number:a simple method of estimate Rn from early epidemic growth data", International journal of environ-mental research and public health, vol.7, pp.291-302,2010.
    132. Antunes JL, Frazao P, Narvai PC. Spatial analysis to identify differentials in dental needs by area-based measures. Community Dent Oral Epidemiol,2002,30:133-142.
    133. Wayne C. Accelerating HIV vaccine development. Nature,2010,464:161-162.
    134. Hu Z, Qin X, Zhu M, et al.Epidemiological characteristics of HIV/AIDS in west China. International Journal of STD & AIDS,2006,17:324-328.
    135. Houdt R, Bruisten SM, Geskus RB, et al. Ongoing transmission of a single hepatitisB virus strain among men having sex with men in Amsterdam. J Viral Hepat,2010,17:108-114.
    ]36.陆林,贾曼红,张小波,等.1989~2003年云南省艾滋病流行态势分析.中华预防医学杂志,2004,38(5):309-312.
    137.闫丽萍,段松,龚渝蓉,等.云南省某地强制戒毒所内吸毒者HIV危险行为及HIV感染调查.中国艾滋病性病,2010,16(2):149-151.
    138. Lu L, Jia M, Ma Y, et al. The changing face of HIV in China. Nature,2008,455:609-611.
    139. Jia M, Luo H, Ma Y, et al. The HIV Epidemic in Yunnan Province, China,1989-2007. J Acquir Immune Defic Syndr,2010,53:34-40.
    140.徐德忠,张治英.地理信息系统和遥感技术与流行病学.中华流行病学杂志,2003,24(4):251-252.
    141. Moreira RF, Nico LS, TomitaNE. The relation between space and collective oral health:For a georeferenced epidemiology. Cien Saude Colet,2007,12:275-284.
    142. Wang F. Quantitative Methods and Applications in GIS. Taylor & Francis Group,2006.
    143.周晓农.空间流行病学.北京:科学出版社,2009:237-239.
    144. Tobler WR. A computer movie simulating urban growth in the Detroit region. Economic Geography,1970,46:234-240.
    145.唐咸艳,仇小强,黄天壬,等.空间扫描统计在广西肝癌空间格局中的应用研究.中国卫生统计,2009,26(2):114-116.
    146.彭志行,羊海涛,成月佳,等.应用地理信息系统技术对江苏省艾滋病疫情的空间分析.中华流行病学杂志,2011,1:42-46.
    147. Cheng Y, Jessie N, Bao C, et al. GIS-based spatial analysis and implications for syphilis interventions in Jiangsu Province, China. Geospatial Health,2012,10(2):197-202.
    148.包广静.艾滋病人口扩散的空间差异机制及其对策研究——以云南为例.西北人口,2010,31(1):105-107.
    149. Beyrer C, Wirtz AL, Baral S, et al.Epidemiologic links between drug use and HIV epidemics: an international perspective. J Acquir Immune Defic Syndr,2010,55(1):S10-16.
    150.柳德江,殷凤玲,骆华松.云南省艾滋病流行的宏观机制分析.中国艾滋病性病,2005,11(1):267-271.
    1. Saksena N K, Wang B. Snapshot of HIV pathogenesis in China. Cell Res,2005,15:953-961.
    2. Lu L, Jia M, Ma Y, et al. The changing face of HIV in China. Nature,2008,455:609-611.
    3. Hayes R, Weiss H. Epidemiology. Understanding HIV epidemic trends in Africa. Science, 2006,311:620-621.
    4.中华人民共和国卫生部,联合国艾滋病规划署,世界卫生组织.2011年中国艾滋病疫情估计.中国艾滋病性病,2012,18(1):1-5.
    5. Zhang FJ, Pan J, Yu L, Wen Y, Zhao Y. Current progress of China's free ART program. Cell Res 2005,15:877-882.
    6. Zhang FJ, Dou ZH, et al. Effect of earlier initiation of antiretroviral treatment and increased treatment coverage on HIV-related mortality in China:a national observational cohort study. Lancet Infectious Diseases 2011,11:516-524.
    7.彭志行,鲁佳菲,王岚等.中国艾滋病抗病毒治疗的流行病学研究[J].中华流行病学杂志,2012,33(9):977-982.
    8. Barouch D H. Challenges in the development of an HIV-1 vaccine. Nature,2008,455: 613-619.
    9. Wu Z, Sullivan SG, Wang Y, et al. Evolution of China's response to HIV/AIDS. Lancet,2007, 369:679-690.
    10. Coates T J, Richter L, Caceres C. Behavioural strategies to reduce HIV transmission:how to make them work better. Lancet,2008,372(9639):669-684.
    11. Bernouli D. Essai d'une Nouvelle. Analyse de la Mortalite Cause par la Petite Verole et des Avantages de 1'inoculation Prevenir. Memories de Mathematiques et de Physique, in Histoire de l'Academie Royale des Sciences. Paris,1760,1-45.
    12. Hamer WH. Epidemic Disease in England:the Evidence of Variability and Persistency. Lancet,1906, ii:733-739.
    13. Ross R. The Prevention of Malaria.2nd Ed. John Murray, London,1911.
    14. Kermack WO. and McKendrick AG. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society,1927, Series A 115:700-721.
    15. En'ko PD. The Epidemic Course of some Infectious Diseases. Vrach,1889,10, St Petersburg: 1008-1063.
    16. Greenwood M. On the statistical measure of infectiousness. Journal of Hygiene, Cambrige, 1931,31:336-351.
    17. Bailey, N. The mathematical theory of infectious diseases and its applications. London and High Wycombe:Charles Griffin and Company Ltd,1975.
    18.18.R Anderson. Population Dynamics of Infectious Diseases. Theory and Applications. New York:Chapman and Hall,1982.
    19. R Anderson, R May. infectious diseases of human:dynamics and control. Oxford:Oxford University Press.1991.
    20.方积乾,陆盈主编.现代医学统计学.北京:人民卫生出版社,2002,4:430-438.
    21. Pawelek, K.A., et al., A model of HIV-1 infection with two time delays:mathematical analysis and comparison with patient data. Math Biosci,2012.235(1):p.98-109.
    22. Hyman J M, Jia Li, Stanley E A. The differential infectivity and staged progression models for the transmission of HIV. Mathematical Biosciences,1999,155:77-1091
    23. Hulin Wu, Wai Yuan Tan. Modeling the HIV epidemic:a state space approach. Mathematical and Computer modeling,2000,32:197-215.
    24. F. Baryarama, J.Y.T. Mugisha, L.S. Luboobi. A mathematical model for the dynamics of HIV/AIDS with gradual behaviour change. Computational and Mathematical Methods in Medicine,2006 (7) 1:15-26.
    25. Granich R, et al. Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission:a mathematical model. The Lancet,2009, 373(9657):48-57.
    26. Baggaley R, N Ferguson, and G Garnett. The epidemiological impact of antiretroviral use predicted by mathematical models:A review. Emerg Themes Epidemiol,2005.2(9): 1742-7622.27.
    27. Brandy Rapatski. Mathematical epidemiology of HIV/AIDS in Cuba during the period 1986-2000. Mathematical Biosciences and Engineering,2006.3(3):545-556.
    28. Cassels S, S Clark, and M Morris. Mathematical Models for HIV Transmission Dynamics: Tools for Social and Behavioral Science Research. AIDS Journal of Acquired Immune Deficiency Syndromes,2008.47:p. S34.
    29. Liu H, Yu J, Zhu G. Global behaviour of an age-infection-structured HIV model with impulsive drug-treatment strategy. Journal of Theoretical Biology,2008,253(4):749-754.
    30. Chaturvedi DK. Dynamic model of HIV/AIDS population of Agra Region. International journal of environmental research and public health,2005,2(3):420-429.
    31. James M. Hyman, Jia Li, E. Ann Stanley. Modeling the impact of random screening and contact tracing in reducing the spread of HIV. Mathematical Biosciences,2003,181:17-54.
    32. Zhou Y, et al. Modeling and prediction of HIV in China:transmission rates structured by infection ages. Mathematical biosciences and engineering:MBE,2008.5(2):p.403.
    33.刘慧君,肖群鹰.城市HIV传播动力学模型及其应用.现代预防医学.2007,24(34):4619-4621.
    34.张民珍,陆立星,曲淑霞.一类具有说服率的HIV/AIDS流行病模型.数学的实践与认识.2007,16(36):107-110.
    35. Xiao, Y, et al., Predicting the HIV/AIDS epidemic and measuring the effect of mobility in mainland China. J Theor Biol,2013.317:p.271-85.
    36. Jia, Y, et al. Estimates of HIV prevalence in a highly endemic area of China:Dehong Prefecture, Yunnan Province. International Journal of Epidemiology,2008,37(6):1287.
    37. Ho DD, Neumann AU, Perelson AS, et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature,1995,373:123-126.
    38. Wei X, Ghosh SK, Taylor ME, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature,1995,373:117-122.
    39. Perelson AS, Neumann AU, Markowitz M, et al. HIV-1 dynamics in vivo:virion clearance rate, infected cell life-span, and viral generation time. Science,1996,271:1582-1586.
    40. Perelson AS, Essunger P, Cao Y, et al. Decay characteristics of HIV-1 infected compartments during combination therapy. Nature,1997,387:188-191.
    41. Davidian M and Giltinan DM. Nonlinear Models for Repeated Measurement Data. New York: Chapman & Hall,1995.
    42. Vonesh EF and Chinchilli VM. Linear and Nonlinear Models for the Analysis of Repeated Measurements. New York:Marcel Dekker,1996.
    43. Ding AA and Wu H. A comparison study of models and fitting procedures for biphasic viral dynamics in HIV-1 infected patients treated with antiviral therapies. Biometrics,2000,56: 16-23.
    44. Wu H, Kuritzkes DR, McClernon DR, et al. Characterization of viral dynamics in Human Immunodeficiency Virus Type 1-infected patients treated with combination antiretroviral therapy:relationships to host factors, cellular restoration and virological endpoints. Journal of Infectious Diseases,1999,179(4):799-807.
    45. Luzuriaga K, Wu H, McManus M, et al. Dynamics of HIV-1 replication in vertically-infected infants. Journal of Virology,1999,73:362-367.
    46. ding AA and Wu H. Relationships between antiviral treatment effects and biphasic viral decay rates in modeling HIV dynamics. Mathematical Biosciences,1999,160:63-82.
    47. ding AA and Wu H. Assessing antiviral potency of anti-HIV therapies in vivo by comparing viral decay rates in viral dynamic models. Biostatistics,2001,2:13-29.
    48. Wang N, Wang L, Wu Z, Guo W, Sun X, Poundstone K, et al. Estimating the number of people living with HIV/AIDS in China:2003-09. International Journal of Epidemiology. 2010;39(suppl 2):ii21-ii8.
    49. Gao L, Zhang L, Jin Q. Meta-analysis:prevalence of HIV infection and syphilis among MSM in China. Sexually transmitted infections.2009;85(5):354-8
    50. Fung Chow EP, Wilson DP, Zhang L. The Next Era of HIV in China:Rapidly Spreading Epidemics Among Men Who Have Sex With Men. Journal of Acquired Immune Deficiency Syndromes.2010;55(4):32-4.
    51. Qian H, Schumacher J, Chen H, Ruan Y. Injection drug use and HIV/AIDS in China:Review of current situation, prevention and policy implications. Harm reduction journal. 2006;3(4):1-8.
    52. Zheng X, Tian C, Choi K, Zhang J, Cheng H, Yang X, et al. Injecting drug use and HIV infection in southwest China. AIDS.1994;8(8):1141-7.
    53. Breban R, McGowan I, Topaz C, Schwartz EJ, Anton P, Blower S. Modeling the potential impact of rectal microbicides to reduce HIV transmission in bathhouses. Mathematical Biosciences and Engineering.2006;3(3):459-66.
    54. Sorensen, S.W., et al., A mathematical model of comprehensive test-and-treat services and HIV incidence among men who have sex with men in the United States. PLoS One,2012. 7(2):p. e29098.
    55. Jie Lou, Jianhong Wu, Li Chen, et al. A sex-role-preference model for HIV transmission among men who have sex with men in China. BMC Public Health,2009,9(Suppl 1):S1-S10.
    56. Kwon YM, Yeun EJ, Kim HY, et al. Application of the Transtheoretical Model to Identify Aspects Influencing Condom Use Among Korean College Students. Western Journal of Nursing Research,2008,8:1-14.
    57. Mukandavire Z, Bowa K, Garira W. Modelling circumcision and condom use as HIV/AIDS preventive control strategies. Mathematical and Computer Modelling,2007,46:1353-1372.
    58. Hsieh YH, Sheu SP. The effects of density-dependent treatment and behavior change on the dynamics of HIV transmission. Math Biol,2001,43:69-80.
    59. Ghani AC, Garnett GP. Risks of acquiring and transmitting sexually transmitted diseases in sexual partner networks. Sex Transm Dis,2000,27:579-587.
    60. Vickerman P, Ndowa F, O'Farrell N, Steen R, Alary M, Delany-Moretlwe S. Using mathematical modelling to estimate the impact of periodic presumptive treatment on the transmission of sexually transmitted infections and HIV among female sex workers. Sexually transmitted infections.2010;86(3):163-8.
    61. Nicolas Bacagr, Xamxinur Abdurahman, Jianli Ye. Modeling the HIV/AIDS epidemic among injecting drug users and sex workers in Kunming, China. Bulletin of Mathematical Biology,. 2006,68:525-550.
    62. E. A. Nosovaa, A. A. Romanyukhab.,Mathematical model of spread of HIV-infection in population with dynamic risk of infection[J]. Matem,2013.25(1):p.45-46.
    63. Lewis F, Greenhalgh D. Three stage AIDS incubation period:a worst case scenario using addict-needle interaction assumptions. Math Biosci,2001,169(1):53-87.
    64. Huang XC, Villasana M. An extension of the Kermack-McKendrick model for AIDS epidemic. Journal of the Franklin Institute,2005,342:341-351.
    65. Bobashev GV, Zule WA. Modeling the effect of high dead space syringes on the human immunodeficiency virus (HIV) epidemic among injecting drug users. Addiction.105(8):1439-47.
    66. Dunn DT, Tess BH, Rodrigues LC, et al. Mother-to-child transmission of HIV:implications of variation in maternal infectivity. AIDS,1998,12(16):2211-2217.
    67. Dube S, Boily MC, Gregson SA. Different strategies to reduce mother-to-child transmission (MTCT) of HIV-1 in, Zimbabwe:a decision analysis model. International Conference on AIDS,2004,15:11-16.
    68. Mukandavire Z, Garira W. Age and Sex Structured Model for Assessing the Demographic Impact of Mother-to-Child Transmission of HIV/AIDS. Bulletin of Mathematical Biology. 2007;69(6):2061-92.
    69. Coffee M, Lurie MN, Garnett GP. Modelling the impact of migration on the HIV epidemic in South Africa. AIDS,2007,21:343-350.
    70. Sani A, Kroese DP, Pollett PK. Stochastic models for the spread of HIV in a mobile
    71. McCluskey CC. A model of HIV/AIDS with staged progression and amelioration. Mathematical Biosciences,2003,181:1-16.
    72. Ma Z, Liu J, Li J. Stability analysis for differential infectivity epidemic models. Nonlinear analysis:real world applications,2003,4(5):841-856.
    73. Baryarama F, Mugisha JY. Comparison of Single-Stage and Staged Progression Models for HIV/AIDS Transmission. International Journal of Mathematics and Mathematical Sciences, 2007,10:1-11.
    74. Hyman JM, Li J, Stanley EA. Modeling the impact of random screening and contact tracing in reducing the spread of HIV. Math Biosci,2003,181:17-54.
    75. Hyman JM, Li J. The reproductive number for an HIV model with differential infectivity and staged progression. Linear Algebra and its Applications,2005,398:101-116.
    76. Neammanee K, Pianskool S, Chonchaiya R. On the AIDS incubation distribution. Statistics & Probability Letters,2005,73:13-23.
    77. Healy B, Degruttola V. Hidden Markov models for settings with interval-censored transition times and uncertain time origin:application to HIV genetic analyses. Biostatistics,2007,8(2): 438-452-
    78.彭志行,王璐,喻荣彬,等.亚洲艾滋病流行模型及其在我国艾滋病疫情预测中的应用,中华预防医学杂志,2010,2:97-100.
    79. Wu Z, Sullivan SG, Wang Y, Rotheram MJ, Detels R. Evolution of China's response to HIV/AIDS. Lancet 2007; 369:679-690.
    80. Yu Wang, Su-su Liao, Margaret R, et al. Acceptability of Hypothetical Microbicides among Women in Sex Establishments in Rural Areas in Southern China. Sexually Transmitted Diseases,2008; 35(1):102-110.
    81. Mandilia S. Cause and time to treatment failure of HAART and cost of care in UK NPMS-HHC clinics,1996-2002. HIV Med,2006; 7(9).
    82. Yang Y, Xiao Y. Threshold dynamics for an HIV model in periodic environments. J. Math. Anal. Appl.2010; 361:59-68.
    83. Y. Huang, S.L. Rosenkranz, H. Wu. Modelling HIV dynamics and antiviral responses with consideration of time-vary ing drug exposures, sensitivities and adherence, Math. Biosci.184.
    84. Fang C, Hsu H, Twu S, et al. Decreased HIV transmission after a policy of providing free access to highly active antiretroviral therapy in Taiwan. J Infect Dis 2004; 190:879-85.
    85. Montaner JSG, Hogg R, Wood E, et al. The case for expanding access to highly active antiretroviral therapy to curb the growth of the HIV epidemic. Lancet 2006; 368:531-36.
    86. J X Velasco-Hernandez, H B Gershengorn, and S M Blower. Could widespread use of combination antiretroviral therapy eradicate HIV epidemics? THE LANCET Infectious Diseases Vol 2 August 2002 http://infection.thelancet.com.
    87. Julio S G Montaner, Viviane D Lima, Rolando Barrios, Benita Yip, Evan Wood, Thomas Kerr, Kate Shannon, P Richard Harrigan, Robert S Hogg,Patricia Daly, Perry Kendall. Association of highly active antiretroviral therapy coverage,population viral load, and yearly new HIV diagnoses in British Columbia, Canada:a population-based study. Lancet 2010; 376:532-39.
    88. Mostafa Bachar, Anita Dorfmayr. HIV treatment models with time delay. C. R. Biologies 327 (2004) 983-994.
    89. Blower SM, Gershengorn HB, Grant RM. A tale of two futures:HIV and antiretroviral therapy in San Francisco. Science 2000; 287:650-54.
    90. Blower SM, Aschenbach AN, Gershengorn HB,Kahn JO. Predicting the unpredictable:
    91. R.G. Wallace. Projecting the impact of HAART on the evolution of HIV's life history.Ecological Modelling 176 (2004) 227-253.
    92. R.Granich, C.F.Gilks, C.Dye, et al. Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission:a mathematical model. Lancet.2009,373:48-57.
    93. Veronica Shi, Abdessamad Tridane, Yang Kuang. A viral load-based cellular automata approach to modeling HIV dynamics and drug treatment. Journal of Theoretical Biology 253 (2008)24-35.
    94. McCormick AW.Walensky RP.Lipsitch M.et al.The effect of antiretroviral therapy on secondary transmission of HIV among men who have sex with men.Clinical Infectious Diseases.2007:44(8):1115-1122.