用户名: 密码: 验证码:
高压集成电路中LDMOS结构在ESD应力下的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界中广泛存在的静电放电(ElectroStatic Discharge,ESD)现象是造成芯片失效的一个重要因素。目前集成电路广泛用于各种生活、生产电器中,因此,每年因静电放电造成集成电路的损坏而导致的经济损失非常严重。为了降低由此带来的损失,集成电路的ESD防护能力已是目前芯片设计时必须考虑的问题。近年来随着功率集成电路技术的蓬勃发展,功率集成电路的ESD防护能力也随之越来越得到重视。而以往对芯片ESD问题的研究主要集中于低压电路和器件,对高压集成电路的研究目前还很不成熟。LDMOS (Lateral Diffused MOS)器件由于具有易与CMOS工艺相兼容的特点而被广泛应用于功率集成电路中。研究LDMOS器件所面临的ESD问题对降低研发成本、提高功率集成电路可靠性具有重要意义。
     本文基于0.35μm40V/20V/5V BCD(Bipolar/CMOS/DMOS)工艺,使用TCAD仿真分析、器件的TLP (Transmission Line Pulse)与HBM (Human Body Model)测试、失效分析等相结合的研究方法,对LDMOS在ESD大电流注入下的器件特性进行研究,由此提出了器件在宽度方向上的电流不均匀性模型。在此模型的基础上,提出了新的器件结构,并进行实验验证。主要的创新工作和成果如下:
     1.基于Kirk效应原理,结合LDMOS体内寄生NPN的电流放大机理,对处于ESD应力下的LDMOS在宽度上的电流不均匀特性进行研究,提出了LDMOS电流不均匀性模型。LDMOS的电流不均匀特性可导致器件只有部分导通,从而限制了器件的抗ESD能力。基于此模型,设计了新型器件结构,通过器件漏端N+用场氧进行隔离,在不增大器件触发电压的情况下增加了器件的镇流电阻,抑制了LDMOS宽度方向上的电流不均匀性,使器件的ESD失效电流从1.06A提升至3.53A。
     2.基于LDMOS在大电流注入下发生Kirk效应的理论,分析了LDMOS器件维持电压特性的影响因素,指出了ESD大电流注入条件下Kirk效应将导致LDMOS器件出现维持电压过低现象。基于此原理,提出并验证了一种用于提升器件维持电压的抑制强折回(strong snapback)新结构,并对其ESD特性进行了深入的研究。该结构通过在器件漏端增加一个用于低压PMOS器件的浓度较高的Nwell,使器件漂移区漏端部分的掺杂浓度提升,以提高器件发生Kirk效应的电流密度,从而提升器件维持电压。新器件使维持电压由15V提升至29.8V,并且没有出现严重的折回过程。此外,研究了器件沟道长度、寄生BJT基区接地电阻、电流放大系数等参数对LDMOS器件维持电压特性的影响。通过采用电流放大系数较低的PLDMOS作为ESD保护器件,可得到无折回现象的TLP特性。
     3.提出了一种新的NPN-LDMOS结构,并对该器件在ESD应力下的特性进行了深入的研究与验证。该结构通过在LDMOS的漏端增加了一个寄生的低压NPN器件,不仅使LDMOS在ESD应力下的雪崩结由N+/Ndrift转换为N+/Pwell以提高器件的电离碰撞系数,也同时增加了器件的均匀导通特性。相比传统LDMOS,新器件的电流泄放能力由1A提升至3.2A,而其维持电压仅降低约6V。
     4.提出了一种用于CMOS芯片I/O引脚的新型SCR结构,并通过实验研究了器件的ESD特性。该SCR不仅可以通过内嵌的MOS器件雪崩击穿触发,还可以通过电源轨之间的寄生电容触发,其抗ESD能力远高于常规的MOS器件,因此可以用较小的器件宽度实现对I/O引脚的ESD保护。在占用面积相近的情况下,I/O引脚的失效电流较MOSFET结构提升了1倍,同时其内嵌的MOS结构可以对电源轨提供基本的ESD防护而几乎不增加占用的芯片面积。
ElectroStatic Discharge (ESD) is still a serious threat to the Integrated Circuit (IC).Since the ICs are widely used in electric equipments, the financial loss caused by ESDis very large. So, ESD robustness of IC has been a problem which must be solved in ICdesign to reduce the related loss. Recently, the ESD robustness of Power IC is animportant research topic with its widely application and rocketing development. Theformer research on the ESD robustness mainly focused on the low voltage ICs anddevices, while for the high voltage ICs, the relative study is still immature. Specifically,LDMOS (Lateral Diffused MOS) is popular in high voltage ICs, because it is prettywell compatible with the CMOS process. So studying the characteristics of the LDMOSunder ESD stress is an important issue to reduce the cost of IC development andimprove the robustness of ICs.
     In this dissertation, based on0.35μm40V/20V/5V BCD (Bipolar/CMOS/DMOS)process, the TCAD simulation, TLP (transmission Line Pulse) test, HBM (Human BodyModel) test, and failure analysis were used in order to study the characteristics ofLDMOS under ESD stress. The width direction non-uniform conducting model wasproposed. Based on it, several novel structures were proposed and verified. Thefollowing is the main innovations and results in this dissertation.
     1. Based on Kirk effect and the amplification of the parasitic NPN structure, thenon-uniform conducting characteristic in width direction is studied. Then, a model of itis proposed. It can lead to low ESD robustness due to partial device conducting.According to the non-uniform conducting model, a device with high drain ballastresistance is proposed and verified. By splitting the drain N+region with field oxide, itshigh drain ballast resistance can suppress its non-uniform conducting and improve itsESD robustness without increasing the trigger voltage. Its failure current is increasedfrom1.06to3.53A.
     2. Based on Kirk effect, the holding voltage of the LDMOS is studied. The lowholding voltage is caused by the Kirk effect under ESD stress. According to it, a novelstrong snapback prevented LDMOS with high holding voltage is proposed and verified.The doping concentration of the part of the drift region near the drain is increased byadding a high concentration Nwell used in the low voltage PMOS device. In the device with high doping concentration drift region, Kirk status needs higher current density.Then, its holding voltage can be increased. The holding voltage of the proposed deviceis increased from15V to29.8V. Besides, no obvious strong snapback is found. Inaddition, since the electron injection from the source to drain influence the holdingvoltage, the influences of the channel length, the resistance in the base region of theparasitic BJT structure, and the current amplification coefficient on the ESDcharacteristics are also studied. A TLP characteristic without snapback can also be gotby using the PLDMOS with low current amplification coefficient as an ESD protectiondevice.
     3. A novel NPN-LDMOS structure is proposed. Its characteristics under ESD stressare studied and verified. Compared with the conventional LDMOS, the novel differenceis the added low voltage Pwell in the drain region of the proposed device. Then, aparasitic NPN device is formed in drain region. Under ESD stress, the avalanchegeneration junction in the LDMOS is changed from N+/Ndrift to N+/Pwell, which canlead to higher impact ionization coefficient and more current uniformity. The test resultsshow that its failure current is increased from1A to3.2A at the cost of the holdingvoltage decreased by merely6V.
     4. A novel SCR structure is proposed and verified for the I/O pad in CMOS circuits.The SCR can be triggered not only by the avalanche breakdown in the embeddedMOSFET, but also by the parasitic capacitance in the power rails. The device with smallwidth can provide enough ESD protection for the I/O pad, because its robustness ismuch higher than the conventional MOSFET. Its failure current is1time higher than theconventional MOSFET under nearly the same area conditions. Besides, it can alsoprovide basic ESD protection for the power rails by the embedded MOSFET withoutmuch extra area.
引文
[1] O. Semenov, H. Sarbishaei, M. Sachdev. ESD protection device and circuit design for advancedCMOS technologies [M]. Netherlands: Springer Science+Business Media B.V.,2008,1-2
    [2] G. Boselli. On high injection mechanisms in semiconductor devices under ESD conditions [D].Netherlands: Universiteit Twente,2001,2-3
    [3] S. S. Lubana, H. Sarbishaei, M. Sachdev. ESD protection for mixed-signal circuits–design or testproblem?[C]. IEEE International Mixed-Signals, Sensors, and Systems Test Workshop,Vancouver,2008,1-6
    [4] A. Amerasekera, C. Duvvury. ESD in silicon integrated circuits [M]. England: John Wiley&Sons Ltd.,2002,1-4
    [5] J. Sutherland. ESD protection design seminar [OL]. http://wenku.baidu.com/view/4c3aea3610661ed9ad51f310.html: California Micro Device,2013
    [6] J. E.Vinson, J. J. Liou. Electrostatic discharge in semiconductor devices: overview of circuitprotection techniques [C]. Electron Devices Meeting, Hong Kong,2000,5-8
    [7] Intel. ESD/EOS:英特尔封装数据手册第6章[OL]. http://www.intel.com/content/www/cn/zh/processors/packaging-chapter-06-databook.html: Intel,2000
    [8] M. Ker, C. Chuang, W. Lo. ESD implantations for on-chip ESD protection with layoutconsideration in0.18-μm salicided CMOS technology [J].IEEE Transactions on SemiconductorManufacturing,2005,18(2):328-337
    [9] S. Chen, M. Ker. Area-efficient ESD-transient detection circuit with smaller capacitance foron-chip power-rail ESD protection in CMOS ICs [J].IEEE Transactions on Circuits and SystemsII: Express Briefs,2009,56(5):359-363
    [10] P. Galy, J. Bourgeat, J. Jimenez, et al. β matrix concept for ESD power devices, demonstratorsin C45nm&C32nm CMOS technology [C]. Electrical Overstress/Electrostatic DischargeSymposium, Anaheim,2011,1-6
    [11] M. Ker, P. Chiu, F. Tsai, et al. On the design of power-rail ESD clamp circuit with considerationof gate leakage current in65-nm low-voltage CMOS process [C]. IEEE InternationalSymposium on Circuits and Systems, Taipei,2009,2281-2284
    [12] Y. Shan, J. He, B. Hu, et al. NLDD/PHALO-assisted low-trigger SCR for high-voltage-tolerantESD protection without using extra masks [J]. IEEE Electron Device Letters,2009,30(7):778-780
    [13] Y. Shan, J. He, B. Hu. PLDD/NHALO-assisted low-trigger SCR for high-voltage tolerant ESDprotection in foundry CMOS process without extra mask [J]. Electronics Letters,2009,45(1):40-42
    [14] S. Dong, M. Miao, J. Wu, et al. Low-capacitance SCR structure for RF I/O application [J].IEEE Transactions on Electromagnetic Compatibility,2013,55(2):241-247
    [15] J. Park, D. Kim, Y. Son, et al. Low-capacitance low-voltage triggered SCR ESD clamp usingnMOS with asymmetric drain for RF ICs [J]. IEEE Transactions on Microwave Theory andTechniques,2011,59(2):360-367
    [16] W. Guo, M. Li, S. Dong. Effect of metal routing on the ESD robustness of dual-direction siliconcontrolled rectifier [C]. IEEE International Symposium on the Physical and Failure Analysis ofIntegrated Circuits, Suzhou,2009,336-338
    [17] X. Du, S. Dong, Y. Han, et al. Analysis of metal routing technique in a novel dual directionmulti-finger SCR ESD protection device [C]. International Conference on Solid-State andIntegrated-Circuit Technology, Beijing,2008,337-340
    [18] K. Bhatia, E. Rosenbaum. Layout guidelines for optimized ESD protection diodes [C].Electrical Overstress/Electrostatic Discharge Symposium, Anaheim,2007,1A.3-1-1A.3-9
    [19] V. A. Vashchenko, A. Shibkov. ESD design for analog circuits [M]. New York: SpringerScience+Business Media LLC,2010,1-3
    [20] O. Semenov, H. Sarbishaei, M. Sachdev. ESD protection device and circuit design for advancedCMOS technologies [M]. Netherlands: Springer Science+Business Media B.V.,2008,85-86
    [21] M. Mergens, J. Armer, P. Jozwiak, et al. Active-source-pump (ASP) technique for ESD designwindow expansion and ultra-thin gate oxide protection in sub-90nm technologies [C].Proceedings of the IEEE Custom Integrated Circuits Conference,2004,251-254
    [22] M. Ker, Y. Hsiao. On-chip ESD protection strategies for RF circuits in CMOS technology [C].International Conference on Solid-State and Integrated Circuit Technology, Shanghai,2006,1680-1683
    [23] S. Chen, M. Ker, H. Hung. Active ESD protection design for interface circuits betweenseparated power domains against cross-power-domain ESD stresses [J]. IEEE Transactions onDevice and Materials Reliability,2008,8(3):549-560
    [24] Z. Chen, C. Chuang, M. Ker. Design on new tracking circuit of I/O buffer in0.13-μm celllibrary for mixed-voltage application [C]. IEEE International Symposium on Circuits andSystems, Island of Kos,2006
    [25] S. Chen, M. Ker. An output buffer for3.3-V applications in a0.13-μm1/2.5-V CMOSprocess[J]. IEEE Transactions on Circuits and Systems II: Express Briefs,2007,54(1):14-18
    [26] M. Ker, K. Lin. ESD protection design for mixed-voltage I/O interfaces--overview [C]. IEEEConference on Electron Devices and Solid-State Circuits,2005,493-498
    [27] C. Duvvury. Paradigm shift in ESD qualification [C]. IEEE International Reliability PhysicsSymposium, Phoenix,2008,1-2
    [28] W. Chen, E. Rosenbaum, M. Ker. Diode-triggered silicon controlled rectifier with reducedvoltage overshoot for CDM ESD protection [J]. IEEE Transactions on Device and MaterialsReliability,2012,12(1):10-14
    [29] C. Yeh, M. Ker. Power-rail ESD clamp circuit with ultralow standby leakage current and higharea efficiency in nanometer CMOS technology [J]. IEEE Transactions on Electron Devices,2012,59(10):2626-2634
    [30] C. Yeh, M. Ker. Resistor-less design of power-rail ESD clamp circuit in nanoscale CMOStechnology [J]. IEEE Transactions on Electron Devices,2012,59(12):3456-3463
    [31] C. Wang, M. Ker. Design of power-rail ESD clamp circuit with ultra-low standby leakagecurrent in nanoscale CMOS technology [J]. IEEE Journal of Solid-State Circuits,2009,44(3):956-964
    [32] C. Wang, M. Ker, T. Tang, et al. Low-leakage electrostatic discharge protection circuit in65-nmfully-silicided CMOS technology [C]. IEEE International Conference on Design andTechnology, Austin,2009,21-24
    [33] M. Ker, P. Chiu. New low-leakage power-rail ESD clamp circuit in a65-nm low-voltage CMOSprocess [J]. IEEE Transactions on Device and Materials Reliability,2011,11(3):474-483
    [34] P. Chiu, M. Ker, F. Tsai, et al. Ultra-low-leakage power-rail ESD clamp circuit in nanoscalelow-voltage CMOS process [C]. IEEE International Reliability Physics Symposium, Montreal,2009,750-753
    [35] F. A. Altolaguirre, M. Ker. Overview on the design of low-leakage power-rail ESD clampcircuits in nanoscale CMOS processes [C]. Argentine School of Micro-NanoelectronicsTechnology and Applications (EAMTA), Buenos Aires,2011,1-5
    [36] M. Shrivastava, H. Gossner. A review on the ESD robustness of drain extended MOS devices[J].IEEE Transactions on Device and Materials Reliability,2012,12(4):615-625
    [37] M. Shrivastava, J. Schneider, M. S. Baghini, et al. On the failure mechanism and currentinstabilities in RESURF type DeNMOS device under ESD conditions [C]. IEEE InternationalReliability Physics Symposium, Anaheim,2010,841-845
    [38] S. H. Voldman. ESD: failure mechanisms and models [M]. United Kingdom: John Wiley&Sons Ltd,2009,315-316
    [39] Y. Cao, U. Glaser. Statically triggered active ESD clamps for high-voltage applications [C].Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD), Tucson,2012,1-10
    [40] T. H. Chien, K. Y, J. Hsu. A gate-controllable high-voltage SCR device with high performancein ESD protection and latch-up immunity[C]. IEEE46th Annual International ReliabilityPhysics Symposium, Phoenix,2008,629-630
    [41] T. H. Lai, M. D. Ker, W. J. Chang, et al. High-robust ESD protection structure with embeddedSCR in high-voltage CMOS process [C]. IEEE46th Annual International Reliability, PhysicsSymposium, Phoenix,2008,627-628
    [42] V. A. Vashchenko, D. J. LaFonteese, K. G. Korablev. Lateral pnp BJT ESD protectiondevices[C]. Bipolar/BiCMOS Circuits and Technology Meeting, Monteray, CA,2008,53-56
    [43] E. Gevinti, L. Cerati, M. Sambi. Novel190V LIGBT-based ESD protection for0.35μm smartpower technology realized on SOI substrate [C]. Electrical Overstress/Electrostatic DischargeSymposium, Tucson, AZ,2008,211-220
    [44] Z. W. Liu, J. J. Liou, J. Vinson. Novel silicon-controlled rectifier (SCR) for high-voltageelectrostatic discharge (ESD) applications [J]. Electron Device Letters,2008,29(7),753-755
    [45] T. H. Kang, J. H. Ryu, M. H. Kim. Self-triggered SCR in output driver for enhanced ESDrobustness [C]. Proceedings of the20th International Symposium on Power SemiconductorDevices&IC's. Oralando,2008,201-204
    [46] T. Imoto, K. Mawatari, K. Wakiyama. A novel ESD protection device structure for HV-MOSICs [C]. IEEE47th Annual International Reliability Physics Symposium, Montreal,2009,663-668
    [47] C. Y. Huang, Q. K. Chen, M. F. Lai, et al. A SCR-buried BJT device for robust ESD protectionwith high latchup immunity in high-voltage technology [C]. IEEE Proceedings of16th IPFA,Suzhou, Jiangsu,2009,363-367
    [48] K. Nakamura, T. Naka, K. Matsushita, et al. ESD protection structure with novel triggertechnique for LDMOS based on BiCD process[C]. International Symposium on PowerSemiconductor Devices&IC's, Barcelona,2009,227-230
    [49] W. Y. Chen, M. D. Ker, Y. N. Jou, et al. Improvement on ESD robustness of lateral DMOS inhigh-voltage CMOS ICs by body current injection [C]. IEEE International Symposium onCircuits and Systems (ISCAS), Taipei,2009,385-388
    [50] W. Y. Chen, M. D. Ker. New layout arrangement to improve ESD robustness of large-arrayhigh-voltage nLDMOS [J]. Electron Device Letters,2009,31(2),159-161
    [51] Z. W. Liu, J. J. Liou, S. Dong, et al. Silicon-controlled rectifier stacking structure forhigh-voltage ESD protection applications [J]. Electron Device Letters,2010,31(8),845-847
    [52] M. D. Ker, C. L. Hsu, W. Y. Chen. ESD protection circuit for high-voltage CMOS ICs withimproved immunity against transient-induced latchup [C]. IEEE International Symposium onCircuits and Systems (ISCAS), Paris,2010,989-992
    [53] M. Shrivastava, J. Schneider, M. S. Baghini. On the failure mechanism and current instabilitiesin RESURF type DeNMOS device under ESD conditions[C]. IEEE International ReliabilityPhysics Symposium (IRPS), Anaheim, CA,2010,841-845
    [54] J. A. Salcedo, J. J. Hajjar, S. Malobabic, et al. Bidirectional devices for automotive-gradeelectrostatic discharge applications [J]. Electron Device Letters,2012,33(6),860-862
    [55] A. Zhou, Y. Wang, K. Zhu, et al. Investigation of pickup effect for multi-fingered ESD devicesin0.5μm5V/18V CDMOS process [J]. Electronics Letters,2012,48(15),911-913
    [56] Y. Cao, U. Glaser. Statically triggered active ESD clamps for high-voltage applications [C].Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD), Tucson, AZ,2012,1-10
    [57] F. Ma, B. Zhang, Y. Han. High holding voltage SCR-LDMOS stacking structure withring-resistance-triggered technique [J]. Electron Device Letters,2013,34(9),1178-1180
    [58] S. J. Wang, F. Yao, Z. T. Shi, et al. Design and analysis of full-chip HV ESD protection in BCD30V for mixed-signal ICs[C]. IEEE International Symposium on Circuits and Systems (ISCAS),Beijing,2013,1059-1062
    [59] C. T. Dai, M. D. Ker. Investigation on safe operating area and ESD robustness in a60-V BCDprocess with different deep p-well test structures[C]. IEEE International Conference onMicroelectronic Test Structures (ICMTS), San Diego, CA,2013,127-130
    [60] Y. C. Huang, C. T. Dai, M.D. Ker. Self-protected LDMOS output device with embedded SCR toimprove ESD robustness in0.25-μm60-V BCD process [C]. IEEE2nd InternationalSymposium on Next-Generation Electronics (ISNE), Kaohsiung, Taiwan,2013,116-119
    [61] J. J. Liou. Challenges of designing electrostatic discharge (ESD) protection in modern andemerging CMOS technologies [C]. IEEE2nd International Symposium on Next-GenerationElectronics (ISNE), Kaohsiung, Taiwan,2013,1-3
    [62] S. H. Voldman. ESD basics from semiconductor manufacturing to product use [M]. UnitedKingdom: John Wiley&Sons Ltd,2012,41-50
    [63] G. Boselli. On high injection mechanisms in semiconductor devices under ESD conditions [D].Netherlands: Universiteit Twente,2001,10
    [64] O. Semenov, H. Sarbishaei, M. Sachdev. ESD protection device and circuit design for advancedCMOS technologies [M]. Netherlands: Springer Science+Business Media B.V.,2008,24-30
    [65] T. J. Maloney, N. Khurana. Transmission line pulsing techniques for circuit modeling of ESDphenomena [C]. EOS/ESD Symposium,1985,49-54
    [66] R. A. Ashton. Transmission line pulse measurements: a tool for developing ESD robustintegrated circuits [C]. International Conference on Microelectronic Test Structures,2004,1-6
    [67] Industry Council on ESD Target Levels. White paper1: A case for lowering component levelHBM/MM ESD specifications and requirements [OL]. http://www.esdindustrycouncil.org/ic/en/documents/5-presentation-on-machine-model-qualification-issues-pdf: Industry Council onESD Target Levels,2007
    [68] Industry Council on ESD Target Levels. White Paper2: A case for lowering component levelCDM ESD specifications and requirements [OL]. http://www.esdindustrycouncil.org/ic/en/documents/6-white-paper-2-a-case-for-lowering-component-level-cdm-esd-specifications-and-requirements: Industry Council on ESD Target Levels,2009
    [69] A. Amerasekera, C. Duvvury. ESD in silicon integrated circuits [M]. England: John Wiley&Sons Ltd.,2002,47-58
    [70] S. H. Voldman, R. Ashton, J. Barth, et al. Standardization of the transmission line pulse (TLP)methodology for electrostatic discharge (ESD)[C]. Electrical Overstress/ElectrostaticDischarge Symposium, Las Vegas,2003,1-10
    [71] On Semiconductor. Human body model (HBM) vs. IEC IEC61000-4-2[OL]. http://www.onsemi.cn/pub_link/collateral/tnd410-d.pdf: Semiconductor Components Industries, LLC,2010
    [72] Y. Cao, U. Glaser, S. Frei, et al. A failure levels study of non-snapback ESD devices forautomotive applications [C]. IEEE International Reliability Physics Symposium, Anaheim,2010,458-465
    [73] D. Johnsson, M. Mayerhofer, J. Willemen, et al. Avalanche breakdown delay in high-voltagep-n junctions caused by pre-pulse voltage from IEC61000-4-2ESD generators [J]. IEEETransactions on Device and Materials Reliability,2009,9(3):412-418
    [74] S. H. Voldman. ESD: physics and devices [M]. England: John Wiley&Sons Ltd,2004,105-107
    [75] Y. Cao, U. Glaser, J. Willemen, et al. On the dynamic destruction of LDMOS transistors beyondvoltage overshoots in high voltage ESD [C]. Electrical Overstress/Electrostatic DischargeSymposium, Reno,2010,1-10
    [76]陈星弼,张庆中.晶体管原理与设计[M].北京:电子工业出版社,2006,41-45
    [77] A. Zhou, Y. Wang, K. Zhu, et al. Investigation of pick up effect for multi-fingered ESD devicesin0.5μm5V/18V CDMOS process [J]. Electronics Letters,2012,48(15):911-913
    [78] M. Ker, W. Chen, W. Shieh, et al. New ballasting layout schemes to improve ESD robustness ofI/O buffers in fully silicided CMOS process [J]. IEEE Transactions on Electron Devices,2009,56(12):3149-3159
    [79] K. Chatty, D. Alvarez, M. J. Abou-Khalil, et al. Investigation of ESD performance ofsilicide-blocked stacked NMOSFETs in a45nm bulk CMOS technology [C]. ElectricalOverstress/Electrostatic Discharge Symposium, Tucson,2008,304-312
    [80] Y. Wen, M. Ker, W. Chen. A bending n-well ballast layout to improve ESD robustness infully-silicided CMOS technology [C]. IEEE International Reliability Physics Symposium,Anaheim,2010,857-860
    [81] M. Ker, W. Chen, W. Shieh, et al. New layout scheme to improve ESD robustness of I/O buffersin fully-silicided CMOS process [C]. EOS/ESD Symposium, Anaheim,2009,1-6
    [82] M. Shrivastava, C. Russ, H. Gossner, et al. ESD robust DeMOS devices in advanced CMOStechnologies [C]. Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD),Anaheim,2011,1-10
    [83] W. Chen, M. Ker, Y. Jou, et al. Improvement on ESD robustness of lateral DMOS inhigh-voltage CMOS ICs by body current injection [C]. IEEE International Symposium onCircuits and Systems, Taipei,2009,385-388
    [84] Z. Liu, J. J. Liou, J. Vinson. Novel silicon-controlled rectifier (SCR) for high-voltageelectrostatic discharge (ESD) applications [J]. IEEE Electron Device Letters,2008,29(7):753-755
    [85] Z. Liu, J. J. Liou, S. Dong, et al. Silicon-controlled rectifier stacking structure for high-voltageESD protection applications [J]. IEEE Electron Device Letters,2010,31(8):845-847
    [86] I. Kurachi, Y. Fukuda, N. Miura, et al. Analysis of a new ESD failure and its improvement [C].Industry Applications Society Annual Meeting, Houston,1992,2:1612-1617
    [87] M. Shrivastava, J. Schneider, M. S. Baghini, et al. On the failure mechanism and currentinstabilities in RESURF type DeNMOS device under ESD conditions [C]. IEEE InternationalReliability Physics Symposium, Anaheim,2010,841-845
    [88] J. Lee, H. Su, C. Chan, et al. The influence of the layout on the ESD performance ofHV-LDMOS [C]. International Symposium on Power Semiconductor Devices&IC's,Hiroshima,2010,303-306
    [89] M. Ker, J. Chen. Self-substrate-triggered technique to enhance turn-on uniformity of multi-finger ESD protection devices [J]. IEEE Solid-State Circuits,2006,41(11):2601-2609
    [90] Z. Liu, J. J. Liou, S. Dong, et al. Silicon-controlled rectifier stacking structure for high-voltageESD protection applications [J]. IEEE Electron Device Letters,2010,31(8):845-847
    [91] M. Shrivastava, S. Bychikhin, D. Pogany, et al. On the differences between3D filamentationand failure of n&p type drain extended MOS devices under ESD condition [C]. IEEEInternational Reliability Physics Symposium, Anaheim,2010,480-484
    [92] V. A. Vashchenko, D. J. LaFonteese, K. G. Korablev. Lateral pnp BJT ESD protectiondevices[C]. IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Monteray,2008,53-56
    [93] H. Fan, L. Jiang, B. Zhang. A method to prevent strong snapback in LDNMOS for ESDprotection [J]. IEEE Transactions on Device and Materials Reliability,2013,13(1):50-53
    [94] M. Levinshtein, J. Kostamovaara, S. Vainshtein. Breakdown phenomena in semiconductors andsemiconductor devices [M]. Singapor: World Scientific Publishing Company,2005,47-49
    [95] M. Levinshtein, J. Kostamovaara, S. Vainshtein. Breakdown phenomena in semiconductors andsemiconductor device [M]. Singapore: World Scientific Publishing Co. Pte. Ltd.,2005,98-99
    [96] J. A. Salcedo, J. J. Hajjar, S. Malobabic, et al. Bidirectional devices for automotive-gradeelectrostatic discharge applications [J]. IEEE Electron Device Letters,2012,33(6):860-862
    [97] W. Chen, M. Ker. Improving safe operating area of nLDMOS array with embedded siliconcontrolled rectifier for ESD protection in a24-V BCD process [J]. IEEE Transactions onElectron Devices,2011,58(9):2944-2951
    [98] W. Chen, M. Ker. New layout arrangement to improve ESD robustness of large-arrayhigh-voltage nLDMOS [J]. IEEE Electron Device Letters,2010,31(2):159-161
    [99] C. Wang, M. Ker, T. Tang, et al. ESD protection design with lateral DMOS transistor in40-VBCD technology [J]. IEEE Transactions on Electron Devices,2010,57(12):3395-3404
    [100] A. J. Walker, H. Puchner, S. P. Dhanraj. High-voltage CMOS ESD and the safe operatingarea[J]. IEEE Transactions on Electron Devices,2009,56(8):1753-1760
    [101] T. Lai, M. Ker, W. Chang, et al. High-robust ESD protection structure with embedded SCR inhigh-voltage CMOS process [C]. IEEE International Reliability Physics Symposium, Phoenix,2008,627-628
    [102] K. Esmark, H. Gossner, S. Bychikhin, et al. Transient behavior of SCRs during ESD pulses [C].IEEE International Reliability Physics Symposium, Phoenix,2008,247-253
    [103] D. Johnsson, W. Mamanee, S. Bychikhin, et al. Second breakdown behavior in bipolar ESDprotection devices during low current long duration stress and its relation to movingcurrent-tubes [C]. IEEE International Reliability Physics Symposium, Phoenix,2008,240-246
    [104] C. Wang, T. Tang, K. Su. Latch-up free ESD protection design with SCR structure in advancedCMOS technology [C]. IEEE International Reliability Physics Symposium, Monterey,2011,4C.3.1-4C.3.4
    [105] B. Song, Y. Han, M. Li, et al. Substrate-triggered GGNMOS in65nm CMOS process for ESDapplication [J]. Electronics letters,2010,46(7):518-520
    [106] C. Yeh, Y. Liang, Z. Jiang, et al. The enhancement of power-rail ESD clamp circuit withgate-substrate-triggered technique [C]. IEEE International Symposium on the Physical andFailure Analysis of Integrated Circuits, Suzhou,2009,368-372
    [107] M. Ker, K. Hsu. Substrate-triggered SCR device for on-chip ESD protection in fully silicidedsub-0.25-μm CMOS process [J]. IEEE Transactions on Electron Devices,2003,50(2):397-405
    [108] M. Ker, W. Chen, W. Shieh, et al. Electrostatic discharge protection design for high-voltageprogramming pin in fully-silicided CMOS ICs [J]. IEEE Journal of Solid-State Circuits,2011,46(2):537-545
    [109] M. Ker, C. Wang. Circuit solutions on ESD protection design for mixed-voltage I/O buffers innanoscale CMOS [C]. IEEE Custom Integrated Circuits Conference, San Jose,2009,689-696
    [110] T. Chen, M. Ker. Investigation of the gate-driven effect and substrate-triggered effect on ESDrobustness of CMOS devices [J]. IEEE Transactions on Device and Materials Reliability,2001,1(4):190-203
    [111] H. Ishizuka, Y. Otsuka, H. Ikeda, et al. A study of advanced technique on RC-triggeredNMOSFET power clamp [C]. Electrical Overstress/Electrostatic Discharge Symposium,Tucson,2008,290-294
    [112] W. Y. Chen, M. D. Ker. Circuit and layout co-design for ESD protection in bipolar-CMOS-DMOS (BCD) high-voltage process [J]. IEEE Transactions on Circuits and Systems-I,2010,57(5):1039-1047
    [113] M. Levinshtein, J. Kostamovaara, S. Vainshtein. Breakdown phenomena in semiconductorsand semiconductor devices [M]. Singapor: World Scientific Publishing Company,2005,32-33
    [114] M. D. Ker, W. J. Chang, T. H. Tang, et al. High-robust ESD protection structure withembedded SCR in high-voltage CMOS process[C]. IEEE International Reliability PhysicsSymposium, Phoenix, AZ,2008,627-628
    [115] O. Semenov, H. Sarbishaei, M. Sachdev. ESD protection device and circuit design foradvanced CMOS technologies [M]. Netherlands: Springer Science+Business Media B.V.,2008,122-123
    [116] J. Li, R. Gauthier, S. Mitra, et al. Design and characterization of a multi-RC-triggeredMOSFET-based power clamp for on-chip ESD protection [C]. Electrical Overstress/Electrostatic Discharge Symposium, Tucson,2006,179-185
    [117] S. Chen, M. Ker. Optimization on NMOS-based power-rail ESD clamp circuits withgate-driven mechanism in a0.13-μm CMOS technology [C]. IEEE International Conferenceon Electronics, Circuits and Systems, St. Julien's,2008,666-669
    [118] B. Song, Y. Han, M. Li, et al. Substrate-triggered GGNMOS in65nm CMOS process for ESDapplication [J]. Electron Letter,2010,46(7),518-520
    [119] C. T. Yeh, M. D. Ker. Capacitor-less design of power-rail ESD clamp circuit with adjustableholding voltage for on-chip ESD protection [J]. IEEE Journal of Solid-State Circuits,2010,45(11),2476-2486
    [120] C. Yeh, M. Ker. Capacitor-less design of power-rail ESD clamp circuit with adjustable holdingvoltage for on-chip ESD protection [J]. IEEE Journal of Solid-State Circuits,2010,45(11):2476-2486
    [121] H. Fan, L. Jiang, B. Zhang. A novel SCR structure integrated with power clamp for ESDprotection at I/O pad [C]. IEEE International Conference on Solid-State and Integrated CircuitTechnology (ICSICT), Xian,2012,1-3
    [122] F. Ma, Y. Han, S. Dong, et al. Investigation of boundary-MOS-triggered SCR structures foron-chip ESD protection [J]. Electronics Letters,2011,47(4),246-247
    [123] A. Amerasekera, C. Duvvury. ESD in silicon integrated circuits,2nd edition [M]. England:John Wiley&Sons Ltd.,2002,256-257

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700