用户名: 密码: 验证码:
铁催化的C-C、C-O键形成反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着近年来人们对环境、能源等问题的日益关注,发展更加绿色、高效、高选择性、可持续以及环境友好的有机合成方法已经成为化学领域最受关注也是最重要的研究方向和目标,绿色化学与可持续发展的理念已深入人心。因此,传统的过渡金属尤其是贵金属(如Pd, Ru, Ir, Rh, Au, Pt等)催化剂由于其稀有不易得、高成本和不可忽略的重金属毒性限制了其进一步发展和广泛应用。而作为地球上第二大储量金属的铁与上述贵金属相比具有不可比拟的优势,如储量丰富、廉价易得、相对无毒安全、氧化态易变及独特的Lewis酸性质,引起化学家越来越多的关注和研究并被应用到多种有机化学反应中。相对于其他过渡金属催化,铁催化无疑是更加环境友好并符合可持续发展的一个催化领域。基于此,本论文着眼于过渡金属铁的独特性质,发展铁催化的C-H键活化及C-C/C-N、C-O键形成反应,以拓展铁催化在有机合成中的应用。此外,二氧化碳既是最主要的温室气体,同时也是地球上分布最广、储量最丰富的碳一资源。无论从资源利用还是环境保护的角度考虑,二氧化碳的固定和化学转化的研究都具有重要意义。本论文的研究工作还包括发展新的环境友好的催化方法实现二氧化碳的资源化利用。
     (1)炔丙胺类化合物在含氮类化合物及药物活性分子的合成中具有广泛应用,其合成方法备受关注。近年来,醛、炔、胺三组份偶联反应(A3反应)及炔、卤代烷、胺三组份偶联反应(AHA反应)代表了可替代的、高效、原子经济性的合成炔丙胺的方法。而对于AHA反应,其催化剂多为Au、In等贵金属,我们以FeCl3作为催化剂,以1,1,3,3-四甲基胍(TMG)作为添加剂碱,发展了一种高效的铁催化的芳香炔烃、CH2Cl2、脂肪二级胺三组份一锅偶联反应合成炔丙胺的方法。研究发现,各种带有拉电子基团和给电子基团的芳香炔烃、脂肪链状及环状二级胺都能和CH2Cl2反应以37-95%的收率生成相应的炔丙胺产物。另外,通过原位红外光谱研究发现,FeCl3和有机碱TMG的协同作用能够有效活化炔烃的C-H键生成炔基-金属活性物种作为活性中间体参与反应。结合对照实验结果及其他研究证明了金属铁盐对炔烃C-H键的活化,并提出了铁催化下AHA反应的机理。该催化体系与传统的贵金属催化体系相比,其最大的优势在于使用更加绿色、可替代的过渡金属铁作为催化剂,代表了金属催化领域的发展方向。
     (2)过渡金属催化的芳烃、杂芳烃的苄基化反应可以高效地构筑具有生物活性的二芳基甲烷类化合物。当使用苄醇作为苄基化试剂时,水是唯一的副产物,因此该反应在很大程度上符合绿色化学和可持续发展的要求。目前,芳烃、杂芳烃苄基化反应的发展主要受限于金属催化剂(如In、Rh、Au、Fe等)成本较高,且难以实现回收循环使用。为了发展更加绿色且能实现金属回收的催化体系,我们设计合成了一种铁基功能化的离子液体C4mim-FeCl4,用于催化各种芳烃、杂芳烃的苄基化反应,能以高达98%的收率和高达100%的区域选择性合成二芳基甲烷类化合物。此外,研究发现该铁基离子液体的Lewis酸性强弱可以通过调节FeCl3的所占的比例进行调节,并且其Lewis酸性强弱对反应有很大影响。同时,该铁基离子液体催化剂能够实现回收再用,且循环使用五次后其催化活性基本保持不变。该铁基催化剂作为一种新型过渡金属功能化的离子液体,具有可调的Lewis酸性质,代表了一种可替代的环境友好的新型催化材料,具有一定的潜在工业应用价值。
     (3)以CO_2作为合成子原子经济性地合成具有重要应用价值的杂环类化合物如环状碳酸酯、噁唑啉酮是化学固定CO_2的有效方法之一。为了发展更加绿色、更具实际应用价值的催化剂以解决目前催化剂存在的不足,基于CO_2的活化转化原理,我们设计合成了一种氯甲基化聚苯乙烯树脂负载的铁基离子液体催化剂PS-MimFeCl4,用于催化CO_2和环氧化物的环加成反应合成环状碳酸酯。催化剂中的铁中心能够活化环氧化物并协助其开环,从而促进反应的进行。研究发现,该催化剂能够循环使用多次,且其催化活性保持不变。此外,该催化剂还能催化CO_2与氮杂环丙烷、炔丙胺反应合成噁唑啉酮类化合物。该铁基离子液体功能化的负载型催化剂,其独特优势在于Lewis酸性的铁中心的引入,对于活化底物促进反应进行有重要的作用,同时拓展了铁催化的在二氧化碳活化转化领域的应用。此外,这一新型催化剂易于合成、具有很好的催化活性及选择性、热稳定性好、且易于与产物分离,因此具有很好的工业应用前景。
     (4)喹唑啉-2,4(1H,3H)-二酮及其衍生物由于其广泛的生物及药物活性,一直受到人们的关注与研究。为了发展可替代且更加高效廉价的催化体系,我们研究发现有机强碱有机胍类化合物能够同时有效活化CO_2及邻氨基苯腈类底物,在无溶剂条件下,1,1,3,3-四甲基胍能够高效催化二者反应以60-95%的收率生成喹唑啉-2,4(1H,3H)-二酮类化合物。并且反应在较低的催化剂用量(2mol%)或很低的CO_2(0.5MPa)压力下仍能以82%或66%的收率得到相应的产物。这一体系代表了一种可替代的、更加绿色的化学固定与转化CO_2为有用化学品的方法。
With the increasing concern of environment and energy issues, the developmentof greener, more efficient, highly selective, more sustainable and environment benignorganic synthesis is one of the most concerned and fundamental research directionsand goals in chemistry. The concept of green chemistry and sustainable developmenthas been firmly established. On the other hand, traditional transition-metal catalystsespecially based on precious metals such as palladium, rhodium, iridium, gold,platinum and ruthenium have become restricted because of their limited availability,high price as well as their unneglected toxicity. Thus it is desirable to search for moreeconomical and environmentally friendly alternatives. As the second most abundantmetal in the earth crust, iron possesses unparalleled advantages and has drawn moreand more attention compared with the aforementioned precious metals. Various ironsalts and iron complexes have been applied in the organic reactions and synthetictransformations because they are abundant, cheap and commercially accessible on alarge scale, relatively nontoxic, facile in changing the oxidation state and possessdistinct Lewis acid character. There is no doubt that iron catalysis is moreenvironmentally benign and much more sustainable compared with other metalcatalysis. This dissertation mainly focuses on the development of iron-catalyzedactivation of C-H bond and C-C/C-N, C-O bonds formation reactions to expand theapplication of iron catalysis in organic synthesis based on the distinct character ofiron and related compounds. On the other hand, the development of more efficientand sustainable process for the transformation and utilization of CO_2, which is themost abundant greenhouse gas and can be also regarded as the most abundant andrenewable C1resource, is of great significance form the viewpoint of resourceutilization and environmental protection. The development of novel and greenercatalytic systems to realize the transformation and utilization of CO_2was alsoincluded in this dissertation.
     (1) Propargylamines have been attracted considerable attention over the last few years due to their wide applications in the synthesis of nitrogen-containingcompounds and drug discovery. In recent years, the three-component couplingreaction of aldehydes, alkynes and amines (A3reaction) and the three-componentcoupling reaction of alkynes, haloalkanes and amines (AHA reaction) represent thealternative, efficacious and atom-efficient approaches to synthesize propargylamines.However, precious metal catalysts especially Au and In based catalyst are usuallyused in AHA reaction. Herein, we have developed an economical and practicalprotocol for facile synthesis of propargylamines through an iron(III)-catalyzedthree-component coupling reaction of aromatic terminal alkynes, CH2Cl2andaliphatic secondary amines in the presence of organic base1,1,3,3,-tetramethylguanidine (TMG). It was found that various aromatic alkynesbearing either electron-withdrawing or electron-donating substituents, acyclic andheterocyclic secondary aliphatic amines could react with CH2Cl2affording thecorresponding propargylamines with37%-95%yields. Notably, in-situ IRspectroscopic investigation strongly suggests that FeCl3could activate the alkynylC-H bond in combination with TMG as a base with the generation of a Fe-acetylideintermediate which acts as the active nucleophilic species. Combined with otherexperimental results, the activation of C-H bond of terminal alkynes in the presenceof iron was first proved experimentaly and a possible reaction mechanism wasproposed for this iron-catalyzed AHA coupling reaction. The best advantage of thiscatalytic system studied herein is to use greener and alternative transition-metal ironas the catalyst compared with the traditional catalytic systems involing preciousmetals. And this iron-catalyzed system represents the development direction of thefield of metal catalysis.
     (2) Transition-metal catalyzed benzylation reactions of arenes and heteroarenescan be used for the efficient synthesis and construction of diarylmethanemotif-containing compounds which commonly possess biological activity. Whenbenzyl alcohols are used as the benzylated reagents, it would become astate-of-the-art green and sustainable process for the synthesis access diarylmethanesderivatives because water is the only side-product in this reaction. However, highcatalyst loading and difficulty for recovery of transition-metal catalysts in these processes could lead to high corrosion and increased cost to some extent. Aiming todevelop greener and recyclable catalytic system, we have established an efficientapproach to Friedel-Crafts-type benzylation of various arenes and heteroarenes usingan iron-containing IL, viz. C4mim-FeCl4as the catalyst for the synthesis ofdiarylmethane derivatives with up to98%yields and100%regioselectivity.Interestingly, the acidity of C4mim-FeCl4could be modified by varying the fraction ofFeCl3and could account for its catalytic activity in promoting the Lewisacid-catalyzed alkylation. Furthermore, the catalyst the catalyst C4mim-FeCl4couldbe reused for five times without significant loss of its catalytic activity with theretention of high regioselectivity. It is worth noting that this procedure is especiallyattractive because of its cheap, easy to handle and recyclable catalyst from the pointof view of green and sustainable chemistry. As a novel kind of transition-metalsfunctionalized ionic liquids, this iron-based catalyst possessing adjustable Lewis acidcharacter represents a novel alternative and environmentally benign catalytic materialand could have potential industrial applications.
     (3) The atom-efficient synthesis of five-membered heterocyclic compounds suchas cyclic carbonates and oxazolidinones using CO_2as the C1building block is one ofthe most promising strategies for the chemical transformation and utilization of CO_2.In order to develop greener and much more pratical catalyst for the transformation ofCO_2, we developed a functionalized polystyrene bearing iron-containing IL, viz.PS-MimFeCl4as an efficient and recyclable catalyst for the cycloaddition reaction ofCO_2with epoxides to synthesize cyclic carbonates in the absence of any organicsolvent or additive based on the principles of activation and transformation of CO_2,.The Lewis acidic iron center in the anion could play a crucial role in the activation ofepoxide and thus facilitate its ring-opening. Notably, the catalyst could be readilyrecovered and reused over five times without appreciable loss of catalytic activity.The present protocol has also been successfully applied to reactions ofaziridine/propargyl amines with CO_2for the synthesis of oxazolidinones. The distinctadvantage of this iron-based ionic liquid functionalized heterogeneous catalyst couldbe the introduction of the Lewis acidic iron centre which plays significant role inactivating the substrates and promoting the reaction. And this catalytic ststem also extends the application of iron catalysis in the field of CO_2activation andtransformation. This kind of the catalyst presented herein would have great potentialin industrial application thanks to its featured advantages such as easy preparation,excellent catalytic activity and selectivity, good thermal stability, and facile seperationwith the products.
     (4) Quinazoline-2,4(1H,3H)-diones and their derivatives have drawn muchattention and interest due to their wide range of biological and pharmacologicalactivities. In order to develop alternative, more efficient and more inexpensivecatalyst for the synthesis of quinazoline-2,4(1H,3H)-diones from CO_2, we found thatorganic guanidines which are categorized as organic superbases can activate2-aminobenzonitriles and CO_2simultaneously and TMG was proved to be an efficientcatalyst for the synthesis of quinazoline-2,4(1H,3H)-diones via a chemical fixation ofCO_2to2-aminobenzonitriles with60%-95%isolated yields under solvent-freeconditions. Notably, the reaction could work well even at2mol%of catalyst loadingor under CO_2pressure as low as0.5MPa with82%yield and66%yield, respectively.This approach would be a promising strategy for the chemical transformation of CO_2from the viewpoint of green chemistry and sustainable development.
引文
[1] Anastas P T, Warner J C. Green chemistry: Theory and practice. Oxford University Press,Inc.: New York,1998
    [2]纪红兵,佘远斌.绿色化学化工基本问题的发展与研究.化工进展,2007,26(5):605~614
    [3][美] P. T.阿纳斯塔斯(Anastas, P. T.)等著;李朝军,王东译.绿色化学:理论与应用.北京:科学出版社,2002.9
    [4] Tang S L Y, Smith R L, Poliakoff M. Principles of green chemistry: PRODUCTIVELY.Green Chem,2005,7:761~762
    [5] Centi G, Perathoner S. Catalysis and sustainable (green) chemistry. Catalysis Today2003,77,287~297
    [6] Clark J H. Green chemistry: today (and tomorrow). Green Chem2006,8,17~21
    [7] Sheldon R A. Green and sustainable chemistry: challenges and perspectives. Green Chem2008,10,359~360
    [8] Dunn P J. The importance of green chemistry in process research and development. ChemSoc Rev2012,41,1452~1461
    [9] Trost B M. The atom economy: A search for synthetic efficiency. Science,1991,254,1471~1477
    [10]许群.环境、化学与可持续发展.北京:化学工业出版社,2004.7
    [11] Bolm C, Legros J, Paih J Le, et al. Iron-catalyzed reactions in organic synthesis. Chem Rev2004,104(12):6217~6254
    [12] Fürstner A, Martin R, Advances in iron catalyzed cross coupling reactions. Chem Lett2005,34(5):624~629
    [13] Sherry B D, Fürstner A, The promise and challenge of iron-catalyzed cross coupling. AccChem Res2008,41(11):1500~1511
    [14] Iron catalysis in organic chemistry: Reactions and applications, ed. Plietker B, Wiley-VCH:Weinheim, Germany,2008
    [15] Enthaler S, Junge K, Beller M, Sustainable metal catalysis with iron: From rust to a risingstar? Angew Chem Int Ed2008,47(18):3317~3321
    [16] Correa A, Manche o O G, Bolm C. Iron-catalysed carbon-heteroatom andheteroatom-heteroatom bond forming processes. Chem Soc Rev2008,37(6):1108~1117
    [17] Fürstner A. From oblivion into the limelight: Iron (domino) catalysis. Angew Chem Int Ed2009,48(8):1364~1367
    [18] Sarhan A A O, Bolm C. Iron(III) chloride in oxidative C-C coupling reactions. Chem SocRev2009,38(9):2730~2744
    [19] Nakamura E, Yoshikai N. Low-valent Iron-Catalyzed C-C bond formation-addition,substitution, and C-H bond activation. J Org Chem2010,75(18):6061~6067
    [20] Sun C L, Li B J, Shi Z J, Direct C-H transformation via iron catalysis. Chem Rev2011,111(3):1293~1314
    [21] Colombo L, Ulgheri F, Prati L. Iron complexes as catalysts in aldol additions. TetrahedronLett1989,30(46):6435~6436
    [22] Li C J, Chan T H. Organic Reactions in Aqueous Media; Wiley: New York,1997
    [23] Kobayashi S, Nagayama S, Busujima T. Lewis acid catalysts stable in water. Correlationbetween catalytic activity in water and hydrolysis constants and exchange rate constants forsubstitution of inner-sphere water ligands. J Am Chem Soc1998,120(32):8287~8288
    [24] Aoyama N, Manabe K, Kobayashi S. Iron(III) chloride as a water-compatible Lewis acidfor diastereoselective aldol reactions in water in the presence of a surfactant. Chem Lett2004,33(3):312~313
    [25] Ollevier T, Plancq B. Highly enantioselective Mukaiyama aldol reaction in aqueousconditions using a chiral iron(II) bipyridine catalyst. Chem Commun2012,48(17):2289~2291
    [26] Ko ovsky P, Dvo ák D, Transition-metal catalysis in Michael addition of β-dicarbonyls:Tuning of the reaction conditions. Collect Czech Chem Commun1988,53(11):2667~2674
    [27] Ko ovsky P, Dvo ák D. Transition-metal catalysis in Michael addition of β-dicarbonyls:Tuning of the reaction conditions. Tetrahedron Lett1986,27(41):5015~5018
    [28] Christoffers J. Iron(III) catalysis of the Michael reaction of1,3-dicarbonylcompounds andenones. Chem Commun1997,10:943~944
    [29] Christoffers J. Novel chemoselective and diastereoselective iron(III)-catalysed Michaelreactions of1,3-dicarbonyl compounds and enones. J Chem Soc Perkin Trans11997,(21):3141~3150
    [30] Mukaiyama T, Takeda T, Osaki M. Asymmetric synthesis based on (Z)-(2R,3S)-6-benzylidene-3,4-dimethyl-5,7-dioxo-2-phenylperhydro-1,4-oxazepine. Synthesis ofoptically active3-substituted3-phenylpropionic acids. Chem Lett1977,6(10):1165~1168
    [31] Mukaiyama T, Takeda T, Fujimoto K. Asymmetric synthesis based on(2R,3S)-3,4-dimethyl-2-phenylperhydro-1,4-oxazepine-5,7-dione. Synthesis of highlyoptically active β-substituted alkanoic acids. Bull Chem Soc Jpn1978,51(11):3368~3372
    [32] Christoffers J, Oertling H, nal N. J Prakt Chem2000,342,546~553
    [33] Christoffers J, Mann A. New chiral auxiliaries for the construction of quaternarystereocenters by copper-catalyzed Michael reactions. Angew Chem Int Ed2000,39(15):2752~2754
    [34] Christoffers J, Mann A, Pickardt J. Synthesis of chiral tridentate oxazolines with thioetherand heteroaryl donor groups and their application in the catalysis of asymmetric Michaelreactions. Tetrahedron1999,55(17):5377~5388
    [35] Christoffers J, R ssler U. Novel bi-and tridentate phosphane and thioether ligands derivedfrom chiral α-hydroxy acids. Tetrahedron Asymmetry1999,10(6):1207~1215
    [36] Christoffers J, Mann A. Novel diamino and diimino thioethers-chiral tridentate ligands forasymmetric Michael reactions? Eur J Org Chem1999,6:1475~1479
    [37] Christoffers J, J Prakt Chem1999,341,495.
    [38] Kawatsura M, Komatsu Y, Itoh T, et al. Enantioselective C-S bond formation by iron/Pyboxcatalyzed Michael addition of thiols to (E)-3-crotonoyloxazolidin-2-one. Tetrahedron Lett2007,48(37):6480~6482
    [39] Watahiki T, Oriyama T. Iron(III) chloride-catalyzed effective allylation reactions ofaldehydes with allyltrimethylsilane. Tetrahedron Lett2002,43(49):8959~8962
    [40] Watahiki T, Akabane Y, Oriyama T, et al. Iron(III) chloride-catalyzed convenient one-potsynthesis of homoallyl benzyl ethers starting from aldehydes. Org Lett2003,5(17):3045~3048
    [41] Zhang D H, Ready J M. Iron-catalyzed carbometalation of propargylic andhomopropargylic alcohols. J Am Chem Soc2006,128(47):15050~15051
    [42] Shingo I, Takuma I, Masaharu N. Diastereoselective carbometalation of oxa-andazabicyclic alkenes under iron catalysis. Angew Chem Int Ed2011,50(2):454~457
    [43] Nakamura M, Hirai A, Nakamura E. Iron-catalyzed olefin carbometalation. J Am Chem Soc2000,122(5):978~979
    [44] Hojo M, Murakami Y, Aihara H, et al. Iron-catalyzed regio-and stereoselectivecarbolithiation of alkynes. Angew Chem Int Ed2001,40(3):621~623
    [45] Shirakawa E, Yamagami T, Kimura T, et al. Arylmagnesiation of alkynes catalyzedcooperatively by iron and copper complexes. J Am Chem Soc2005,127(49):17164~17165
    [46] Zhang D, Ready J M. Iron-catalyzed carbometalation of propargylic and homopropargylicalcohols. J Am Chem Soc2006,128(47):15050~15051
    [47] Yamagami T, Shintan R, Shirakawa E, et al. Iron-catalyzed arylmagnesiation ofaryl(alkyl)acetylenes in the presence of an N-heterocyclic carbene ligand. Org Lett2007,9(6):1045~1048
    [48] Jones T K,Denmark S E. Silicon-directed Nazarov reactions II. Preparation and cyclizationof β-silyl-substituted divinyl ketones. Helv Chim Acta1983,66(8):2377~2396
    [49] Tanemura K, Suzuki T, Nishida Y, et al. Halogenation of aromatic compounds by N-chloro-,N-bromo-, and N-iodosuccinimide. Chem Lett2003,32(10):932~933
    [50] Suzuki H, Yonezawa S, Nonoyama N, et al. Iron(III)-catalysed nitration of non-activatedand moderately activated arenes with nitrogen dioxide–molecular oxygen under neutralconditions. J Chem Soc Perkin Trans11996,(19):2385~2389
    [51] Chaudary B M, Sreenivasa Chowdari N, Lakshmi Kantam M, et al. Fe(III) exchangedmontmorillonite: A mild and ecofriendly catalyst for sulfonylation of aromatics.Tetrahedron Lett1999,40(14):2859~2862
    [52] Marquié J, Laporterie A, Dubac J. Acylation and related reactions under microwaves.4.Sulfonylation reactions of aromatics. J Org Chem2001,66(2):421~425
    [53] Alexander M V, Khandekar A C, Samant S D. Sulfonylation reactions of aromatics usingFeCl3-based ionic liquids. J Mol Catal A2004,223(1-2):75~83
    [54] Pearson D E, Buehler C A. Friedel-Crafts acylations with little or no catalyst. Synthesis1972,(10):533~542
    [55] Marquié J. Laporte C, Dubac J, et al. Acylation reactions under microwaves.3. Aroylationof benzene and its slightly activated or deactivated derivatives. Ind Eng Chem Res2000,39(5):1124~1131
    [56] Valkenberg M H, deCastro C, H lderich W F. Friedel-Crafts acylation of aromaticscatalysed by supported ionic liquids. Appl Catal A Gen2001,215(1-2):185~190
    [57] Iovel I, Mertins K, Beller M, et al. An efficient and general iron-catalyzed arylation ofbenzyl alcohols and benzyl carboxylates. Angew Chem Int Ed2005,44(25):3913~3917
    [58] Kischel J, Jovel I, Beller M, et al. a convenient FeCl3-catalyzed hydroarylation of styrenes.Org Lett2006,8(1),19~22
    [59] Miller J A, Nunn M J. Synthesis of alkyl iodides. J Chem Soc Perkin Trans11976,(4):416~420
    [60] Guo H, Kanno K, Takahashi T. Iron-catalyzed dechlorination of aryl chlorides. Chem Lett2004,33(10):1356~1357
    [61] Taillefer M, Xia N, Ouali A. Efficient iron/copper Co-catalyzed arylation of nitrogennucleophiles. Angew Chem Int Ed2007,46(6):934~936
    [62] Hayashi Y, Shinokubo H, Oshima K. Intramolecular radical cyclization of2-haloethanalallyl acetal and allyl2-halophenyl ether with a Grignard reagent in the presence of iron(II)chloride. Tetrahedron Lett1998,39(1-2):63~66
    [63] Namboodiri V V, Varma R S. Iron-catalyzed solvent-free conversion of alcohols andphenols into diphenylmethyl (DPM) ethers. Tetrahedron Lett2002,43(26):4593~4595
    [64] Lin M, Chen X L, Zhan Z P. Iron(III) chloride-catalyzed nucleophilic substitution ofpropargylic alcohols: a general and efficient approach for the synthesis of1,4-diynes.Chem Lett2011,40(1):111~113
    [65] Tamura M, Kochi J K. Vinylation of Grignard reagents. Catalysis by iron. J Am Chem Soc1971,93(6):1487~1489
    [66] Tamura M, Kochi J K. Coupling of Grignard reagents with organic halides. Synthesis1971,(6):303~304
    [67] Molander G A, Rahn B J, Shubert D C, et al. Iron catalyzed cross-coupling reactions.Synthesis of arylethenes. Tetrahedron Lett1983,24(49):5449~5452
    [68]王晔峰.邓维.刘磊等. Sonogashira反应研究的最新进展. Chin J Org Chem2005,25(1):8~24
    [69] Carril M, Correa A, Bolm C. Iron-catalyzed sonogashira reactions. Angew Chem Int Ed2008,47(26):4862~4865
    [70] Hatakeyama T, Okada Y, Nakamura M. Tuning chemoselectivity in iron-catalyzedsonogashira-type reactions using a bisphosphine ligand with peripheral steric bulk:Selective alkynylation of nonactivated alkyl halides. Angew Chem Int Ed2011,50(46):10973~10976
    [71] Song R J, Deng C L, Xie Y X, et al. Solvent-free copper/iron co-catalyzed N-arylationreactions of nitrogen-containing heterocycles with trimethoxysilanes in air. TetrahedronLett2007,48(44):7845~7848
    [72] Correa A, Bolm C. Iron-catalyzed N-arylation of nitrogen nucleophiles. Angew Chem IntEd2007,46(46):8862~8865
    [73] Correa A, Elmore S, Bolm C. Iron-catalyzed N-Arylations of amides. Chem Eur J2008,14(12):3527~3529
    [74] Correa A, Bolm C. Iron-catalyzed C-N cross-coupling of sulfoximines with aryl iodides.Adv Synth Catal2008,350(3):391~394
    [75] Komeyama K, Morimoto T, Takaki K, A simple and efficient iron-catalyzed intramolecularhydroamination of unactivated olefins. Angew Chem Int Ed2006,45(18):2938~2941
    [76] Michaux J, Terrason V, Prim D, et al. Intermolecular FeCl3-catalyzed hydroamination ofstyrenes. Eur J Org Chem2007,(16):2601~2603
    [77] Avenier F, Latour J M. Catalytic aziridination of olefins and amidation of thioanisole by anon-heme iron complex. Chem Commun2004,(13):1544~1545
    [78] Klotz K L, Slominski L M, Hull A V, et al. Non-heme iron(II) complexes are efficient olefinaziridination catalysts. Chem Commun2007,(20):2063~2065
    [79] Plietker B. Regioselective iron-catalyzed allylic amination. Angew Chem Int Ed2006,45(36):6053~6056
    [80] Plietker B. A highly regioselective salt-free iron-catalyzed allylic alkylation. Angew ChemInt Ed2006,45(9):1469~1473
    [81] Plietker B. Dieskau A, M ws K, et al. Ligand-dependent mechanistic dichotomy iniron-catalyzed allylic substitutions: σ-allyl versus π-allyl mechanism. Angew Chem Int Ed2008,47(1):198~201
    [82] U. Jana, Maiti S, Biswas S. An efficient FeCl3-catalyzed amidation reaction of secondarybenzylic and allylic alcohols with carboxamides or p-toluenesulfonamide. Tetrahedron Lett2008,49(5):858~862
    [83] Komeyama K, Morimoto T, Nakayama Y, et al. Cationic iron-catalyzed intramolecularhydroalkoxylation of unactivated olefins. Tetrahedron Lett2007,48(18):3259~3261
    [84] Komeyama K, Mieno Y, Yukawa S, et al. Cationic Iron-catalyzed addition of carboxylicacids to olefins. Chem Lett2007,36(6):752~753
    [85] Bistri O, Correa A, Bolm C. Iron-catalyzed C-O cross-couplings of phenols with aryliodides. Angew Chem Int Ed2008,47(3):586~588
    [86] Oldenburg P D, Shteinman A A, Jr, Que L. Iron-catalyzed olefin cis-dihydroxylation using abio-inspired N,N,O-ligand. J Am Chem Soc2005,127(45):15672~15673
    [87] Suzuki K, Oldenburg P D, Jr, Que L. Iron-catalyzed asymmetric olefin cis-dihydroxylationwith97%enantiomeric excess. Angew Chem Int Ed2008,47(10):1887~1889
    [88] Lee S H, Han J H, Kwak H,et al. Biomimetic hydrocarbon oxidation catalyzed by nonhemeiron(III) complexes with peracids: Evidence for an FeV=Ospecies. Chem Eur J2007,13(33):9393~9398
    [89] Taktak S, Ye W, Herrera A M, et al. Synthesis and catalytic properties in olefin epoxidationof novel iron(II) complexes with pyridine-containing macrocycles bearing an aminopropylpendant arm. Inorg Chem2007,46(7):2929~2942
    [90] Bruijnincx P C A, Buurmans I L C, Gosiewska S, et al. Iron(II) complexes with bio-inspiredN,N,O ligands as oxidation catalysts: Olefin epoxidation and cis-dihydroxylation. ChemEur J2008,14(4):1228~1237
    [91] Kodera M, Itoh M, Kano K, et al. A diiron center stabilized by a Bis-TPA ligand as a modelof soluble methane monooxygenase: Predominant alkene epoxidation with H2O2. AngewChem Int Ed2005,44(43):7104~7106
    [92] Bitterlich B, Anilkumar G, Beller M, et al. Development of a general and efficientiron-catalyzed epoxidation with hydrogen peroxide as oxidant. Chem Asian J2007,2(4):521~529
    [93] Gelalcha F G, Bitterlich B, Beller M, et al. Iron-catalyzed asymmetric epoxidation ofaromatic alkenes using hydrogen peroxide. Angew Chem Int Ed2007,46(38):7293~7296
    [94] Cheng Q F, Xu X Y, Ma W X, et al. Aerobic enantioselective epoxidation of styreneanalogues induced by (β-Diketone)-iron(Ⅲ) Complex. Chin Chem Lett2005,16(11):1467~1470
    [95] Li C J. Cross-dehydrogenative coupling (CDC): Exploring C-C bond formations beyondfunctional group transformations. Acc Chem Res2009,42(2):335~344
    [96] Guo X, Li Z, Li C J. Cross-dehydrogenative-coupling (CDC) reaction. Prog Chem2010,22(07):1434~1441
    [97] Li Z, Cao L, Li C J. FeCl2-catalyzed selective C-C bond formation by oxidative activationof a benzylic C-H Bond. Angew Chem Int Ed2007,46(34):6505~6507
    [98] Li Z P, Yu R, Li H J. Iron-catalyzed C-C bond formation by direct functionalization of C-Hbonds adjacent to heteroatoms. Angew Chem Int Ed2008,47(39):7497~7500
    [99] Zhang Y H, Li C J. Highly efficient direct alkylation of activated methylene bycycloalkanes. Eur J Org Chem2007,(28):4654~4657
    [100] Li Y Z, Li B J, Shi Z J, et al. Cross dehydrogenative arylation (CDA) of a benzylic C-Hbond with arenes by iron catalysis. Angew Chem Int Ed2009,48(21):3817~3820
    [101] Guo X W, Pan S G, Li Z P, et al. One-pot synthesis of symmetric and unsymmetric1,1-bis-indolylmethanes via tandem iron-catalyzed C-H bond oxidation and C-O bondcleavage. J Org Chem2009,74(22):8848~8851
    [102] Volla C M R, Vogel P. Chemoselective C-H bond activation: Ligand and solvent freeiron-catalyzed oxidative C-C cross-coupling of tertiary amines with terminal alkynes.Reaction scope and mechanism. Org Lett2009,11(8):1701~1704
    [103] Nakanishi M, Bolm C. Iron-catalyzed benzylic oxidation with aqueous tert-butylhydroperoxide. Adv Synth Catal2007,349(6):861~864
    [104] Retchera B, Costa J S, Reedijk J, et al. Unexpected high oxidation of cyclohexane byFe salts and dihydrogen peroxide in acetonitrile. J Mol Catal A Chem2008,286(1-2):1~5
    [105] Wang Z, Zhang Y M, Fu H, et al. Efficient intermolecular iron-catalyzed amidation ofC-H bonds in the presence of N-bromosuccinimide. Org Lett2008,10(9):1863~1866
    [106] Pan S G, Liu J H, Li Z P, et al. Iron-catalyzed N-alkylation of azoles via oxidation ofC-H bond adjacent to an oxygen atom. Org Lett2010,12(9):1932~1935
    [107] Vallée F, Mousseau J J, Charette A B. Iron-catalyzed direct arylation through an arylradical transfer pathway. J Am Chem Soc2010,132(5):1514~1516
    [108] Liu W, Cao H, Lei A W. Iron-catalyzed direct arylation of unactivated arenes with arylhalides. Angew Chem Int Ed2010,49(11):2004~2008
    [109] Norinder J, Matsumoto A, Nakamura E, et al. Iron-catalyzed direct arylation throughdirected C-H bond activation. J Am Chem Soc2008,130(18):5858~5859
    [110] Yoshikai N, Mieczkowski A, Nakamura E, et al. Iron-catalyzed C-C bond formation atα-position of aliphatic amines via C-H bond activation through1,5-hydrogen transfer. JAm Chem Soc2010,132(16):5568~5569
    [111] Bi H P, Chen W W, Li C J, et al. A novel iron-catalyzed decarboxylative Csp3-Csp2coupling of proline derivatives and naphthol. Org Lett2009,11(15):3246~3249
    [112] IPCC. Climate Change1995: IPCC Second Assessment Report. December1995
    [113] Yu K M K, Curcic I, Tsang S C E, et al. Recent advances in CO2capture and utilization.ChemSusChem2008,1(11):893~899
    [114]陈长虹,鲍先华.全球能源消费与CO2排放量.上海环境科学,1999,18(2):62~64
    [115]曲格平.关于我国参加联合国环境与发展大会的情况报告,迈向21世纪.北京:中国环境科学出版社,1992
    [116]王绍武,龚道溢.对气候变暖问题争议的分析.地理研究,2001,20(2):153~160
    [117]梁斌. CO2与环氧丙烷不对称环加成反应催化体系的设计与研究:[硕士学位论文].大连:大连理工大学,2004
    [118]周忠清.二氧化碳催化还原成碳的发展.精细石油化工,1994,(4):92~96
    [119]顾蕊瑛,李颖华. CO2资源的综合利用.湖北化工,1993,(2):33~35
    [120] Arakawa H, Aresta M, Armor J N, et al. Catalysis research of relevance to carbonmanagement: Progress, challenges, and opportunities. Chem Rev2001,101(4):953~996
    [121] Coates G W, Moore D R. Discrete metal-based catalysts for the copolymerization ofCO2and epoxides: Discovery, reactivity, optimization, and mechanism. Angew ChemInt Ed2004,43(48):6618~6639
    [122] Sakakura T, Choi J-C, Yasuda H. Transformation of carbon dioxide. Chem Rev2007,107(6):2365~2387
    [123] Aresta M, Dibenedetto A. Utilisation of CO2as a chemical feedstock: opportunities andchallenges. Dalton Trans2007,(28):2975~2992
    [124] Aresta M.(Ed.) Carbon Dioxide as Chemical Feedstock. Wiley-VCH, Weinheim,2010.
    [125] Cokoja M, Bruckmeier C, Rieger B, et al. Transformation of carbon dioxide withhomogeneous transition-metal catalysts: a molecular solution to a global challenge?Angew Chem Int Ed2011,50(37):8510~8537
    [126] Huang K, Sun C L, Shi Z J, Transition-metal-catalyzed C-C bond formation through thefixation of carbon dioxide. Chem Soc Rev2011,40(5):2435~2452
    [127] Jessop P G, Ikariya T, Noyori R. Homogeneous catalysis in supercritical fluids. ChemRev1999,99(2):475~493
    [128] Leitner W. Supercritical carbon dioxide as a green reaction medium for catalysis. AccChem Res,2002,35(9):746~756
    [129] Sakakura T, Kohnoa K. The synthesis of organic carbonates from carbon dioxide. ChemCommun2009,(11):1312~1330
    [130] Shaikh A A G. Organic carbonates. Chem Rev,1996,96(3):951~976
    [131]史宏星.全球甲醇工业生产现状与发展趋势.大氮肥,2007,(3):145~154
    [132] Fujiwara M, Souma Y, Hydrocarbon synthesis from carbon dioxide and hydrogen overCu-Zn-Cr oxide/zeolite hybrid catalysts. J Chem Soc Chem Commun,1992,(10):767~768
    [133] Fujiwara M, Ando H, Tanaka M, et al. Hydrogenation of carbon dioxide over Cu-Zn-Croxide catalysts. Bull Chem Soc Jpn,1994,67(2):546~550
    [134] Shao C P, Fan L, Fujimoto K, et al. Selective methanol synthesis from CO2/H2on newSiO2-supported PrY and PtCr bimetallic catalysts. Appl Catal A1995128(1): L1~L6
    [135] Melialm-Cabrera I, LoApez G M, Terreros P. CO2hydrogenation over Pd-modifiedmethanol synthesis catalysts, Catal Today1998,45(1-4):251~256
    [136] Tominaga K, Sasaki Y, Watanabe T, et al. Homogeneous hydrogenation of carbondioxide to methanol catalyzed by ruthenium cluster anions in the presence of halideanions. Bull Chem Soc Jpn1995,68(10):2837~2842
    [137] Tominaga K, Sasaki Y, Kawai M, et al. Ruthenium complex catalysed hydrogenation ofcarbon dioxide to carbon monoxide, methanol and methane. J Chem Soc ChemCommun,1993,(7):629~631
    [138] Riduan S N, Zhang Yugen, Jackie Y Y. Conversion of carbon dioxide into methanol withsilanes over N-heterocyclic carbene catalysts. Angew Chem Int Ed2009,48(18):3322~3325
    [139] Stephan D W. Frustrated Lewis pairs: a concept for new reactivity and catalysis. OrgBiomol Chem20086(9):1535~1539
    [140] Stephan D W. Frustrated Lewis pairs: a new strategy to small molecule activation andhydrogenation catalysis. Dalton Trans2009,(17):3129~3136
    [141] Stephan D W, Erker G. Frustrated Lewis Pairs: Metal-free hydrogen activation and more.Angew Chem Int Ed2010,49(1):46~76
    [142] M mming C M, Otten E, Kehr G, et al. Reversible metal-Free carbon dioxide bindingby Frustrated Lewis Pairs. Angew Chem Int Ed2009,48(36):6643~6646
    [143] Ménard G, Stephan D W. Room temperature reduction of CO2to methanol by Al-basedFrustrated Lewis Pairs and ammonia borane. J Am Chem Soc2010,132(6):1796~1797
    [144] Ashley A E, Thompson A L, O’Hare D. Non-metal-mediated homogeneoushydrogenation of CO2to CH3OH. Angew Chem Int Ed2009,48(52):9839~9843
    [145] Braunstein P, MattD, Nobel D. Reactions of carbon dioxide with carbon-carbon bondformation catalyzed by transition-metal complexes. Chem Rev1980,88(5):747~764
    [146] Louie J. Transition metal catalyzed reactions of carbon dioxide and otherheterocumulenes. Curr Org Chem2005,9(7):605~623
    [147] Fischer R, Langer J, Malassa A, et al. A key step in the formation of acrylic acid fromCO2and ethylene: the transformation of a nickelalactone into a nickel-acrylate complex.Chem Commun2006,(23):2510~2512
    [148] Bruckmeier C, Lehenmeier M W, Rieger B, et al. Formation of methyl acrylate fromCO2and ethylene via methylation of nickelalactones. Organometallics2010,29(10),2199~2202.
    [149] Fujihara T, Xu T H, Tsuji Y, Copper-catalyzed hydrocarboxylation of alkynes usingcarbon dioxide and hydrosilanes. Angew Chem Int Ed2011,50(2):523~527
    [150] Li S H, Yuan W M, Ma S M, Highly regio-and stereoselective three-componentnickel-catalyzed syn-hydrocarboxylation of alkynes with diethyl zinc and carbondioxide. Angew Chem Int Ed2011,50(11):2578~2582
    [151] Boogaerts Ine I F, Nolan S P. Carboxylation of C-H bonds using N-heterocyclic carbenegold(I) complexes. J Am Chem Soc2010,132(26):8858~8859
    [152] Boogaerts Ine I F, Fortman G C, Nolan S P, et al. Carboxylation of N-H/C-H bondsusing N-heterocyclic carbene copper(I) complexes. Angew Chem Int Ed2010,49(46):8674~8677
    [153] Zhang L, Cheng J H, Hou Z M, et al. Copper-catalyzed direct carboxylation of C-Hbonds with carbon dioxide. Angew Chem Int Ed2010,49(46):8670~8673
    [154] Vechorkin O, Hirt N, Hu X L. Carbon dioxide as the C1source for direct C-H
    functionalization of aromatic heterocycles. Org Lett2010,12(15):3567~3569
    [1] Zani L, Bolm C. Direct addition of alkynes to imines and related C=N electrophiles: Aconvenient access to propargylamines. Chem Commun2006,4263~4275
    [2] Arcadi A, Cacchi S, Cascia L,et al. Preparation of2,5-disubstituted oxazoles fromN-propargylamides. Org Lett2001,3(16):2501~2504
    [3] Fleming J J, Bois J D. A synthesis of (+)-Saxitoxin. J Am Chem Soc2006,128(12):3926~3927
    [4] Jiang B, Xu M. Highly enantioselective construction of fused pyrrolidine systems thatcontain a quaternary stereocenter: Concise formal synthesis of (+)-Conessine. AngewChem Int Ed2004,43(19):2543~2546
    [5] Yu P H, Davis B, Boulton A A. Aliphatic propargylamines: Potent, selective, irreversiblemonoamine oxidase B inhibitors. J Med Chem1992,35(20):3705~3713
    [6] Posner G H. Multicomponent one-pot annulations forming3to6bonds. Chem Rev1986,86(5):831~844
    [7] Armstrong R W, Combs A P, Tempest P A, Multiple-component condensation strategies forcombinatorial library synthesis. et al. Acc Chem Res1996,29(3):123~131
    [8] Tietze L F. Domino reactions in organic synthesis. Chem Rev1996,96(1):115~136
    [9] Zhu J, Bienayme H. Eds.; Wiley: Weinheim,2005
    [10] Wangelin A J v, Neumann H, Beller M, et al. Multicomponent coupling reactions fororganic synthesis: chemoselective reactionswith amide-aldehyde mixtures. Chem Eur J2003,9(18):4286~4294
    [11] Li C J, Wei C. Highly efficient Grignard-type imine additions via C-H activation in waterand under solvent-free conditions. Chem Commun,2002,(3):268~269
    [12] Wei C, Li Z, Li C J. The first silver-catalyzed three-component coupling of aldehyde,alkyne, and amine. Org Lett,2003,5(23):4473~4475
    [13] Li Z, Wei C, Chen L, Li C J, et al. Three-component coupling of aldehyde, alkyne, andamine catalyzed by silver in ionic liquid. Tetrahedron Lett,2004,45(11):2443~2446
    [14] Reddy K M, Babu N S, Prasad P S S, et al. The silver salt of12-tungstophosphoric acid: anefficient catalyst for the three-component coupling of an aldehyde, an amine and an alkyne.Tetrahedron Lett,2006,47(43):7563~7566
    [15] Li P, Wang L, Zhang Y, et al. Highly efficient three-component (aldehyde-alkyne-amine)coupling reactions catalyzed by a reusable PS-supported NHC-Ag(I) under solvent-freereaction conditions. Tetrahedron Lett,2008,49(47):6650~6654
    [16] Wei C, Li, C J. A highly efficient three-component coupling of aldehyde, alkyne, andamines via C-H activation catalyzed by Gold in water. J Am Chem Soc,2003,125(32):9584~9585
    [17] Kantam M L, Prakash B V, Reddy C R V, et al. Layered double hydroxide-supported goldcatalyst for three-component aldehyde-amine-alkyne coupling. Synlett,2005,(15):2329~2332
    [18] Lo V K Y, Liu Y, Wong M K, et al. Gold(III) salen complex-catalyzed synthesis ofpropargylamines via a three-component coupling reaction. Org Lett,2006,8(8):1529~1532
    [19] Kidwai M, Bansal V, Kumar A, Mozumdar S. The first Au-nanoparticles catalyzed greensynthesis of propargylamines via a three-component coupling reaction of aldehyde, alkyneand amine. Green Chem,2007,9(7):742~745
    [20] Zhang X, Corma A. Supported gold(III) catalysts for highly efficient three-componentcoupling reactions. Angew Chem Int Ed,2008,47(23):4358~4361
    [21] Shi L, Tu Y Q, Wang M, et al. Microwave-promoted three-component coupling of aldehyde,alkyne, and amine via C-H activation catalyzed by Copper in water. Org Lett,2004,6(6):1001~1003
    [22] Ju Y, Li C J, Varma R S. Microwave-assisted Cu(I) catalyzed solvent-free three componentcoupling of aldehyde, alkyne and aimne. QSAR Comb Sci,2004,23(10):891~894
    [23] Bansal V, Mishra N K, Kumar A, et al. Copper-nanoparticle-catalyzed A3coupling via C-Hactivation. Synlett,2007,(10):1581~1584
    [24] Li P, Wang L. A highly efficient three-component coupling of aldehyde, terminal alkyne,and amine via C-H activation catalyzed by reusable immobilized copper inorganic-inorganic hybrid materials under solvent-free reaction conditions. Tetrahedron,2007,63(25):5455~5459
    [25] Patil M K, Keller M, Reddy B M, et al. Copper zeolites as green catalysts formulticomponent reactions of aldehydes, terminal alkynes and amines: an efficient andgreen synthesis of propargylamines. Eur J Org Chem,2008,(26):4440~4445
    [26] Kantam M L, Laha S, Yadav J, et al. An efficient synthesis of propargylamines viathree-component coupling of aldehydes, amines and alkynes catalyzed by nanocrystallinecopper(II) oxide. Tetrahedron Lett,2008,49(19):3083~3086
    [27] Wang M, Li P, Wang L. Silica-immobilized NHC-CuI complex: an efficient and reusablecatalyst for A3-coupling (aldehyde-alkyne-amine) under solventless reaction conditions.Eur J Org Chem,2008,(13):2255~2261
    [28] Sakaguchi S, Mizuta T, Furuwan M, et al. Iridium-catalyzed coupling of simple primary orsecondary amines, aldehydes and trimethylsilylacetylene: preparation of propargylicamines. Chem Commun,2004,(14):1638~1639
    [29] Li P, Wang L. Mercurous chloride catalyzed Mannich condensation of terminal alkyneswith secondary amines and aldehydes. Chin J Chem,2005,23(8):1076~1080
    [30] Zhang Y, Li P, Wang L, et al. Indium-catalyzed highly efficient three-component couplingof aldehyde, alkyne, and amine via c-h bond activation. J Org Chem2009,74(11):4364~4367
    [31] Samai S, Nandi G C, Singh M S. An efficient and facile one-pot synthesis ofpropargylamines by three-component coupling of aldehydes, amines, and alkynes via C-Hactivation catalyzed by NiCl2. Tetrahedron Lett,2010,51(42):5555~5558
    [32] Wei C, Li Z, Li C J. The development of A3-coupling (Aldehyde-Alkyne-Amine) andAA3-coupling (Asymmetric Aldehyde-Alkyne-Amine). Synlett,2004,(9):1472~1483
    [33] Huang B, Yao X, Li C J. Diastereoselective synthesis of α-oxyamines via gold-, silver-andcopper-catalyzed, three-component couplings of α-oxyaldehydes, alkynes, and amines inwater. Adv Synth Catal,2006,348(12-13):1528~1532
    [34] Li C J. The development of catalytic nucleophilic additions of terminal alkynes in water.Acc Chem Res,2010,43(4):581~590
    [35] Wang S, Song L, He X, et al. Silver nanoparticles supported by novel nickel metal-organicframeworks: an efficient heterogeneous catalyst for an A3coupling reaction. Synlett,2009,(3):447~450
    [36] Bolm C, Legros J, Paih J Le, et al. Iron-catalyzed reactions in organic synthesis. Chem Rev2004,104(12):6217~6254
    [37] Fürstner A, Martin R, Advances in iron catalyzed cross coupling reactions. Chem Lett2005,34(5):624~629
    [38] Iron catalysis in organic chemistry: Reactions and applications, ed. Plietker B, Wiley-VCH:Weinheim, Germany,2008
    [39] Enthaler S, Junge K, Beller M, Sustainable metal catalysis with iron: From rust to a risingstar? Angew Chem Int Ed2008,47(18):3317~3321
    [40] Correa A, Manche o O G, Bolm C. Iron-catalysed carbon-heteroatom andheteroatom-heteroatom bond forming processes. Chem Soc Rev2008,37(6):1108~1117
    [41] Sherry B D, Fürstner A, The promise and challenge of iron-catalyzed cross coupling. AccChem Res2008,41(11):1500~1511
    [42] Fürstner A. From oblivion into the limelight: Iron (domino) catalysis. Angew Chem Int Ed2009,48(8):1364~1367
    [43] Sarhan A A O, C Bolm. Iron(III) chloride in oxidative C-C coupling reactions. Chem SocRev2009,38(9):2730~2744
    [44] Nakamura E, Yoshikai N, Low-valent iron-catalyzed C-C bond formation-addition,substitution, and C-H bond activation. J Org Chem2010,75(18):6061~6067
    [45] Sun C L, Li B J, Shi Z J. Direct C-H transformation via iron catalysis. Chem Rev2011,111(3)1293~1314
    [46] Chen W W, Nguyen R V, Li C J, Iron-catalyzed three-component coupling of aldehyde,alkyne, and amine under neat conditions in air. Tetrahedron Lett,2009,50(24):2895~2898
    [47] Li P, Zhang Y, Wang L. Iron-catalyzed ligand-free three-component coupling reactions ofaldehydes, terminal alkynes, and amines. Chem Eur J,2009,15(9):2045~2049
    [48] Zeng T, Chen W W, Cirtiu C M, et al. Fe3O4nanoparticles: a robust and magneticallyrecoverable catalyst for three-component coupling of aldehyde, alkyne and amine. GreenChem,2010,12(4):570~573
    [49] Wei C, Li C J. Enantioselective direct-addition of terminal alkynes to imines catalyzed bycopper(I) pybox complex in water and in toluene. J Am Chem Soc,2002,124(20):5638~5639
    [50] Wei C, Mague J T, Li C J. Cu(I)-catalyzed direct addition and asymmetric addition ofterminal alkynes to imines. Proc Natl Acad Sci, USA,2004,101(16):5749~5754
    [51] Zeng T, Yang L, Hudson R, et al. Fe3O4nanoparticle-supported copper(I) pybox catalyst:magnetically recoverable catalyst for enantioselective direct-addition of terminal alkynes toimines. Org Lett,2011,13(3):442~445
    [52] Gommermann N, Koradin C, Polborn K, Knochel P. Enantioselective Copper(I)-catalyzedthree-component reaction for the preparation of propargylamines. Angew Chem Int Ed,2003,42(46):5763~5766
    [53] Knopfel T F, Aschwanden P, Ichikawa T, Watanabe T, Carreira E M. Readily availablebiaryl P, N ligands for asymmetric catalysis. Angew Chem Int Ed,2004,43(44):5971~5973
    [54] Gommermann N, Knochel P. Practical highly enantioselective synthesis of propargylaminesthrough Copper-catalyzed one-pot three-component condensation reaction. Chem Eur J,2006,12(16):4380~4392
    [55] Aschwanden P, Stephenson C R J, Carreira E M. Highly enantioselective access to primarypropargylamines:4-piperidinone as a convenient protecting group. Org Lett,2006,8(11):2437~2440
    [56] Bisai A, Singh V K. Enantioselective one-pot three-component synthesis ofpropargylamines. Org Lett,2006,8(11):2405~2408
    [57] Colombo F, Benaglia M, Orlandi S, Usuelli F. Asymmetric multicomponent coppercatalyzed synthesis of chiral propargylamines. J Mol Catal A: Chem,2006,260(1-2):128~134
    [58] Liu J, Liu B, Jia X, et al. Asymmetric addition of alkynes to imines in water catalyzed witha recyclable Cu(I)-bis(oxazoline) and stearic acid system. Tetrahedron: Asymmetry,2007,18(3):396~399
    [59] Yoo W J, Li C J. Copper-catalyzed four-component coupling between aldehydes, amines,alkynes, and carbon dioxide. Adv Synth Catal,2008,350(10):1503~1506
    [60] Bonfield E R, Li C J. Efficient ruthenium and copper cocatalzyed five-component couplingto form dipropargyl amines under mild conditions in water. Org Biomol Chem,2007,5(3),435~437
    [61] Aguilar D, Contel M, Urriolabeitia E P. Mechanistic insights into the one-pot synthesis ofpropargylamines from terminal alkynes and amines in chlorinated solvents catalyzed bygold compounds and nanoparticles. Chem Eur J2010,16(30):9287~9296
    [62] Yu D Y, Zhang Y G. Copper-catalyzed three-component coupling of terminal alkyne,dihalomethane and amine to propargylic amines. Adv Synth Catal2011,353(1):163~169
    [63] Lin Z W, Yu D Y, Zhang Y G. Propargylic amines constructed via copper-catalyzedthree-component coupling of terminal alkynes, benzal halides and amines. Tetrahedron Lett2011,52(38):4967~4970
    [64] Rahman M, Bagdi A K, Majee A, et al. Nano indium oxide catalyzed efficient synthesis ofpropargylamines via C-H and C-Cl bond activations. Tetrahedron Lett2011,52(34):4437~4439
    [65] Bode J W, Carreira E M, Stereoselective syntheses of epothilones A and B via directednitrile oxide cycloaddition1. J Am Chem Soc2001,123(15):3611~3612
    [66] F ssler R, Frantz D E, Carreira E M, et al. First synthesis of optically pure propargylicN-hydroxylamines by direct, highly diastereoselective addition of terminal alkynes tonitrones. Angew Chem Int Ed2002,41(16):3054~3056
    [67] Kn pfel T F, Carreira E M. The first conjugate addition reaction of terminal alkynescatalytic in copper: Conjugate addition of alkynes in water. J Am Chem Soc2003,125(20):6054~6055
    [68] F ssler R, Tomooka C S, Carreira E M, et al. Asymmetric catalysis special feature part II:Infrared spectroscopic investigations on the metallation of terminal alkynes by Zn(OTf)2.Proc Natl Acad Sci USA2004,101(16):5843~5845
    [69] Takita R, Fukuta Y, Tsuji R, et al. A new entry in catalytic alkynylation of aldehydes andketones: Dual activation of soft nucleophiles and hard electrophiles by an indium(III)catalyst. Org Lett2005,7(7):1363~1366
    [70] Berben L A, Long J R. Homoleptic trimethylsilylacetylide complexes of chromium(III),iron(II), and cobalt(III): Syntheses, structures, and ligand field parameters. Inorg Chem2005,44(23):8459~8468
    [71] Delfs C D, Stranger R, Humphrey M G, et al. Trends in back-bonding in the seriestrans-[M(CCR)Cl(PH3)4](M=Fe, Ru, Os; R=H, Ph, C6H4NO2-4). J Organomet Chem2000,607(1-2):208~212
    [72] Nast R. Coordination chemistry of metal alkynyl compounds. Coord Chem Rev1982,47(1-2):89~124
    [1] Weissermel K, Arpe H J. Industrielle Organische Chemie, VCH, Weinheim,1988
    [2] Murai S, Kakiuchi F, Sekine S, et al. Efficient catalytic addition of aromaticcarbon-hydrogen bonds to olefins. Nature1993,366(6455):529~531
    [3] Kakiuchi F, Sekine S, Tanaka Y, et al. Catalytic addition of aromatic carbon-hydrogenbonds to olefins with the aid of ruthenium complexes. Bull Chem Soc Jpn1995,68(1):62~83
    [4] Kakiuchi F, Murai S. Catalytic C-H/olefin coupling. Acc Chem Res2002,35(10):826~834
    [5] Kakiuchi F, Uetsuhara T, Tanaka Y, et al. Ruthenium-catalyzed addition of olefinic C-Hbonds in conjugate enones to acetylenes to give conjugate dienones. J Mol Catal A2002,182-183,511~514
    [6] Guari Y, Castellanos A, Sabo-Etienne S, et al. RuH2(H2)2(PCy3)2: A room temperaturecatalyst for the Murai reaction. J Mol Catal A2004,212(1-2):77~82
    [7] Kakiuchi F, Yamauchi M, Chatani N, et al. Ruthenium-catalyzed addition of aromaticimines at the ortho C-H bonds to olefins. Chem Lett1996,25(2):111~112
    [8] Jun C H, Hong J B, Kim Y H, et al. The catalytic alkylation of aromatic imines byWilkinson's complex: The domino reaction of hydroacylation and ortho-alkylation. AngewChem Int Ed2000,39(19):3440~3442
    [9] Jun C H, Moon C W, Hong J B, et al. Chelation-assisted RhI-catalyzed ortho-alkylation ofaromatic ketimines or ketones with olefins. Chem Eur J2002,8(2):485~492
    [10] Lim Y G, Han J S, Koo B T, et al. Regioselective alkylation of aromatic aldimines andketimines via C-H bond activation by a rhodium catalyst. J Mol CatalA2004,209(1-2):41~49
    [11] Dyker G, Muth E, Hashmi A S K, et al. Gold(III) chloride-catalyzed addition reactions ofelectron-rich arenes to methyl vinyl ketone. Adv Synth Catal2003,345(11):1247~1252
    [12] Bandini M, Melloni A, Umani-Ronchi A. New Catalytic approaches in the stereoselectiveFriedel-Crafts alkylation reaction. Angew Chem Int Ed2004,43(5):550~556
    [13] Thalji R K, Ahrendt K A, Bergman R G, et al. Annulation of aromatic imines via directedC-H activation with Wilkinson's catalyst. J Am Chem Soc2001,123(39):9692~9693
    [14] Ahrendt K A, Bergman R G, Ellman J A. Synthesis of a tricyclic mescaline analogue bycatalytic C-H bond activation. Org Lett2003,5(8):1301~1303
    [15] Kakiuchi F, Yamamoto Y, Chatani N, et al. Catalytic addition of aromatic C-H bonds toacetylenes. Chem Lett1995,24(8):681~682
    [16] Jia C G, Lu W T, Oyamada J, et al. Novel Pd(II)-and Pt(II)-catalyzed regio-andstereoselective trans-hydroarylation of alkynes by simple arenes. J Am Chem Soc2000,122(30):7252~7263
    [17] Kitamura T, Yamamoto K, Kotani M, et al. PdII-catalyzed reaction of phenols withpropiolic esters. A single-step synthesis of coumarins. Bull Chem Soc Jpn2003,76(10):1889~1895
    [18] Reetz M T, Sommer K, Gold-catalyzed hydroarylation of alkynes. Eur J Org Chem2003,(18):3485~3496
    [19] Moore E J, Pretzer W R, Connell T J O, et al. Catalytic and regioselective acylation ofaromatic heterocycles using carbon monoxide and olefins. J Am Chem Soc1992,114(14):5888~5890
    [20] Chatani N, Fukuyama T, Kakiuchi F, et al. Ru3(CO)12-catalyzed coupling of heteroaromaticC-H/CO/olefins. Regioselective Acylation of the imidazole ring. J Am Chem Soc1996,118(2):493~494
    [21] Pastine S J, Youn SW, Sames D. Pt(IV)-catalyzed cyclization of arene-alkyne substrates viaC-H bond functionalization. Tetrahedron2003,59(45):8859~8868
    [22] Pastine S J, Sames D. Concise synthesis of the chemopreventitive agent (±)-deguelin via akey6-endo hydroarylation. Org Lett2003,5(22):4053~4055
    [23] Pastine S J, Youn S W, Sames D. PtIV-catalyzed cyclization of arene-alkyne substrates viaintramolecular electrophilic hydroarylation. Org Lett2003,5(7):1055~1058
    [24] Mamane V, Hannen P, Fürstner A. Synthesis of phenanthrenes and polycyclic heteroarenesby transition-metal catalyzed cycloisomerization reactions. Chem Eur J2004,10(18):4556~4575
    [25] Sezen B, Sames D. Cobalt-catalyzed arylation of azole heteroarenes via direct C-H bondfunctionalization. Org Lett2003,5(20):3607~3610;
    [26] Sezen B, Sames D. Selective C-arylation of free (NH)-heteroarenes via catalytic C-H BondFunctionalization. J Am Chem Soc2003,125(18):5274~5275
    [27] Sezen B, Sames D. Diversity synthesis via C-H bond functionalization: Concept-guideddevelopment of new C-arylation methods for imidazoles. J Am Chem Soc2003,125(35):10580~10585
    [28] Nordberg M G, Kolmodin K, Aquist J, et al. Design, synthesis, computational prediction,and biological evaluation of ester soft drugs as inhibitors of dihydrofolate reductase frompneumocystis carinii. J Med Chem2001,44(15):2391~2402
    [29] Sun H H, Paul V J, Fenical W. Avrainvilleol, a brominated diphenylmethane derivative withfeeding deterrent properties from the tropical green alga avrainvillea longicaulis.Phytochemistry1983,22(3):743~745
    [30] Hoshina H, Maekawa K, Taie K, et al. A new route to papaverine analogs viaphotocyclization of substituted N-acyl-α-dehydrophenylalaninamide. Heterocycles2003,60(8):1779~1786
    [31] Manzoni C, Lovati M R, Bonelli A, et al.“Differential effects of beclobrate onlipid/lipoprotein distribution in normal and hypercholesterolemic rats. Eur J Pharmacol1990,190(1-2):39~49
    [32] Rose C, Vtoraya O, Pluzanska A, et al. An open randomised trial of second-line endocrinetherapy in advanced breast cancer: comparison of the aromatase inhibitors letrozole andanastrozole. Eur J Cancer2003,39(16):2318~2327
    [33] Skabara P J, Serebryako I M, Perepichka I F. Synthesis and electropolymerisation ofthiophene functionalised fluorenes. Synth Met1999,102(1-3):1336~1337
    [34] Khan M S, Al-Mandhary M R A, Al-Suti M K, et al. Synthesis, characterisation and opticalspectroscopy of diynes and poly-ynes containing derivatised fluorenes in the backbone.Dalton Trans2003,(1):74~84
    [35] Jacob J, Oldridge L, Zhang J Y, et al. Progress towards stable blue light-emitting polymers.Curr Appl Phys2004,4(2-4):339~342
    [36] Mincione E, Bovicelli P. Gazz Chim Ital1982,112,437~440
    [37] Kondo T, Kajiya S, Tantayanon S, et al. Ruthenium complex-catalyzed noveltransformation of alkyl formats. J Organomet Chem1995,489(1-2):83~91
    [38] Kondo T, Tantayanon S, Tsuji Y, et al. Ruthenium complex catalyzed benzylation of areneswith benzyl formates; decarbonylation and decarboxylation of alkyl formats. TetrahedronLett1989,30(31):4137~4140
    [39] Mertins K, Iovel I, Beller M, et al. Transition-metal-catalyzed benzylation of arenes andheteroarenes. Angew Chem Int Ed2005,44(2):238~242
    [40] Mertins K, Iovel I, Beller M, et al. Gold-catalyzed benzylation of arenes and heteroarenes.Adv Synth Catal2006,348(6):691~695
    [41] Iovel I, Mertins K, Beller M, et al. An efficient and general iron-catalyzed arylation ofbenzyl alcohols and benzyl carboxylates. Angew Chem Int Ed2005,44(25):3913~3917
    [42] Kischel J, Jovel I, Beller M, et al. a convenient FeCl3-catalyzed hydroarylation of styrenes.Org Lett2006,8(1):19~22
    [43] Rueping M, Nachtsheim B J, Ieawsuwana W. An effective bismuth-catalyzed benzylation ofarenes and heteroarenes. Adv Synth Catal2006,348(9):1033~1037
    [44] Rueping M, Nachtsheim B J, Scheidt T. Efficient metal-catalyzed hydroarylation ofstyrenes. Org Lett2006,8(17):3717~3719
    [45] Prades A, Corberán R, Peris E. A simple catalyst for the efficient benzylation of arenes byusing alcohols, ethers, styrenes, aldehydes, or ketones. Chem Eur J2009,15(8):4610~4613
    [46] Wang B Q, Xiang S K, Shi Z J, et al. Benzylation of arenes through FeCl3-catalyzedFriedel-Crafts reaction via C-O activation of benzyl ether. Tetrahedron Lett2008,49(27):4310~4312
    [47] Sun H B, Li B, Hua R M, et al. An efficient synthesis of unsymmetrical diarylmethanesfrom the dehydration of arenes with benzyl alcohols using InCl34H2O/acetylacetonecatalyst system. Tetrahedron2007,63(41):10185~10188
    [48] Xiao Y P, Liu X Y, Che C M. Highly efficient gold(III)-catalyzed intermolecularhydroarylation of unactivated alkenes with arenes under mild conditions. J OrganometChem2009,694(4):494~501
    [49] Chu C M, Huang W J, Yao C F, et al. Highly efficient iodine-catalyzed hydroarylation ofarenes with styrenes. Tetrahedron Lett2007,48(39):6881~6885
    [50] Wasserscheid P, Welton T.(Eds.), Ionic Liquids in Synthesis,2nd ed., Wiley-VCH,Weinheim,2008
    [51] Parvulescu V I, Hardacre C. Catalysis in ionic liquids. Chem Rev2007,107(6):2615~2665
    [52] Olivier-Bourbigou H, Magna L, Morvan D. Ionic liquids and catalysis: Recent progressfrom knowledge to applications. Appl Catal A Gen2010,373(1-2):1~56
    [53] DeCastro C, Sauvage E, H lderich W F, et al. Immobilised ionic liquids as lewis acidcatalysts for the alkylation of aromatic compounds with dodecene. J Catal2000,196(1):86~94
    [54] Yoo K, Namboodiri V V, Varma R S, et al. Ionic liquid-catalyzed alkylation of isobutanewith2-butene. J Catal2004,222(2):511~519
    [55] Xiao Y, Malhotra S V. Friedel-Crafts alkylation reactions in pyridinium-based ionic liquids.J Mol Catal A Chem2005,230(1-2):129~133
    [56] Yin D, Li C, Yu L N, et al. Synthesis of diphenylmethane derivatives in Lewis acidic ionicliquids. J Mol Catal A Chem2006,245(1-2):260~265
    [57] Bica K, Gaertner P. An iron-containing ionic liquid as recyclable catalyst for aryl grignardcross-coupling of alkyl halides. Org Lett2006,8(4):733~735
    [58] Valkenberg M H, deCastro C, H lderich W F. Friedel-Crafts acylation of aromaticscatalysed by supported ionic liquids. Appl Catal A Gen2001,215(1-2):185~190
    [59] Bica K, Gaertner P. Metal-containing ionic liquids as efficient catalysts forhydroxymethylation in water. Eur J Org Chem2008,(20):3453~3456
    [60] Bolm C, Legros J, Paih J Le, et al. Iron-catalyzed reactions in organic synthesis. Chem Rev2004,104(12):6217~6254
    [61] Fürstner A, Martin R, Advances in iron catalyzed cross coupling reactions. Chem Lett2005,34(5):624~629
    [62] Sherry B D, Fürstner A, The promise and challenge of iron-catalyzed cross coupling. AccChem Res2008,41(11):1500~1511
    [63] Iron catalysis in organic chemistry: Reactions and applications, ed. Plietker B, Wiley-VCH:Weinheim, Germany,2008
    [64] Enthaler S, Junge K, Beller M, Sustainable metal catalysis with iron: From rust to a risingstar? Angew Chem Int Ed2008,47(18):3317~3321
    [65] Correa A, Manche o O G, Bolm C. Iron-catalysed carbon-heteroatom andheteroatom-heteroatom bond forming processes. Chem Soc Rev2008,37(6):1108~1117
    [66] Fürstner A. From oblivion into the limelight: Iron (domino) catalysis. Angew Chem Int Ed2009,48(8):1364~1367
    [67] Sarhan A A O, Bolm C. Iron(III) chloride in oxidative C-C coupling reactions. Chem SocRev2009,38(9):2730~2744
    [68] Nakamura E, Yoshikai N. Low-valent iron-catalyzed C-C bond formation-addition,substitution, and C-H bond activation. J Org Chem2010,75(18):6061~6067
    [69] Sun C L, Li B J, Shi Z J, Direct C-H transformation via iron catalysis. Chem Rev2011,111(3):1293~1314
    [70] Hayashi S, Hamaguchi H. Discovery of a magnetic ionic liquid [bmim]FeCl4. Chem Lett2004,33(12):1590~1591
    [71] Sitze M S, Schreiter E R, Freeman R G, et al. Ionic liquids based on FeCl3and FeCl2.Raman scattering and ab initio calculations. Inorg Chem2001,40(10):2298~2304
    [72] Jain N, Kumar A, Chauhan S M S. Metalloporphyrin and heteropoly acid catalyzedoxidation of C=NOH bonds in an ionic liquid: biomimetic models of nitric oxide synthase.Tetrahedron Lett2005,46(15):2599~2602
    [73] Powell D A, Pelletier G. Copper triflate/t-BuOOAc-catalyzed amidation of allylic andbenzylic acetates with sulfonamides. Tetrahedron Lett2008,49(16):2495~2498
    [1] Shaikh A A G. Organic carbonates. Chem Rev,1996,96(3):951~976
    [2] Sakakura T, Choi J-C, Yasuda H. Transformation of carbon dioxide. Chem Rev2007,107(6):2365~2387
    [3] Sakakura T, Kohnoa K. The synthesis of organic carbonates from carbon dioxide. ChemCommun2009,(11):1312~1330
    [4] Kawanami H, Ikushima Y. Chemical fixation of carbon dioxide to styrene carbonate undersupercritical conditions with DMF in the absence of any additional catalysts. ChemCommun,2000,(21):2089~2090
    [5] Shen Y M, Shi M. Phenol and organic bases Co-catalyzed chemical fixation of carbondioxide with terminal epoxides to form cyclic carbonates. Adv Synth Catal2003,345(3):337~340
    [6] He L N, Yasuda H, Sakakura T. New procedure for recycling homogeneous catalyst:propylene carbonate synthesis under supercritical CO2conditions. Green Chem2003,5(1):92~94
    [7] Huang J W, Shi M. Chemical Fixation of Carbon Dioxide by NaI/PPh3/PhOH. J Org Chem2003,68(17):6705~6709
    [8] Shen Y M, Duan W L, Shi M. Chemical fixation of carbon dioxide Co-catalyzed by acombination of160ataly bases or phenols and organic bases. Eur J Org Chem,2004,(14):3080~3089
    [9] Kihara N,Hara N,Endo T. Catalytic activity of various salts in the reaction of2,3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure. J Org Chem,1993,58(23):6198~6202
    [10] Calo V, Nacci A, Monopoli A, et al. Cyclic carbonate formation from carbon dioxide andoxiranes in tetrabutylammonium halides as solvents and catalysts. Org Lett,2002,4(15):2561~2563
    [11] Sibaouih A, Repo T. Facile synthesis of cyclic carbonates from CO2and epoxides withcobalt(II)/onium salt based catalysts. Appl Catal A2009,365(2):194~198
    [12] Tsutsumi Y, Yamakawa K, Yoshida M, et al. Bifunctional organocatalyst for activation ofcarbon dioxide and epoxide to produce cyclic carbonate: Betaine as a new catalytic motif.Org Lett2010,12(24):5728~5731
    [13] Kruper W J, Dellar D V. Catalytic formation of cyclic carbonates from epoxides and CO2with chromium metalloporphyrinates. J Org Chem1995,60(3):725~727
    [14] Paddock R L, Nguyen S T. Chemical CO2fixation: Cr(III) salen complexes as highlyefficient catalysts for the coupling of CO2and epoxides. J Am Chem Soc2001,123(46):11498~11499
    [15] Lu X B, Wang H, He R. Aluminum phthalocyanine complex covalently bonded to MCM-41silica as heterogeneous catalyst for the synthesis of cyclic carbonates. J Mol Catal A Chem2002,186(1-2):33~42
    [16] Li F W, Xia C G, Xu L W, et al. A novel and effective Ni complex catalyst system for thecoupling reactions of carbon dioxide and epoxides. Chem Commun,2003,(16):2042~2043
    [17] Du Y, Kong D L, He L N, et al. Sn-catalyzed synthesis of propylene carbonate frompropylene glycol and CO2under supercritical conditions. J Mol Catal A Chem2005,241(1-2):233~237
    [18] Miao C X, Wang J Q, He L N, et al. Bifunctional metal-salen complexes as efficientcatalysts for the fixation of CO2with epoxides under solvent-free conditions.ChemSusChem2008,1(3):236~241
    [19] Meléndez J, North M, Villuendas P. One-component catalysts for cyclic carbonate synthesis.Chem Commun2009,(18):2577~2579
    [20] Clegg W, Harrington R W, North M, et al. Cyclic carbonate synthesis161atalysed bybimetallic aluminium-salen complexes. Chem Eur J2010,16(23):6828~6843
    [21] Decortes A, Belmonte M M, Benet-Buchholza J, et al. Efficient carbonate synthesis undermild conditions through cycloaddition of carbon dioxide to oxiranes using a Zn(salphen)catalyst. Chem Commun2010,46(25):4580~4582
    [22] Dengler J E, Lehenmeier M W, Klaus S, et al. A one-component iron catalyst for cyclicpropylene carbonate synthesis. Eur J Inorg Chem2011,(3):336~343
    [23] Meléndez J, North M, Villuendas P, et al. One-component bimetallicaluminium(salen)-based catalysts for cyclic carbonate synthesis and their immobilization.Dalton Trans2011,40(15):3885~3902
    [24] Buchard A, Kember M R, Sandemanb K G, et al. A bimetallic iron(III) catalyst forCO2/epoxide coupling. Chem Commun2011,47(1):212~214
    [25] Zhou H, Lu X B. CO2Adducts of N-heterocyclic carbenes: Thermal stability and catalyticactivity toward the coupling of CO2with epoxides. J Org Chem2008,73(20):8039~8044
    [26] Kayaki Y, Yamamoto M, Ikariya T. N-Heterocyclic carbenes as efficient organocatalysts forCO2fixation reactions. Angew Chem Int Ed2009,48(23):4194~4197
    [27] Yasuda H, He L N, Sakakura T, et al. Efficient synthesis of cyclic carbonate from carbondioxide catalyzed by polyoxometalate: the remarkable effects of metal substitution. J Catal,2005,233(1):119~122
    [28] Yang H, Gu Y, Deng Y, et al. Electrochemical activation of carbon dioxide in ionic liquid:synthesis of cyclic carbonates at mild reaction conditions. Chem Commun,2002,(3):274~275
    [29] Yano T, Matsui H, Koike T, et al. Magnesium oxide-catalysed reaction of carbon dioxidewith an epoxide with retention of stereochemistry. Chem Commun1997,(12):1129~1130
    [30] Yamaguchi K, Ebitani K, Yoshida T, et al. Mg-Al mixed oxides as highly active acid-basecatalysts for cycloaddition of carbon dioxide to epoxides. J Am Chem Soc,1999,121(18):4526~4527
    [31] Bhanage B M, Fujita S, Ikushima Y, et al. Synthesis of dimethyl carbonate and glycols fromcarbon dioxide, epoxides, and methanol using heterogeneous basic metal oxide catalystswith high activity and selectivity. Appl Catal A Gen2001,219(1-2):259~266
    [32] Aresta M, Dibenedetto A, Gianfrate L, et al. Nb(V) compounds as epoxides carboxylationcatalysts: the role of the solvent. J Mol Catal A Chem2003,204/205,245~252
    [33] Yasuda H, He L N, Takahashi T, et al. Non-halogen catalysts for propylene carbonatesynthesis from CO2under supercritical conditions. Appl Catal A Gen2006,(298):177~180
    [34] Dai W L, Yin S F, Au C T, et al. Synthesis of propylene carbonate from carbon dioxide andpropylene oxide using Zn-Mg-Al composite oxide as high-efficiency catalyst. Catal Lett2010,136(1-2):35~44
    [35] Yasuda H, He L N, Sakakura T. Cyclic carbonate synthesis from supercritical carbondioxide and epoxide over lanthanide oxychloride. J Catal2002,209(2):547~550
    [36] Sankar M, Tarte N H, Manikandan P. Effective catalytic system of zinc-substitutedpolyoxometalate for cycloaddition of CO2to epoxides. Appl Catal A Gen2004,276(1-2):217~222
    [37] Nishikubo T, Kameyama A, Yamashita J, et al. Insoluble polystyrene-bound quaternaryonium salt catalysts for the synthesis of cyclic carbonates by the reaction of oxiranes withcarbon dioxide. J Polym Sci Part A Polym Chem1993,31(4):939~947
    [38] Kim H S, Kim J J, Kwon H N, et al. Insoluble polystyrene-bound quaternary onium saltcatalysts for the synthesis of cyclic carbonates by the reaction of oxiranes with carbondioxide. J Catal2002,205(1):226~229
    [39] Du Y, Cai F, He L N, et al. Organic solvent-free process for the synthesis of propylenecarbonate from supercritical carbon dioxide and propylene oxide catalyzed by insoluble ionexchange resins. Green Chem.2005,7(7):518~523
    [40] Qi C R, Ye J W, Jiang H F, et al. Polystyrene-supported amino acids as efficient catalyst forchemical fixation of carbon dioxide. Adv Synth Catal2010,352(11-12):1925~1933
    [41] Xiong Y B, Wang H, Wang R M, et al. A facile one-step synthesis to cross-linked polymericnanoparticles as highly active and selective catalysts for cycloaddition of CO2to epoxides.Chem Commun2010,46(19):3399~3401
    [42] Barbarini A, Sartori G. Cycloaddition of CO2to epoxides over both homogeneous andsilica-supported guanidine catalysts. Tetrahedron Lett2003,44(14):2931~2934
    [43] Xiao L F, Xia C G. Immobilized ionic liquid/zinc chloride: Heterogeneous catalyst forsynthesis of cyclic carbonates from carbon dioxide and epoxides. J Mol Catal A Chem2006,253(1-2):265~269
    [44] Takahashi T, Watahiki T, Kitazume S, et al. Synergistic hybrid catalyst for cyclic carbonatesynthesis: Remarkable acceleration caused by immobilization of homogeneous catalyst onsilica. Chem Commun2006,(15):1664~1666
    [45] Sakai T, Tsutsumi Y. Highly active and robust organic-inorganic hybrid catalyst for thesynthesis of cyclic carbonates from carbon dioxide and epoxides. Green Chem2008,10(3):337~341
    [46] Motokura K, Itagaki S. Silica-supported aminopyridinium halides for catalytictransformations of epoxides to cyclic carbonates under atmospheric pressure of carbondioxide. Green Chem2009,11(11):1876~1880
    [47] Udayakumar S, Lee M K, Park D W, et al. Functionalization of organic ions on hybridMCM-41for cycloaddition reaction: The effective conversion of carbon dioxide. ApplCatal A Gen2009,365(1):88~95
    [48] Dai W L, Chen L, Au C T, et al.3-(2-Hydroxyl-Ethyl)-1-Propylimidazolium bromideimmobilized on SBA-15as efficient catalyst for the synthesis of cyclic carbonates via thecoupling of carbon dioxide with epoxides. Catal Lett2010,135(3-4):295-304
    [49] Xie Y, Ding K L, Liu Z M, et al. The immobilization of glycidyl-group-containing ionicliquids and its application in CO2cycloaddition reactions. Chem Eur J2010,16(22):6687~6692
    [50] Zhou H, Wang Y M, Lu X B, et al. N-Heterocyclic163atalys functionalized MCM-41as anefficient catalyst for chemical fixation of carbon dioxide. Green Chem2011,13(3):644~650
    [51] Srivastava R, Srinivas D, Ratnasamy P. Zeolite-based organic-inorganic hybrid catalysts forphosgene-free and solvent-free synthesis of cyclic carbonates and carbamates at mildconditions utilizing CO2. Appl Catal A Gen2005,289(2):128~134
    [52] Srivastava R, Srinivas D, Ratnasamy P. CO2activation and synthesis of cyclic carbonatesand alkyl/aryl carbamates over adenine-modified Ti-SBA-15solid catalysts. J Catal2005,233(1):1~15
    [53] Song J, Han B X. MOF-5/n-Bu4NBr: an efficient catalyst system for the synthesis of cycliccarbonates from epoxides and CO2under mild conditions. Green Chem2009,11(7):1031~1036
    [54] Cho H C, Lee H S, Son S U, et al. Tubular microporous organic networks bearingimidazolium salts and their catalytic CO2conversion to cyclic carbonates. Chem Commun2011,47(3):917~919
    [55] Liang S G,; Liu H Z, Han B X, et al. Highly efficient synthesis of cyclic carbonates fromCO2and epoxides over cellulose/KI. Chem Commun2011,47(7):2131~2133
    [56] Wasserscheid P, Welton T.(Eds.), Ionic Liquids in Synthesis,2nded., Wiley-VCH,Weinheim,2008
    [57] Parvulescu V I, Hardacre C. Catalysis in ionic liquids. Chem Rev2007,107(6):2615~2665
    [58] Olivier-Bourbigou H, Magna L, Morvan D. Ionic liquids and catalysis: Recent progressfrom knowledge to applications. Appl Catal A Gen2010,373(1-2):1~56
    [59] Peng J J, Deng Y Q. Cycloaddition of carbon dioxide to propylene oxide catalyzed by IonicLiquids. New J Chem2001,25(4):639~641
    [60] Kawanami H, Sasaki A, Matsui K, et al. A rapid and effective synthesis of propylenecarbonate using a supercritical CO2-Ionic Liquid system. Chem Commun,2003,(7):896~897
    [61] Li F W, Xiao L F, Xia C G, et al. Chemical fixation of CO2with highly efficientZnCl2/[BMIm]Br catalyst system. Tetrahedron Lett2004,45(45):8307~8310
    [62] Palgunadi, J.; Kim, H. S. Ionic liquid-derived zinc tetrahalide complexes: structure andapplication to the coupling reactions of alkylene oxides and CO2. Catal Today2004,98(4):511-514
    [63] Sun J, Zhang S J. Hydroxyl-functionalized ionic liquid: a novel efficient catalyst forchemical fixation of CO2to cyclic carbonate. Tetrahedron Lett2008,49(22):3588~3591
    [64] Zhou Y X, Hu S Q, Han B X, et al. Synthesis of cyclic carbonates from carbon dioxide andepoxides over betaine-based catalysts. J Mol Catal A Chem2008,284(1-2):52~57
    [65] Sun J, Ren J Y, Zhang S J, et al. Water as an efficient medium for the synthesis of cycliccarbonate. Tetrahedron Lett2009,50(4):423~426;
    [66] Sun J, Han L J, Zhang S J, et al. Efficient acid-base bifunctional catalysts for the fixation ofCO2with epoxides under metal-and solvent-free conditions. ChemSusChem2011,4(4):502~507
    [67] Yang Z Z, He L N, Miao C X, et al. Lewis basic ionic liquids-catalyzed conversion ofcarbon dioxide to cyclic carbonates. Adv Synth Catal2010,352(13):2233~2240
    [68] Yang Z Z, Zhao Y N, He L N, et al. Highly efficient conversion of carbon dioxide catalyzedby polyethylene glycol-functionalized basic ionic liquids. Green Chem2012,14(2):519-527
    [69] Sun J M, Fujita S I, Zhao F Y, et al. Synthesis of styrene carbonate from styrene oxide andcarbon dioxide in the presence of zinc bromide and ionic liquid under mild conditions.Green Chem2004,6(12):613~616
    [70] Kim Y J, Varma R S. Tetrahaloindate(III)-based ionic liquids in the coupling reaction ofcarbon dioxide and epoxides to generate cyclic carbonates: H-bonding and mechanisticstudies. J Org Chem2005,70(20):7882~7891
    [71] Xie H B, Duan H F, Zhang S B, et al. The effective synthesis of propylene carbonatecatalyzed by silica-supported hexaalkylguanidinium chloride. New J Chem,2005,29(9):1199~1203
    [72] Xie Y, Zhang Z-F, Han B X, et al. CO2cycloaddition reactions catalyzed by an ionic liquidgrafted onto a highly cross-linked polymer matrix. Angew Chem Int Ed,2007,46(38):7255~7258
    [73] Sun J, Cheng W G, Zhang S J, et al. Reusable and efficient polymer-supported task-specificionic liquid catalyst for cycloaddition of epoxide with CO2. Catal Today2009,148(3-4):361~367
    [74] Dai W L, Chen L, Au C T, et al. High-efficiency synthesis of cyclic carbonates fromepoxides and CO2over hydroxyl ionic liquid catalyst grafted onto cross-linked polymer.Catal Lett2010,137(1-2):74~80
    [75] Han L, Choi H J, Park D W, et al. Ionic liquids containing carboxyl acid moieties graftedonto silica: Synthesis and application as heterogeneous catalysts for cycloadditionreactions of epoxide and carbon dioxide. Green Chem2011,13(4):1023~1028
    [76] Zheng X X, Luo S Z, Cheng J P, et al. Magnetic nanoparticle supported ionic liquidcatalysts for CO2cycloaddition reactions.Green Chem2009,11(4):455~458
    [77] Wang J Q, Kong D L, He L N, el a1. Synthesis of cyclic carbonates from epoxides andcarbon dioxide over silica-supported quaternary ammonium salts under supercrificalconditions. J Mol Catal A Chem2006,249(1-2):143~148
    [78] Wang J Q, Yue X D, He L N, el a1. Solventless synthesis of cyclic carbonates from carbondioxide and epoxides catalyzed by silica-supported ionic liquids under supercrificalconditions. Catal Commun2007,8(2):167~172
    [79] Zhao Y, Tian J S, Qi X H, et al. Quaternary ammonium salt-functionalized chitosan: aneasily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides andcarbon dioxide. J Mol Catal A Chem2007,271(1-2):284~289
    [80] Du Y, Wang J Q, He L N, et al. A poly (ethylene glycol)-supported quanterary ammoniumsalt for highly efficient and environmentally friendly chemical fixation of CO2withepoxides under supercritical conditions. Tetrahedron Lett,2006,47(8):1271~1275
    [81] Tian J S, Miao C X, Wang J Q, et al. Efficient synthesis of dimethyl carbonate frommethanol, propylene oxide and CO2catalyzed by recyclable inorganic base/phosphoniumhalide-functionalized polyethylene glycol. Green Chem,2007,9(6):566~571
    [82] Dou X Y, Wang J Q, Du Y, et al. Guanidium salt functionalized PEG: an effective andrecyclable homogeneous catalyst for the synthesis of cyclic carbonates from CO2andepoxides under solvent-free conditions. Synlett,2007,(19):3058~3062
    [83] Arakawa H, Aresta M, Armor J N, et al. Catalysis research of relevance to carbonmanagement: Progress, challenges, and opportunities. Chem Rev2001,101(4):953~996
    [84] Coates G W, Moore D R. Discrete metal-based catalysts for the copolymerization of CO2and epoxides: Discovery, reactivity, optimization, and mechanism. Angew Chem Int Ed2004,43(48):6618~6639
    [85] Aresta M, Dibenedetto A. Utilisation of CO2as a chemical feedstock: opportunities andchallenges. Dalton Trans2007,(28):2975~2992
    [86] Aresta M.(Ed.) Carbon dioxide as chemical feedstock. Wiley-VCH, Weinheim,2010.
    [87] Cokoja M, Bruckmeier C, Rieger B, et al. Transformation of carbon dioxide withhomogeneous transition-metal catalysts: A molecular solution to a global challenge?Angew Chem Int Ed2011,50(37):8510~8537
    [88] Huang K, Sun C L, Shi Z J, Transition-metal-catalyzed C-C bond formation through thefixation of carbon dioxide. Chem Soc Rev2011,40(5):2435~2452
    [89] DeCastro C, Sauvage E, H lderich W F, et al. Immobilised Ionic liquids as lewis acidcatalysts for the alkylation of aromatic compounds with dodecene. J Catal2000,196(1):86~94
    [90] Yoo K, Namboodiri V V, Varma R S, et al. Ionic liquid-catalyzed alkylation of166atalysedwith2-butene. J Catal2004,222(2):511~519
    [91] Xiao Y, Malhotra S V. Friedel–Crafts alkylation reactions in pyridinium-based ionic liquids.J Mol Catal A Chem2005,230(1-2):129~133
    [92] Yin D, Li C, Yu L N, et al. Synthesis of diphenylmethane derivatives in Lewis acidic ionicliquids. Synthesis of diphenylmethane derivatives in Lewis acidic ionic liquids. J Mol CatalA Chem2006,245(1-2):260~265
    [93] Bica K, Gaertner P. An iron-containing ionic liquid as recyclable catalyst for aryl166atalyse cross-coupling of alkyl halides. Org Lett2006,8(4):733~735
    [94] Valkenberg M H, deCastro C, H lderich W F. Friedel-Crafts acylation of aromatics166atalysed by supported ionic liquids. Appl Catal A Gen2001,215(1-2):185~190
    [95] K Bica, Gaertner P. Metal-containing ionic liquids as efficient catalysts forhydroxymethylation in water. Eur J Org Chem2008,(20):3453~3456
    [96] Kim H S, Kim J J, Lee B G, et al. Isolation of a pyridinium alkoxy ion bridged dimeric zinccomplex for the coupling reactions of CO2and epoxides. Angew Chem Int Ed2000,39(22):4096~4098
    [97] Kim H S, Kim J J, Kim H, et al. Imidazolium zinc tetrahalide-catalyzed coupling reactionof CO2and ethylene oxide or propylene oxide. J Catal2003,220(1):44~46
    [98] Shibata I, Mitani I, Imakuni A, et al. Highly efficient synthesis of cyclic carbonates fromepoxides166atalysed by indium tribromide system. Tetrahedron Lett2011,52(6):721~723
    [99] Aurelio L, Brownlee R T C, Hughus, A B. Synthetic preparation of N-methyl-α-amino acids.Chem Rev2004,104(12):5823~5826
    [100] Makhtar T M, Wright G D. Streptogramins, oxazolidinones, and other inhibitors ofbacterial protein synthesis. Chem Rev,2005,105(2):529~542
    [101] Jain N, Kumar A, Chauhan S M S. Metalloporphyrin and heteropoly acid catalyzedoxidation of C=NOH bonds in an ionic liquid: biomimetic models of nitric oxide synthase.Tetrahedron Lett2005,46(15):2599~2602
    [102] Du Y, Wu Y, He L N, et al. Quaternary ammonium bromide functionalized polyethyleneglycol: a highly efficient and recyclable catalyst for selective synthesis of5-aryl-2-oxazolidinones from carbon dioxide and aziridines under solvent-free conditions.J Org Chem2008,73(12),4709~4712
    [103] Gruit M, Pews-Davtyan A, Beller M. Platinum-catalyzed cyclization reaction of alkynes:synthesis of azepino[3,4-b]indol-1-ones. Org Biomol Chem2011,9(4):1148~1159
    [1] Li F, Feng Y Q, Meng Q Q, et al. An efficient construction of quinazolin-4(3H)-ones undermicrowave irradiation. ARKIVOC2007,(i):40~50
    [2] Mizuno T, Mihara M, Nakai T. et al. Solvent-free synthesis ofquinazoline-2,4(1H,3H)-diones using carbon dioxide and a catalytic amount of DBU.Synthesis2007,(16):2524~2528
    [3] Pastor G, Blanchard C, Montginoul C, et al. Synthesis of new1H,3H-quinazoline-2,4-diones. Bull Soc Chim Fr1975,1331~1338
    [4] Khalifa M, Osman A N, Ibrahim M G, et al. Synthesis and biological activity of certainderivatives of2,4-dioxo-1,2,3,4-tetrahydroquinazoline. Pharmazie1982,(37):115~117
    [5] Michman M, Patai S, Wiesel Y. The synthesis of2,4[1H,3H]quinazolinedione and some ofits3-aryl substituted derivatives. Org Prep Proced Int1978,(10):13~16
    [6] Lange N A, Sheibley F E. Org Synth Coll Vol. II; John Wiley&Sons: London,1943,79~80
    [7] Vorbrüeggen H, Krolikiewicz K. The introduction of nitrile-groups into heterocycles andconversion of carboxylic groups into their corresponding nitriles withchlorosulfonylisocyanate and triethylamine. Tetrahedron1994,50(22):6549~6558
    [8] Huntress E H, Gladding J V K. The Synthesis of aminobenzoyleneureas and ofdihydroxyquinoxalines isomeric with “Luminol”. J Am Chem Soc1942,64(11):2644~2649
    [9] Jones G H, Venuti M C, Alvarez R, et al. Inhibitors of cyclic AMP phosphodiesterase.1.Analogs of cilostamide and anagrelide. J Med Chem1987,30(2):295~303
    [10] Bassoli A, Rindone B, Tollari S, et al. Acyclic and cyclic urea formation via thecobalt-catalysed oxidative carbonylation of aromatic primary amines. J Mol Catal1990,60(1):41~48
    [11] Miyata T, Mizuno T, Nagahama Y, et al. Facile synthesis of2,4-dioxo-1,2,3,4-tetrahydroquinazolines by sulfur-assisted carbonylation with carbonmonoxide. Heteroat Chem1991,2(4):473~475
    [12] Schneller S W, Ibay A C, Christ W J, et al. Linear and proximal benzo-separated alkylatedxanthines as adenosine-receptor antagonists. J Med Chem1989,32(10):2247~2254
    [13] Skibo E B. Synthesis of quinazoline-2,4,5,8-(1H,3H)tetrones and their amine nucleophilicaddition chemistry. J Org Chem1985,50(24):4861~4865
    [14] Alkhader M A, Perera R C, Sinha R P, et al. Synthesis of polynuclear heterocycles. Part4.Imidazo[4,5-g][3,1]benzoxazinones, imidazo[4,5-g]quinazolinones,imidazo[4,5-g]quinazolinediones, and imidazo[4,5-f]indazolinones. J Chem Soc PerkinTrans11979,(0):1056~1062
    [15] Combs D W, Rampulla M S.2,6-Dihydroxy-4H-pyridazino[3,4,5-de]quinazoline: A newring system. J Heterocycl Chem1989,26(6):1885~1886
    [16] DeRuiter J, Brubaker A N, Millen J, et al. Design and synthesis of2-(arylamino)-4(3H)-quinazolinones as novel inhibitors of rat lens aldose reductase. J MedChem1986,29(5):627~629
    [17] Hammen P D, Allen D J M. Synthesis of2,4-(1H,3H)-quinazolinediones. J HeterocyclChem1987,24(6):1701~1703
    [18] Venuti M C, Stephenson R A, Alvarez R, et al. Inhibitors of cyclic AMP phosphodiesterase.3. Synthesis and biological evaluation of pyrido and imidazolyl analogs of1,2,3,5-tetrahydro-2-oxoimidazo[2,1-b]quinazoline. J Med Chem1988,31(11):2136~2145
    [19] Nikpour F, Paibast T. A Green, facile, and one-pot synthesis of2,4-(1H,3H)-quinazolinediones under microwave irradiations. Chem Lett2005,34(10):1438~1439
    [20] Li Z G, Huang H, Sun H B, et al. Microwave-assisted efficient and convenient synthesis of2,4(1H,3H)-quinazolinediones and2-thioxoquinazolines. J Comb Chem2008,10(3):484~486
    [21] Smith A L, Thomson C G, Leeson P D. An efficient solid phase synthetic route to1,3-disubstituted2,4(1H,3H)-quinazolinediones suitable for combinatorial synthesis.Bioorg Med Chem Lett1996,6(13):1483~1486
    [22] Gouilleux L, Fehrentz J A, Winternitz F, et al. Solid phase synthesis of chiral3-substitutedquinazoline-2,4-diones. Tetrahedron Lett,1996,37(39):7031~7034
    [23] Gordeev M F, Hui H C, Gordon E M, et al. A general and efficient solid phase synthesis ofquinazoline-2,4-diones. Tetrahedron Lett,1997,38(10):1729~1732
    [24] Choo H-Y P, Kim M, Lee S K, et al. Solid-phase combinatorial synthesis and cytotoxicityof3-aryl-2,4-quinazolindiones. Bioorg Med Chem2002,10(3):517~523
    [25] V gtle M M, Marzinzika A L. Synthetic approaches towards quinazolines, quinazolinonesand quinazolinediones on solid phase. QSAR Comb Sci2004,23(6):440~459
    [26] Willis M C, Snell R H, Fletcher A J, et al. Tandem palladium-catalyzed ureaarylation-intramolecular ester amidation: regioselective synthesis of3-alkylated2,4-quinazolinediones. Org Lett2006,8(22):5089~5091
    [27] Shi D Q, Dou G L, Li Z Y, et al. An efficient synthesis of quinazoline-2,4-dione derivativeswith the aid of a low-valent titanium reagent. Tetrahedron2007,63(39):9764~9773
    [28] Li J R, Chen X, Shi D X, et al. A new and facile synthesis ofquinazoline-2,4(1H,3H)-diones. Org Lett2009,11(6):1193~1196
    [29] Arakawa H, Aresta M, Armor J N, et al. Catalysis research of relevance to carbonmanagement: Progress, challenges, and opportunities. Chem Rev2001,101(4):953~996
    [30] Coates G W, Moore D R. Discrete metal-based catalysts for the copolymerization of CO2and epoxides: Discovery, reactivity, optimization, and mechanism. Angew Chem Int Ed2004,43(48):6618~6639
    [31] Sakakura T, Choi J-C, Yasuda H. Transformation of carbon dioxide. Chem Rev2007,107(6):2365~2387
    [32] Aresta M, Dibenedetto A. Utilisation of CO2as a chemical feedstock: opportunities andchallenges. Dalton Trans2007,(28):2975~2992
    [33] Sakakura T, Kohnoa K. The synthesis of organic carbonates from carbon dioxide. ChemCommun2009,(11):1312~1330
    [34] Aresta M.(Ed.) Carbon dioxide as chemical feedstock. Wiley-VCH, Weinheim,2010.
    [35] Cokoja M, Bruckmeier C, Rieger B, et al. Transformation of carbon dioxide withhomogeneous transition-metal catalysts: a molecular solution to a global challenge? AngewChem Int Ed2011,50(37):8510~8537
    [36] Huang K, Sun C L, Shi Z J, Transition-metal-catalyzed C-C bond formation through thefixation of carbon dioxide. Chem Soc Rev2011,40(5):2435~2452
    [37] Mizuno T, Okamoto N, Ito T, et al. Synthesis of2,4-dihydroxyquinazolines using carbondioxide in the presence of DBU under mild conditions. Tetrahedron Lett2000,41(7):1051~1053
    [38] Mizuno T, Ishino Y. Highly efficient synthesis of1H-quinazoline-2,4-diones using carbondioxide in the presence of catalytic amount of DBU. Tetrahedron2002,58(16):3155~3158
    [39] Mizuno T, Iwai T, Ishino Y. The simple solvent-free synthesis of H-quinazoline-2,4-dionesusing supercritical carbon dioxide and catalytic amount of base. Tetrahedron Lett2004,45(38):7073~7075
    [40] Patil Y P, Tambade P J, Bhanage B M, et al. Cesium carbonate catalyzed efficient synthesisof quinazoline-2,4(1H,3H)-diones using carbon dioxide and2-aminobenzonitriles. GreenChem Lett Rev2008,(1):127~132
    [41] Nagai D, Endo T J. Synthesis of1H-quinazoline-2,4-diones from2-aminobenzonitriles byfixation of carbon dioxide with amidine moiety supported polymer at atmospheric pressure.J Polym Sci Part A Poly Chem2009,47(3):653~657
    [42] Ishikawa T, Kumamoto T. Guanidines in organic synthesis. Synthesis2006,(5):737~752
    [43] Suhs T, K nig B. Synthesis of guanidines in solution. Mini-Rev Org Chem2006,3(4):315~331
    [44] Berlinck R G S, Burtoloso A C B, Kossuga M H. The chemistry and biology of organicguanidine derivatives. Nat Prod Rep2008,5(25):919~954
    [45] Leow D, Tan C H. Chiral guanidine catalyzed enantioselective reactions. Chem Asian J2009,4(4):488~507
    [46] Costa M, Chiusoli G P, Taffurelli D, et al. Superbase catalysis of oxazolidin-2-one ringformation from carbon dioxide and prop-2-yn-1-amines under homogeneous orheterogenous conditions. J Chem Soc Perkin Trans11998,(9):1541~1546
    [47] Kova evi B, Maksi Z B. Basicity of some organic superbases in acetonitrile. Org Lett2001,3(10):1523~1526
    [48] Pereira F S, deAzevedo E R, da Silva E F, et al. Study of the carbon dioxide chemicalfixation-activation by guanidines. Tetrahedron2008,64(43):10097~10106
    [49] Pruszynski P. Synthesis and properties of phenyl substituted derivatives of2-phenyl-1,1,3,3-tetramethylguanidine. Can J Chem1987,65(3):626~629
    [50]段海峰,张所波,林英杰,等.新型室温离子液体六烷基胍盐的制备及性质. Chem JChinese U2003,24(11):2024~2026

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700