用户名: 密码: 验证码:
重组胰岛素前体转化成人胰岛素和地特胰岛素的工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰岛素及其类似物是治疗糖尿病最直接和最有效的药物,开发安全有效、使用方便的胰岛素及新型类似物一直是生物药物开发的一个热点。每日只需注射一次便可稳定控制血糖的地特胰岛素目前已成为长效胰岛素药物中的优秀代表。本文利用实验室以前构建的高效表达胰岛素前体的毕赤酵母菌株,从建立菌株的大规模发酵工艺、确立重组胰岛素前体的分子结构及酶切顺序、提高胰岛素前体转肽生成胰岛素酯的转化率、建立和优化地特胰岛素的酰化、分离工艺和药效学研究等几个方面进行了深入研究,为原型胰岛素和地特胰岛素的工业化制备初步建立了一套简单可行的生产工艺。
     首先,建立了重组毕赤酵母生产胰岛素前体的大规模发酵工艺。利用毛细管气相色谱柱建立了发酵液甲醇浓度快速检测的方法,用于精确控制罐发酵过程中的甲醇流加。在毕赤酵母小试发酵工艺的基础上,成功建立了300L规模的胰岛素前体发酵甘油流加培养及甲醇流加诱导表达的生产工艺,胰岛素前体的产量超过3.0g/L,与小试规模相当。同时,利用CM-Sepharose FF离子交换层析建立了简单有效的胰岛素前体的初步纯化工艺,胰岛素前体从富含色素的发酵上清中得到较好的浓缩和提纯,一步纯化胰岛素前体的纯度达到88%,目的蛋白回收率达到95%,这为后续胰岛素前体的结构分析及酶切、偶联、酰化等工艺的建立和优化奠定了基础。
     其次,发现了毕赤酵母表达的胰岛素前体N末端的不均一性现象并分析了原因。本文通过质谱和N末端测序证实,利用重组毕赤酵母发酵得到的胰岛素前体是一种N末端不均一的单链融合蛋白。实际上,在构建重组菌株时,为增加胰岛素前体的表达量,在目的蛋白的N末端引入了一段人工合成间隔肽序列(EEAEAEAEPK).间隔肽的存在成功实现了目的蛋白的高表达,但由于毕赤酵母自身产生的二肽氨肽酶A的酶活性不足和(或)专一性差,造成了胰岛素前体蛋白的N末端不均一性。同时实验也间接证实胰岛素前体在发酵过程没有发生C末端降解现象。
     然后,证实了胰岛素前体单链蛋白上的三个酶切位点在酶切时存在先后顺序。酶切过程不同酶切时间样品采用HPLC和LC-MS的分析方法,发现胰蛋白酶首先将胰岛素前体的间隔肽片断迅速去除,生成单链胰岛素前体。随后,单链胰岛素在连接肽AAK的后面被进一步酶切,生成双链胰岛素前体。最后,该双链产物再经一次酶切去除连接肽,生成了B链缺少第30位苏氨酸的缺苏胰岛素产物(desB30)。这三步的酶切速率差别很大,第一步酶切速率很快,第二步相对较慢,第三步则不能完全反应,即使过夜酶切还有近20%的双链胰岛素前体无法转变为desB30。根据胰岛素的立体结构特点和容易生成聚体的特点,对造成这种酶切顺序和酶切速率差异的原因进行了分析。通过圆二色谱实验证实,在含有低浓度有机溶剂的溶液环境中,明显降低了胰岛素前体聚体的含量,同时在此环境下进行胰岛素前体酶切,desB30的收率由76.8%提高到95.6%,间接证实胰岛素前体形成的聚体空间结构是造成desB30收率不能进一步提高的原因。结合胰岛素前体的纯化工艺,提出在反相纯化收集液中进行酶切的新工艺,胰岛素前体酶切生成desB30的转化率提高了20%,未发现有其他酶切副产物产生的现象。
     再者,建立了胰岛素前体两步法高效转肽生成原型人胰岛素的工艺。胰岛素前体采用一步法酶切转肽生成人胰岛素时,需要在高浓度的有机环境中经三次酶切生成desB30,然后再偶联生成重组人胰岛素酯。由于该转肽环境下的酶切效率不足而导致desB30生成受限,致使最高转化率仅为43.9%。胰蛋白酶作用下的酶切与偶联反应,实际是一对可逆的反应,即酶切为肽键的断裂,偶联为肽键的形成。然而,这对可逆反应各自的最优的反应条件却相差很大。本研究将酶切和偶联两个过程分开,采用了两步法代替现有的一步法将人胰岛素前体转化成人胰岛素酯,两个反应分别在各自的最优的条件下进行反应,最终转化率提高近一倍,转肽的反应时间缩短为原来的十分之一,活化酯用量减少一半,胰蛋白酶的用量约为原来的四分之一,副产物少,整体收率更高,成本更低。这为规模化、工业化利用毕赤酵母表达生产重组人胰岛素提供了一种简捷、高效的方法。
     最后,建立了desB30选择性酰化制备地特胰岛素简单高效的生产工艺。制备地特胰岛素的关键工艺步骤是酰化反应,这步反应的收率直接决定了生产的成本。诺和诺德公司采用的是保护性酰化工艺,该工艺步骤多,收率低,生产成本较高。本研究建立了未保护N末端α氨基碱性条件下的选择性酰化B29位赖氨酸ε氨基的工艺,目的单酰化产物收率达到80%以上:酰化反应产物利用一步的SOURCE30RPC反相纯化工艺,目的产物的纯度超过98%,达到了胰岛素制品的纯度要求。对制备得到的酰化目的产物的分子量、酰化位点、生物活性和药效动力学进行了全面检测,实验证明本研究制备得到的酰化产物与对照品一致,说明的酰化胰岛素制备工艺是可行的,初步具备了进一步开展药学和临床前实验的基础。另外,为了进一步降低酰化反应的成本,建立了昂贵的肉豆蔻酸丁二酰亚胺酯的生产工艺,得到了纯度和结构符合要求的活化酯。选择性酰化工艺和活化酯自制成功,将大幅度降低地特胰岛素的生产成本,为将来的工业化制备奠定了坚实的基础。
Insulin and its analogues are the most effective drugs to treat diabetes directly. Developing insulin and new analogs those are safe, effective and easy-to-use has been a hotspot of biological drug development. Based on a Pichia pastoris strain previously constructed in our laboratory that could efficiently express insulin precursor, the following studies were conducted:large scale fermentation of this strain, molecule structure and cleavage order of the insulin precursor, digestion and transpeptidation of insulin precursor to form desB30(human insulin with deletion of threonineB30) and human insulin, and selective one-step acylation of free ε-amino group of B29in desB30. The work would help to build the practical process for the dustrial productions of human insulin and insulin detemir.
     The large-scale fermentation process of Pichia pastoris for the production of insulin precursor was established. A capillary gas chromatography was used to monitor the methanol concentration in fermentation broth, with short measurement time, responsive signal and low error not more than1%. Combining with DO spike method, the precise control of methanol feeding in fermentation process was achieved. The feed and induction techniques were successfully scaled up to300L fermentor, and the insulin precursor expression in the system could be more than3.0g/L, comparable to that in small pilot scale. At the same time, a preliminary purification process was set up to purify the insulin precursor using CM-Sepharose FF ion-exchange chromatography, by which the insulin precursor was isolated from the fermentation supernatant rich in pigments, with the purity of88%and the protein recovery ratio of more than95%. This served as the foundation for the structure analysis of insulin precursor and the establishment of the digestion, transpeptidation and acylation process of insulin precursor.
     Insulin precursor expressed in Pichia pastoris is a single-chain protein with a spacer peptide (EEAEAEAEPK) localized at its N-terminal. The heterogeneity phenomenon on the N-terminal of insulin precursor produced by Pichia pastoris was found. The phenomenon was presumed to be caused by the following reasons. To increase the insulin precursor expression, a synthetic spacer peptide sequence (EEAEAEAEPK) was introduced into the N-terminus of target protein when the Pichia pastoris was constructed. Because the low specificity of a dipeptidyl aminopeptidase A encoded by the STE13gene in Pichia pastoris towards the restriction sites, the N-terminus of the insulin precursor was digested at several positions to obtain various kinds of heterologous products. At the same time, it was confirmed that the degradation of C-terminal of insulin precursor did not occur during the fermentation process.
     In trypsination, the digestion order of three restriction sites on the single-chain insulin precursor protein was sorted out. It was found by HPLC and LC-MS analyses that the spacer peptide fragment on insulin precursor was rapidly removed by trypsin to generate a single chain insulin precursor, subsequently the peptide bond behind the connecting peptide AAK on the single-chain insulin was digested to generate double-chain insulin precursor, and finally, the linker peptide AAK was removed from double-chain product to form the insulin desB30. However the three cleavage steps varied on the speed greatly. The first step in digestion was fast, the second step was relatively slow and the third step was so slow that only80%of the double-chain insulin precursor could be transformed into desB30after overnight digestion. Based on the three-dimensional structure and the properties, insulin molecules were easy to form dimers, and the cleavage sequence and digestion rate were identified to be related to the dimerization and polymerization. If the polarity of the solution was reduced to form a hydrophobic environment with a low concentration of organic solvent, the dimer content of insulin precursors and double-chain insulin precursors was significantly decreased from far-UV circular dichroism measurement. When the digestion was carried out in the solution with a low concentration of organic solvent, the conversion ratio of insulin precursor to desB30increased from76.8%to95.6%, which also indirectly confirmed the steric hindrance of dimmers of the double-chain insulin precursors was the main cause for the low conversion ratio.
     A two-step transpeptidation process was established to convert insulin precursor to human insulin ester. In one-step transpeptidation process used previously, insulin precursor had to be digested three times in hydrophobic environment to generate desB30and then followed by an enzymatic catalyzed coupling of threonine ester to the terminal lysineB29residue of desB30to generate human insulin ester. The low cleavage conversion of insulin precursor to desB30in this environment resulted in a total transpeptidation conversion of only43.9%. Actually, under the effect of trypsin, cleavage and coupling was a reversible reaction. The cleavage reaction hydrolyzed the peptide bond, while the coupling reaction connected the peptide bond. However, in this reversible reaction, the optimal conditions for each reaction were greatly different. In the present study, the two reactions were conducted in separate processes, and the one-step transpeptidation was replaced by a two-step transpeptidation to convert human insulin precursor into human insulin ester. Thus, two reactions could be carried out under their respective optimum conditions. As results, the final transpeptidation conversion was nearly doubled with the reaction time shortened to one tenth and the usages of threonine ester and trypsin reduced by half and a quarter, respectively. Less byproducts, high overall conversion and low cost made competitive the large-scale production of recombinant human insulin by Pichia pastoris.
     Furthermore, a simple and efficient production process was established to prepare insulin detemir by selective one-step acylation of free s-amino group of B29in desB30. As the critical step for preparing insulin detemir, the conversion ratio of desB30to insulin determir in acylation reaction would greatly influence the cost of production. The protective acylation process used by Novo Nordisk was of multi-steps and low-yield, causing high production cost. In the work, the selective acylation of ε-amino group of lysineB29in desB30was established without protecting α-amino group on N-terminus under alkaline conditions, and the conversion ratio of single-acylated product was more than80%. After purified by SOURCE30 RPC, the purity of final product was as high as98%, which met the purity requirements of the insulin products. The molecular weight, acylation sites, biological activity, and pharmacodynamics of final aimed product were comprehensively tested, and the results showed that the product prepared by selective acylation were the same as Novo Nordisk Levemir(?). The insulin detemir preparation process established in the work could serve as the basis for further development of pharmaceutical. Furthermore, in order to reduce the cost of the acylation reaction, very expensive myristic acid N-hydroxysuccinimide ester was produced by using the cheap myristic acid in this study and the purity of the prepared activated ester met the requirements. The selective acylation of desB30and the preparation of activated ester would significantly reduce the cost of insulin detemir, which laid a solid foundation for industrial production in future.
引文
[1]中华医学会糖尿病学分会.中国2刑糖尿病防治指南(2010年版).中国医学前沿杂志.2011,3(6):54-109.
    [2]Document-WHO/NCD/NCS/99.2. Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications. World Health Organization.1999. http://whqlibdoc.who.int/hq/1999/WHO NCD NCS 99.2.pdf. Accessed on 05.06.2012
    [3]刘烨,张琳,洪天配.2011年糖尿病学领域的研究进展和热点回顾.中国医学前沿杂志.2011,3(6):27-31.
    [4]Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract.2010,87(1):4-14.
    [5]Walsh G. Therapeutic insulins and their large-scale manufacture. Appl Microbiol Biotechnol.2005, 67(2):151-159.
    [6]徐霞.2008~2010年门诊糖尿病用药情况与经济学分析.医药导报.2012,31(1):100-102.
    [7]张友尚.胰岛素生产的回顾与展望.食品与药品.2008,10(1):1-3.
    [8]Ryle AP, Sanger F, Smith LF, Kitai R. The disulphide bonds of insulin. Biochem J.1955,60(4): 541-556.
    [9]龚岳亭,杜雨苍,黄惟德,陈常庆,葛麟俊,胡世全,蒋荣庆,朱尚权,钮经义,徐杰诚,张伟君,陈玲玲,李鸿绪,汪猷,陆德培,季爱雪,李崇熙,施溥涛,叶蕴华,汤卡罗,邢其毅.结晶胰岛素的全合成.生物化学与生物物理学报.1966,6(2):87-102.
    [10]于志珍,梁栋材.胰岛素分子结构与功能关系的复杂性.生物化学杂志.1985,1(1):9-22.
    [11]Chance RE, Ellis RM, Bromer WW. Porcine proinsulin:characterization and amino acid sequence. Science.1968,161(3837):165-167.
    [12]Kjeldsen T. Yeast secretory expression of insulin precursors. Appl Microbiol Biotechnol.2000,54(3): 277-286.
    [13]张田.利用毕赤酵母表达小C肽人胰岛素原的研究.上海交通大学硕士学位论文.2008.
    [16]Csorba TR. Proinsulin:biosynthesis, conversion, assay methods and clinical studies. Clin Biochem. 1991,24(6):447-454.
    [17]谢婷.胰岛素前体在毕赤酵母中的分泌表达及其转变成人胰岛素.华东理工大学硕士学位论文.2008.
    [18]王玉霞,杨文英,郭丽.临床胰岛素制剂的发展及应用特点.临床荟萃.2007,22(10):750-752.
    [19]Ruttenberg MA. Human insulin:facile synthesis by modification of porcine insulin. Science.1972, 177(4049):623-626.
    [20]Markussen J. Process for preparing esters of human insulin. US Pat:4343898.1982-08-10.
    [21]Homandberg G, Mattis J, Laskowski M. Synthesis of peptide bonds by proteinases. Addition of organic cosolvents shifts peptide bond equilibria toward synthesis. Biochemistry.1978,17(24): 5220-5227.
    [22]Walsh G. Biopharmaceuticals:Biochemistry and Biotechnology. Ireland:Wiley Chichester.1998.
    [23]Chance RE, Frank BH. Research, development, production, and safety of biosynthetic human insulin. Diabetes Care.1993,16(3):133-142.
    [24]Walsh G, Murphy B. Biopharmaceuticals, an industrial perspective. Netherlands:Kluwer Dordrecht. 1999.
    [25]Wang Y, Liang ZH, Zhang YS, Yao SY, Xu YG, Tang YH, Zhu SQ, Cui DF, Feng YM. Human insulin from a precursor overexpressed in the methylotrophic yeast Pichia pastoris and a simple procedure for purifying the expression product. Biotechnol Bioeng.2001,73(1):74-79.
    [26]Yanagita M, Nakayama K, Takeuchi T. Processing of mutated proinsulin with tetrabasic cleavage sites to bioactive insulin in the non-endocrine cell line, COS-7. FEBS Lett.1992,311(1):55-59.
    [27]Arakawa T, Yu J, Chong DK, Hough J, Engen PC, Langridge WH. A plant-based cholera toxin B subunit-insulin fusion protein protects against the development of autoimmune diabetes. Nat Biotechnol.1998,16(10):934-938.
    [28]Mattanovich D, Branduardi P, Dato L, Gasser B, Sauer M, Porro D. Recombinant protein production in yeasts. Methods Mol Biol.2012,824:329-358.
    [29]Gueriguian JL. Insulins, Growth Hormone, and Recombinant DNA Technology. New York:Raven. 1981.
    [30]Sung WL, Yao FL, Narang SA. Short homopeptide leader sequences enhanced production of human proinsulin in Escherichia coli. Methods Enzymol.1987,153:385-389.
    [31]Inouye M. Experimental Manipulation of Gene Expression. New York:Academic Press.1983.
    [32]李晓红,朱惠玲,余蓉,李红霞.重组人胰岛素制备工艺.四川大学学报(工程科学版).2007,39(4):79-83.
    [33]Tang JG, Tsou CL. The insulin A and B chains contain structural information for the formation of the native molecule. Studies with protein disulphide-isomerase. Biochem J.1990,268(2):429-435.
    [34]黄一丁,梁镇和,冯佑民.重组单链胰岛素的连接肽与其生物功能的关系.中国科学(C辑).2001,31(5):458-464.
    [35]吴颖,钱凯先.胰岛素原基因的高效分泌表达系统-甲醇酵母Pichia pastoris浙江大学学报(工学版).2005,39(7):1091-1095.
    [36]陈来同,张明军,胡美浩.小C肽人胰岛素原类似物(B-Arg-Arg-A)和人胰岛素原(B-C-A) A、B链重组条件的研究.中国生化药物药杂志.2000,21(5):217-219.
    [37]Shen SH. Multiple joined genes prevent product degradation in Escherichia coli. Proc Natl Acad Sci USA.1984,81 (15):4627-4631.
    [38]Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG. Life with 6000 genes. Science.1996,274(5287):563-567.
    [39]Goffeau A. Four years of post-genomic life with 6,000 yeast genes. FEBS Lett.2000,480(1):37-41.
    [40]Phaff HJ. Isolation of Biotechnological Organisms from Nature. New York:McGraw-Hill.1990.
    [41]Porro D, Sauer M, Branduardi P, Mattanovich D. Recombinant protein production in yeasts. Mol Biotechnol.2005,31(3):245-259.
    [42]Emr SD, Schekman R, Flessel MC, Thorner J. An MF alpha 1-SUC2 (alpha-factor-invertase) gene fusion for study of protein localization and gene expression in yeast. Proc Natl Acad Sci USA.1983, 80(23):7080-7084.
    [43]Bitter GA, Chen KK, Banks AR, Lai PH. Secretion of foreign proteins from Saccharomyces cerevisiae directed by alpha-factor gene fusions. Proc Natl Acad Sci USA.1984,81(17):5330-5334.
    [44]Kjeldsen T, Ludvigsen S, Diers I, Balschmidt P, Sorensen AR, Kaarsholm NC. Engineering-enhanced protein secretory expression in yeast with application to insulin. J Biol Chem.2002,277(21): 18245-18248.
    [45]Markussen J, Damgaard U, Diers I, Fiil N, Hansen MT, Larsen P, Norris F, Norris K, Schou O, Snel L. Biosynthesis of human insulin in yeast via single chain precursors. Diabetologia.1986,29:568-569.
    [46]Thim L, Hansen MT, Norris K, Hoegh I, Boel E, Forstrom J. Am merer G, Fiil NP. Secretion and processing of insulin precursors in yeast. Proc Natl Acad Sci USA.1986,83(18):6766-6770.
    [47]周峻岗,张厚程,王鹏,祁庆生Mang GlcNAc2糖基化的酿酒酵母菌株的构建.微生物学报.2007,47(5):785-789.
    [48]徐英黔,甘一如,黄鹤.酵母中表达基因工程重组蛋白药物的研究进展.化学工业与工程.2005,22(5):381-385.
    [49]De Schutter K, Lin YC, Tiels P, van Hecke A, Glinka S, Weber-Lehmann J, Rouze P, van de Peer Y, Callewaert N. Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol.2009,27(6):561-566.
    [50]Cereghino GP, Cereghino JL, Ilgen C, Cregg JM. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol.2002,13(4):329-332.
    [51]杨梅,温真,林丽玉,杨彩云.毕赤酵母蛋白表达系统研究进展.生物技术通报.2011,(4):46-51.
    [52]Porro D, Gasser B, Fossati T, Maurer M, Branduardi P, Sauer M, Mattanovich D. Production of recombinant proteins and metabolites in yeasts. Appl Microbiol Biotechnol.2011,89(4):939-948.
    [53]Kjeldsen T, Pettersson AF, Hach M. Secretory expression and characterization of insulin in Pichia pastoris. Biotechnol Appl Biochem.1999,29:79-86.
    [54]Gurramkonda C, Polez S, Skoko N, Adnan A, Gabel T, Chugh D, Swaminathan S, Khanna N, Tisminetzky S, Rinas U. Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin. Microb Cell Fact.2010,9:31.
    [55]Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas:global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract.2011,94(3):311-321.
    [56]汀启航,雷荣,廖凤霞.国内糖尿病药物医院用药市场分析.世界临床药物.2012,33(11):693-696.
    [57]2010年中国胰岛素行业研究报告.2010.http://wenku.baidu.com/view/4f56197c27284b73f2425085.html. Accessed on 2012-11-05
    [58]郭启煜.地特胰岛素:新型长效胰岛素类似物的特点和优贽.药品评价.2010,7(3):37-40.
    [59]夏志勇,林萱.胰岛素类似物的临床研究进展.中国临床医药研究杂志.2008,184(3):42-43.
    [60]Ivana R, Manja P, Mirela D. Insulin detemir-a novel basal insulin. Diabetologia Croatica.2003,32(4): 163-167.
    [61]Mayer D, Shukla A, Enzmann H. Proliferative effects of insulin analogues on mammary epithelial cells. Arch Phys Biochem.2008,114(1):38-44.
    [62]Dejgaard A, Lynggaard H, Rastam J, Krogsgaard Thomsen M. No evidence of increased risk of malignancies in patients with diabetes treated with insulin detemir:a meta-analysis. Diabetologia. 2009,52(12):2507-2512.
    [63]Rosenstock J, Davies M, Home P, Larsen J, Koenen C, Schernthaner G. A randomised,52-week, treat-to-target trial comparing insulin detemir with insulin glargine when administered as add-on to glucose-lowering drugs in insulin-naive people with type 2 diabetes. Diabetologia.2008,51(3): 408-416.
    [64]Home P, Bartley P, Russell-Jones D, Hanaire-Broutin H, Heeg J-E, Abrams P, Landin-Olsson M, Hylleberg B, Lang H, Draeger E. Insulin detemir offers improved glycemic control compared with NPH insulin in people with type 1 diabetes a randomized clinical trial. Diabetes Care.2004,27(5): 1081-1087.
    [65]Kurtzhals P, Schaffer L, Sorensen A, Kristensen C, Jonassen I, Schmid C, Trub T. Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes.2000,49(6):999-1005.
    [66]Klein O, Lynge J, Endahl L, Damholt B, Nosek L, Heise T. Albumin-bound basal insulin analogues (insulin detemir and NN344):comparable time-action profiles but less variability than insulin glargine in type 2 diabetes. Diabetes Obes Metab.2007,9(3):290-299.
    [67]Blonde L, Merilainen M, Karwe V, Raskin P. Patient-directed titration for achieving glycaemic goals using a once-daily basal insulin analogue:an assessment of two different fasting plasma glucose targets-the TITRATETM study. Diabetes Obes Metab.2009,11 (6):623-631.
    [68]King A. Once-daily insulin detemir is comparable to once-daily insulin glargine in providing glycaemic control over 24 h in patients with type 2 diabetes:a double-blind, randomized, crossover study. Diabetes Obes Metab.2009,11(1):69-71.
    [69]S·哈夫仑德,J·B·哈斯塔姆,I·乔那5森,A·S·安德森,J·马库森.酰化的胰岛素.中国发明专利:CN1133598A.1996-10-16.
    [70]路易斯·B·汉森.肽的酰化方法和新酰化剂.中国发明专利:CN 1344248A.2002-04-10.
    [71]伊凡·德尔斯,珀·鲍尔施米特,简·马库森,伊布·乔纳森,米奇·埃格尔-米塔尼,托马斯·B·谢尔德森.生产酰化多肽的方法.中国发明专利:CN 1558912A.2004-12-29.
    [72]S·哈夫伦德,F·休巴莱克,H·B·奥尔森,I·乔纳森,T·霍格-詹森,A·普卢姆,U·里贝尔-马德森.包含酰化胰岛素和锌的组合物以及制备所述组合物的方法.中国发明专利:CN 101389650A.2009-03-18.
    [73]Kjeldsen TB, Markussen J. Processes for making acylated insulin. US Pat:7402565.2006-06-03.
    [74]Havelund S, Halstrom J, Jonassen I, Andersen AS, Markussen J. Acylated insulin. US Pat:6011007. 2000-01-04.
    [75]Andersen AS, Halstrom J, Havelund S, Jonassen I, Markussen J. Acylated insulin. US Pat:6869930 B1. 2005-03-22.
    [76]Andersen AS, Halstrom J, Havelund S, Jonassen I, Markussen J. Acylated insulin. US Pat:5750497. 1998-05-12.
    [77]Baker JC, Hanquier JM. Acylated insulin analogs. US Pat:5693609.1997-12-02.
    [78]Levemir Worldwide Sales 2007/10. EvaluatePharma.2012. https://www.evaluatepharma.com/Universal/View.aspx?type=Entity&entityType=Product&id=13467& lType=modData&componentID=1002. Accessed on 2012-12-05
    [79]Li P, Anumanthan A, Gao XG, Ilangovan K, Suzara VV, Duzgunes N, Renugopalakrishnan V. Expression of recombinant proteins in Pichia pastoris. Appl Biochem Biotechnol.2007,142(2): 105-124.
    [80]Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM. Heterologous protein production using the Pichia pastoris expression system. Yeast.2005,22(4):249-270.
    [81]Idiris A, Tohda H, Kumagai H, Takegawa K. Engineering of protein secretion in yeast:strategies and impact on protein production. Appl Microbiol Biotechnol.2010,86(2):403-417.
    [82]Martinez JL, Liu L, Petranovic D, Nielsen J. Pharmaceutical protein production by yeast:towards production of human blood proteins by microbial fermentation. Curr Opin Biotechnol.2012,23(6): 965-971.
    [83]Damasceno LM, Huang CJ, Batt CA. Protein secretion in Pichia pastoris and advances in protein production. Appl Microbiol Biotechnol.2012,93(1):31-39.
    [84]Potvin G, Ahmad A, Zhang Z. Bioprocess engineering aspects of heterologous protein production in Pichia pastoris:A review. Biochem Eng J.2012,64:91-105.
    [85]Kjeldsen T, Hach M, Balschmidt P, Havelund S, Pettersson AF, Markussen J. Prepro-leaders lacking N-linked glycosylation for secretory expression in the yeast Saccharomyces cerevisiae. Protein Expr Purif.1998,14(3):309-316.
    [86]Zhou XS, Zhang YX. Decrease of proteolytic degradation of recombinant hirudin produced by Pichia pastoris by controlling the specific growth rate. Biotechnol Lett.2002,24(17):1449-1453.
    [87]Ni ZH, Zhou XS, Sun XQ, Wang Y, Zhang YX. Decrease of hirudin degradation by deleting the KEX1 gene in recombinant Pichia pastor is. Yeast.2008,25(1):1-8.
    [88]Zhang Y, Liu R, Wu X. The proteolytic systems and heterologous proteins degradation in the methylotrophic yeast Pichia pastoris. Ann Microbiol.2007,57(4):553-560.
    [89]于洪海,高卜渝,陈佩丽,董灵,李育阳.酵母表达基因工程产物不均一性分析及其对策.中国科学:B辑.1994,24(12):1270-1274.
    [90]Kjeldsen T, Brandt J, Andersen AS, Egel-Mitani M, Hach M, Pettersson AF, Vad K. A removable spacer peptide in an alpha-factor-leader/insulin precursor fusion protein improves processing and concomitant yield of the insulin precursor in Saccharomyces cerevisiae. Gene.1996,170(1):107-112.
    [91]周祥山,周卫斌,范卫民,张元兴,董美玉.重组毕赤酵母高密度发酵表达水蛭素过程中产物的生成和降解.中国生物制品学杂志.2003,16(1):24-27.
    [92]杨继忠,周祥山,解锡军,尤金花,张元兴,解福生.毕赤酵母发酵生产中的水蛭素降解顺序.微生物学通报.2004,31(5):24-27.
    [93]Havelund S, Plum A, Ribel U, Jonassen I, Volund A, Markussen J, Kurtzhals P. The mechanism of protraction of insulin detemir, a long-acting, acylated analog of human insulin. Pharm Res.2004, 21(8):1498-1504.
    [94]Xu Y, Yan Y, Seeman D, Sun L, Dubin PL. Multimerization and aggregation of native-state insulin: effect of zinc. Langmuir.2012,28(1):579-586.
    [95]Tantipolphan R, Romeijn S, Engelsman J, Torosantucci R, Rasmussen T, Jiskoot W. Elution behavior of insulin on high-performance size exclusion chromatography at neutral pH. J Pharm Biomed Anal. 2010,52(2):195-202.
    [96]Mayer JP, Zhang F, DiMarchi RD. Insulin structure and function. Biopolymers.2007,88(5):687-713.
    [97]Kjeldsen T, Balschmidt P, Diers I, Hach M, Kaarsholm NC, Ludvigsen S. Expression of insulin in yeast:the importance of molecular adaptation for secretion and conversion. Biotechnol Genet Eng Rev. 2001,18:89-121.
    [98]Nettleton EJ, Tito P, Sunde M, Bouchard M, Dobson CM, Robinson CV. Characterization of the oligomeric states of insulin in self-assembly and amyloid fibril formation by mass spectrometry. Biophys J.2000,79(2):1053-1065.
    [99]Kjeldsen T, Pettersson AF. Relationship between self-association of insulin and its secretion efficiency in yeast. Protein Expr Purif.2003,27(2):331-337.
    [100]Glendorf T, Sorensen AR, Nishimura E, Pettersson I, Kjeldsen T. Importance of the solvent-exposed residues of the insulin B chain alpha-helix for receptor binding. Biochemistry.2008,47(16): 4743-4751.
    [101]Du HJ, Shi JH, Cui DF, Zhang YS. B22 Glu des-B30 insulin:a novel monomeric insulin. Acta Biochim Biophys Sin.2006,38(8):537-542.
    [102]Brange J, Langkjaer L. Chemical stability of insulin.3. Influence of excipients, formulation, and pH. Acta Pharm Nordica.1992,4(3):149-158.
    [103]Instructions of trypsin- Sigma (T1426) Trypsin TPCK treated from bovine pancreas.2007. http://www.sigmaaldrich.com.cn/etc/medialib/docs/Sigma/Product Information Sheet/1/t1426pis.Par.0 001.File.tmp/t1426pis.pdf. Accessed on 05.012.2012
    [104]Huus K, Havelund S, Olsen HB, van de Weert M, Frokjaer S. Chemical and thermal stability of insulin:effects of zinc and ligand binding to the insulin zinc-hexamer. Pharm Res.2006,23(11): 2611-2620.
    [105]陈常庆,朱尚权.肽键的酶促合成.化学通报.1983,5:7-12.
    [106]Jakubke HD, Kuhl P, Konnecke A. Basic principles of protease-catalyzed peptide bond formation. Angew Chem Int Ed.1985,24(2):85-93.
    [107]Homandberg GA, Mattis JA, Laskowski Jr M. Synthesis of peptide bonds by proteinases. Addition of organic cosolvents shifts peptide bond equilibriums toward synthesis. Biochemistry.1978,17(24): 5220-5227.
    [108]Widmer F, Johansen JT. Enzymatic peptide synthesis. Carboxypeptidase Y catalyzed formation of peptide bonds. Carlsberg Res Commun.1979,44(1):37-46.
    [109]杨纪庆.蛋白水解酶转肽使猪胰岛素转成人胰岛素.上海交通大学学报.1997,31(2):96-99.
    [110]唐建国.用胰酶转肽的方法使人胰岛素原转成人胰岛素.生物工程学报.1993,9(4):355-360.
    [111]高剑坤,蔡绍哲,范开,冯强,陈海蓉,张益,胡伟,杨应彬.含短C肽人胰岛素原类似物desB30在毕赤酵母中的表达及纯化.生物化学与生物物理进展.2008,35(1):63-68.
    [112]Liu HF, Zhou XS, Xie FS, You JH, Zhang YX. An efficient trypsin digestion strategy for improving desB30 productivity from recombinant human insulin precursor fusion protein. Process Biochem. 2013,51(5-6):965-971.
    [113]张舟,陈辉,唐月华,冯佑民.一个简便,经济的转化胰岛素基因表达产物为重组胰岛素的方法及其应用.自然科学进展,2003,13(6):588-592.
    [114]惠长野.一种水相反应制备胰岛素衍生物的方法.中国现代医学杂志.2009,19(7):1028-1030.
    [115]Du HJ, Shi JH, Cui DF, Zhang YS. B22 Glu Des-B30 insulin:A novel monomeric insulin. Acta Biochim Biophys Sin.2006,38(8):537-542.
    [116]Morihara K. Enzymatic semisynthesis of human insulin:an update. J Mol Recog.1990,3(5-6): 181-186.
    [117]Morihara K, Oka T, Tsuzuki H. Semi-synthesis of human insulin by trypsin-catalysed replacement of Ala-B30 by Thr in porcine insulin. Nature.1979,280:412-413.
    [118]Xie T, Liu Q, Xie FS, Liu HF, Zhang YX. Secretory expression of insulin precursor in Pichia pastoris and simple procedure for producing recombinant human insulin. Prep Biochem Biotechnol.2008, 38(3):308-317.
    [119]Morihara K, Ueno Y, Sakina K. Influence of temperature on the enzymic semisynthesis of human insulin by coupling and transpeptidation methods. Biochem J.1986,240(3):803-810.
    [120]Zhang Z, Chen H, Tang YH, Feng YM. A simple, economical method of converting gene expression products of insulin into recombinant insulin and its application. ProgrNat Sci.2003,13(8):596-600.
    [121]杨纪庆,林志新.蛋白水解酶转肽使猪胰岛素转成人胰岛素.上海交通大学学报.1997,31(2):96-99.
    [122]Zhang SY, Hu HM, Cai RR, Feng YM, Zhu SQ, He QB, Tang YH, Xu MH, Xu YG, Zhang XT, Liu B, Liang ZH. Secretory expression of a single-chain insulin precursor in yeast and its conversion into human insulin. Science in China. Series C.1996,39(3):225-233.
    [123]Markussen J, Jorgensen KH, Sorensen AR, Thim L. Single chain des-(B30) insulin. Intramolecular crosslinking of insulin by trypsin catalyzed transpeptidation. Int J Pept Protein Res.1985,26(1): 70-77.
    [124]Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy:the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res.2003,31(13):3784-3788.
    [125]Brange J, Hallund O, S(?)rensen E. Chemical stability of insulin 5. Isolation, characterization and identification of insulin transformation products. Acta Pharm Nordica.1992,4(4):223-223.
    [126]NDA 21-878. LEVEMIR(?) (insulin detemir [rDNA origin] injection).2005. http://www.accessdata.fda.gov/drugsatfda docs/label/2005/0218781bl.pdf. Accessed on 08.10.2010
    [127]Lapidot Y, Rappoport S, Wolman Y. Use of esters of N-hydroxysuccinimide in the synthesis of N-acylamino acids. J Lipid Res.1967,8(2):142-145.
    [128]Lindsay D, Shall S. The acetylation of insulin. Biochem J.1971,121(5):737-745.
    [129]Baker JC, Chen VJ, Hanquier JM, Kriauciunas AK, Moser BA, Shuman RT. Selective acylation of epsilon-amino groups. US Pat:5646242.1997-07-08.
    [130]J·C·贝克,V·J·陈,J·M·汉奎尔,A·V·克里奥修纳斯,B·A·莫萨,R·T·舒曼.ε-氨基的选择性酰化.中国发明专利:CN 1171742A.1998-01-28.
    [131]Markussen J, Havelund S, Kurtzhals P, Andersen A, Halstrem J, Hasselager E, Larsen U, Ribel U, Schaffer L, Vad K. Soluble, fatty acid acylated insulins bind to albumin and show protracted action in pigs. Diabetologia.1996,39(3):281-288.
    [132]Kurtzhals P, Havelund S, Jonassen I, Kiehr B, Larsen U, Ribel U, Markussen J. Albumin binding of insulins acylated with fatty acids:characterization of the ligand-protein interaction and correlation between binding affinity and timing of the insulin effect in vivo. Biochem J.1995,312(3):725-731.
    [133]国家药典委员会.中华人民共和国药典.二部.北京:中国医药科技出版社.2010.
    [134]Swinnen SG, Holleman F, DeVries JH. The interpretation of glucose clamp studies of long-acting insulin analogues:from physiology to marketing and back. Diabetologia.2008,51(10):1790-1795.
    [135]Fukuta H, Mori A, Urumuhan N, Lee P, Oda H, Saeki K, Kurishima M, Nozawa S, Mizutani H, Mishina S. Characterization and comparison of insulin resistance induced by cushing syndrome or diestrus against healthy control dogs as determined by euglycemic-hyperinsulinemic glucose clamp profile glucose infusion rate using an artificial pancreas apparatus. J Vet Med Sci.2012,74(11): 1527-1530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700