用户名: 密码: 验证码:
医用多孔钛基金属材料制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用粉末冶金法制备多孔钛、多孔Ti-Ag合金和多孔Ti-Si合金材料,重点研究多孔钛基金属材料的制备工艺,以及球磨工艺、Ag、Si元素对多孔钛基金属材料的微观结构、力学性能、磷灰石形成能力及细胞毒性的影响。通过行星球磨获得不同特性的钛粉末、Ti-Ag混合粉、Ti-Si混合粉,以尿素为造孔剂,在氩气气体保护气氛下高温烧结获得多孔钛、多孔Ti-Ag合金和多孔Ti-Si合金材料,并对其进行碱处理表面活化改性,通过模拟体液浸泡实验评价碱处理后多孔钛基金属材料的磷灰石形成能力。采用激光粒度分析仪、X射线衍射仪、扫描电子显微镜分析不同球磨工艺下制备的钛粉末的粒径、微观结构。采用压缩试验测试制备的多孔钛基金属材料的力学性能。采用X射线衍射仪、扫描电子显微镜、傅里叶变换红外光谱仪分析多孔钛基金属材料碱处理改性后的孔隙特征、微观结构,以及模拟体液浸泡后试样表面羟基磷灰石生长情况。采用MTT法评价多孔钛、多孔Ti-Ag合金和多孔Ti-Si合金材料的细胞毒性。
     不同行星球磨时间(1h、5h、10h)制备的α-Ti钛粉末平均粒径29.25~1.84μm,体积比表面积0.24~3.90m~2/mm~3,钛粉末由α-Ti钛颗粒组成。球磨时间增加钛颗粒粒径减小,体积比表面积增加,钛晶粒逐渐细化;球磨时间5h时球磨工艺的细化效率最高。制备的多孔钛的孔隙大小350±150μm,孔隙率46.5~66.5%,制备的多孔钛物相结构为α-Ti+TiO,抗压强度15.7~61.9MPa,弹性模量0.9~1.9GPa。球磨时间增加,制备的多孔钛孔隙率下降,孔隙尺寸减小,压缩强度和弹性模量升高。球磨时间增加,多孔钛中TiO相量和多孔钛表面含氧量增加。
     行星球磨5h制备不同Ag含量(1wt%、3wt%、5wt%)的Ti-Ag混合粉平均粒径2.08~2.13μm,体积比表面积3.37~3.46m~2/mm~3。添加少量(1~5wt%)Ag有利于细化混合钛粉粒径,但细化效果较弱。Ti-Ag混合粉末由α-Ti钛颗粒和均匀分布的单质Ag颗粒组成,球磨过程没有发生物相变化,仅形成片状的机械混合结构的Ti-Ag复合体。多孔Ti-Ag合金材料的孔隙大小350±150μm,孔隙率57.8~59.5%,物相组成为α-Ti和TiO,抗压强度27.9~32.8MPa,弹性模量1.2~1.5GPa。Ag含量增加,多孔Ti-Ag合金孔隙率下降,压缩强度和弹性模量升高。
     行星球磨球磨5h制备不同Si含量(1wt%、3wt%、5wt%)Ti-Si混合粉,平均粒径1.94~2.11μm,体积比表面积3.40~3.69m~2/mm~3。添加少量(1~5wt%)Si有利于细化混合粉粒径,但细化效果较弱。Ti-Si混合粉末由α-Ti钛颗粒和均匀分布的单质Si颗粒组成,球磨过程没有发生物相变化,仅形成片状的机械混合结构的Ti-Si复合体。多孔Ti-Si合金材料的孔隙大小300±200μm,孔隙率46.2~55.8%,物相结构为α-Ti、Ti_3Si_5和TiO,抗压强度35.9~58.2MPa,弹性模量1.6~2.0GPa。Si含量增加,多孔Ti-Si合金孔隙率下降,压缩强度和弹性模量升高。
     多孔钛由于孔隙的存在而降低了弹性模量,达到与骨组织弹性模量的匹配,但同时也造成了力学性能的显著下降。本文实验结果表明,增加钛粉球磨时间可以提高多孔钛的力学性能,满足人体骨替代材料的孔隙和力学性能要求,但由于钛颗粒表面能的增加,容易引入过多的杂质。合金元素Ag的引入可提升多孔钛基材料的力学性能,但易造成多孔钛基材料孔壁出现微孔,从而对多孔钛基材料力学性能改善作用有限。合金元素Si的引入可以显著提高多孔钛基材料的力学性能,通过与Ti发生强烈的扩散反应,可有效地促进钛粉的烧结过程。
     碱处理后在多孔钛基材料表面获得微纳米网络结构的活化层,提高了多孔钛基材料磷灰石形成能力。模拟体液浸泡实验结果表明,钛粉末球磨时间增加,制备的多孔钛碱处理后表面羟基磷灰石形核能力升高。Ag含量增加,碱处理后多孔Ti-Ag合金材料表面羟基磷灰石形核能力降低。Si含量增加,碱处理后多孔Ti-Si合金材料表面羟基磷灰石形核能力增强。
     细胞毒性实验结果表明:多孔钛、多孔Ti-Ag合金、多孔Ti-Si合金材料的细胞毒性评价均为1级。Ag和Si的加入没有恶化多孔钛的的细胞毒性。碱处理对多孔钛细胞毒性基本没有影响,对多孔Ti-Ag合金材料和多孔Ti-Si合金材料的细胞毒性产生的影响也很小。
Porous Ti-based metallic materials were fabricated by powder metallurgy. The effects ofpowder metallurgy process and addition of Ag, Si element on the microstructure, mechanicalproperties, biological activity, biological safety of the Ti-based metallic materials, weresystematically investigated. The powders of titanium, Ti-Ag mixed powder and Ti-Si mixedpowders were obtained by planet milling. With urea particles as the space-holder, the porousTi-based metallic materials were sintered at high temperature under Ar atmosphere. Alkalitreatment was introduced to modificate the surface activation of the porous Ti-based metallicmaterials. The apatite-inducing ability was evaluated by simulation body fluid (SBF)immersion test. The particle sizes, microstructure of powders were investigated by scanningelectron microscope (SEM), X-ray diffraction (XRD), laser particle size analyzer. Themechanical properties of porous Ti-based metallic materials were revealed by compressiontest. porosity characteristics, microstructure of prous Ti-based metallic materials before andafter alkali treatment, as well as the apatite growth after soaking in the SBF, were investigatedby scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectronspectroscopy (XPS), Fourier transform infrared spectrum (FT-IR). The cytotoxicity of porousTi-based metallic materials was evaluated by the MTT method.
     The average particale size and ratio of surface area to volume of the titanium powderswith different milling time (1h,5h,10h), varied respectively from29.25μm to1.84μm andfrom0.24m~2/mm~3to3.90m~2/mm~3. With the increase of the ball milling time, titaniumparticles were refined with less particle size and higher ratio of surface area, as well as thegrain size of titanium particle more finer. The efficiency of ball milling process would be thehighest for5hours’ balling time, and be lower with more ball milling time. Titanium powderswere consisted of α-Ti phase particles. The pore size, porosity, elastic modulus andcompressive strength of the porous titaniu materials fabricated by the different titaniumpowders, varied respectively from200μm to500μm, from46.5%to66.5%, from0.9GPa to1.9GPa, from15.7MPa to61.9MPa. With the increase of the ball milling time, the pore sizeand the porosity of the porous titanium mateials decrease, but the elastic modulus and thecompression strength increase. Porous titanium materials consist of α-Ti phase and TiO phase, with longer ball milling time of titanium powders more TiO formed and higher oxygencontent at the porous titanium surface.
     The average particale size and ratio of surface area to volume of the Ti-Ag powders withdifferent Ag content (1wt%,3wt%,5wt%) after5hours’s milling time, variedrespectively2.08μm to2.13μm and from3.37m~2/mm~3to3.46m~2/mm~3. It was helpful torefining powder particle size that a small amount of Ag (1-5wt%) was added to the mixtureof titanium powders. The Ti-Ag powders were consisted of α-Ti phase particles and Agparticles with uniform distribution. No reaction happened during the balling milling process,but a lamellar complex mechanical mixing Ti-Ag structure was formed in the powders. Thepore size, porosity, elastic modulus and compressive strength of the porous Ti-Ag materialsfabricated by the different Ti-Ag powders, varied respectively from200μm to500μm, from57.8%to59.5%, from1.2GPa to1.5GPa, from27.9MPa to32.8MPa. Porous Ti-Agmaterials consist of α-Ti phase and TiO phase. With Ag content increasing, the pore size andthe porosity of the porous Ti-Ag materials decrease, but the elastic modulus and thecompression strength increase.
     The average particale size and ratio of surface area to volume of the Ti-Si powders withdifferent Si content (1wt%,3wt%,5wt%) after5hours’s milling time, varied respectivelyfrom1.94μm to2.11μm and from3.40m~2/mm~3to3.69m~2/mm~3. It was helpful to refiningpowder particle size that a small amount of Si (1-5wt%) was added to the mixture oftitanium powders. The Ti-Si powders were consisted of α-Ti phase particles and Si particleswith uniform distribution. No reaction happened during the balling milling process, but alamellar complex mechanical mixing Ti-Si structure was formed in the powders. The poresize, porosity, elastic modulus and compressive strength of the porous Ti-Si materialsfabricated by the different Ti-Si powders, varied respectively from100μm to500μm, from46.2%to55.8%, from1.6GPa to2.0GPa, from35.9MPa to58.2MPa. Porous Ti-Simaterials consist of α-Ti phase, Ti3Si5phase and TiO phase. With Si content increasing, moreTi3Si5formed, the pore size and the porosity of the porous Ti-Si materials decrease, but theelastic modulus and the compression strength increase. Porous Ti-base material prepared inthis strudy, meet requirements of pore and mechanical performance from human body bonesubstitute materials.
     The pores are intrudeced to reduce the elastic modulus of the porous Ti-based materials for matching with the elatic modulus of bone tissue, but also lead to significant reduction ofmechanical properties. There are large differences of porous Ti-based materials prepared bydiference methods and process parameters. The experiment results show that the mechanicalproperties of porous Ti-based materials prepared by the powders with longer milling timewould be better to meet requirements of mechanical performance from human body bonesubstitute materials, but more impurities brought to the porous Ti-based materials. Theaddition of Ag element could improve the mechanical properties of porous Ti-based materials,but it is limited for the presence of the microns wide hole in the cell wall. The addition of Sielement could improve significantly the mechanical properties of porous Ti-based materials,which effectively promoting the titanium powder sintering process through strong diffusionreaction.
     After alkali treatment, activation layer of micro/nano network structure was formed onthe surface porous Ti-base materials which could improve the Ti-base materials biologicalactivity. It was indicated by the results of the simulated body fluids soaking experiment. Thenucleation ability of apatit on the porous titanium surface, fabricated by the titanium powderwith longer ball milling time, would be stronger. Thus, porous titanium fabricated by thetitanium powder with longer ball milling time would show better apatite-inducing ability.With Ag content increase, the nucleation ability of apatite on the porous Ti-Ag materialssurface would be weaker. Thus, addition of Ag would reduce the apatite-inducing ability ofporous Ti-based materials. With Si content increase, the nucleation ability of apatite on theporous Ti-Si materials surface would rise. Thus, addition of Si would increase theapatite-inducing ability of porous Ti-based materials.
     The cytotoxicity experiment results show that the porous Ti-base materials prepared bypowder metallurgy have good biological safety. The cytotoxicity of porous titanium, porousTi-Ag and porous Ti-Si materials was below grade1. Alkali treatment has no evident effecton the porous titanium cytotoxicity, and a little negative effect on the Ti-Ag and porous Ti-Simaterials.
引文
[1] Biehl V, Breme J. Metallic biomaterials[J]. Materialwissenschaft Und Werkstofftechnik.2001,32(2):137-141P
    [2] Elias C N, Lima J H C, Valiev R, Meyers M A. Biomedical applications of titanium andits alloys[J]. JOM.2008,60(3):46-49P
    [3] Wagner H, Wagner M. Conus hip prosthesis[J]. Acta Chirurgiae Orthopaedicae EtTraumatologiae Cechoslovaca.2001,68(4):213-221P
    [4] Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedicalapplications[J]. Journal of the Mechanical Behavior of Biomedical Materials.2008,1(1):30-42P
    [5] Genfen A. Computational simulations of stress shielding and bone resorption aroundexisting and computer designed orthopedic screws[J]. Medical Biological Engineeringand Computing.2002,40(3):311-322P
    [6] Genfen A. Optimizing the biomechanical compatibility of or thopedic screws for bone fracture fixation[J]. Medical Engineering and Physics.2002,24(5):337-347P
    [7]姜红江,王玉林.医用钛合金的表面改性[J].生物骨科材料与临床研究.2005,2(4):28-30页
    [8]黄伟九,李兆峰.医用钛合金表面改性研究进展[J].材料导报.2006,20:369-372页
    [9]庞鹏沙,陈柳珠,李卫.医用钛基生物活性材料研究[J].材料导报.2006,20(3):68-70页
    [10] Shabalovskaya S A. Surface corrosion and biocompatibility aspects of Nitinol as animplant material[J]. Biomedical Materials and Engineering.2002,12(1):69-109P
    [11]李青.钛合金表面涂层应用于生物骨的研究[J].生物骨科材料与临床研究.2004,1(3):46-49页
    [12] Liu X Y, Paul K C, Ding C X. Surface modification of titanium, titanium alloys, andrelated materials for biomedical applications[J]. Materials Science Engineering: R:Reports.2004,47(3-4):49-121P
    [13]王蓉莉,李卫.降低医用钛合金弹性模量的方法[J].材料导报.2010,24(3):128-131页
    [14] Lópeza M F, Gutiérrezb A, Jiméneza J A. Surface characterization of new non-toxictitanium alloys for use as biomaterials[J]. Surface Scienc.2001,482-485:300-305P
    [15] Jones F H. Teeth and bones: applications of surface science to dental materials andrelated biomaterials[J]. Surface Science Reports.2001,42(3-5):75-205P
    [16] Qu S X, Guo X, Weng J, Cheng J C Y, Feng B, Yeung H Y, Zhang X D. Evaluation ofthe expression of collagen type I in porous calcium phosphate ceramics implanted in anextra-osseous site[J]. Biomaterials.2004,25(4):659-667P
    [17] Ripamonti U. Soluble osteogenic molecular signals and the induction of boneformation[J]. Biomaterials.2006,27(6):807-822P
    [18] Advincula M C, Rahemtulla F G, Advincula R C, Ada E T, Lemons J E, Bellis S L.Osteoblast adhesion and matrix mineralization on sol-gel-derived titanium oxide[J].Biomaterials.2006,27(10):2201-2212P
    [19] Ramaswamy Y, Wu C, Hummel A, Combes V, Grau G, Zreiqat H. The responses ofosteoblasts, osteoclasts and endothelial cells to zirconium modifiedcalcium-silicate-based ceramic[J]. Biomaterials.2008,29(33):4392-4402P
    [20] Ozin G A, Varaksa N, Coombs N, Davies J E, Perovicd D D, Zilioxe M. Bone mimetics:a composite of hydroxyapatite and calcium dodecyl phosphate lamellar phase[J]. Journalof Materials Chemistry.1997,7(8):1601-1607P
    [21] Rho J Y,Liisa K S,Peter Z. Mechanieal properties and the hierarehieal strueture ofbone[J]. Medieal Engineering and Physies.1998,20(2):92-102P
    [22] Gibson L J, EAshby M. Cellular solids: structure and properties[M].Cambridge:Cambridge University Press.1997:152-200P
    [23]王月勤.低模量多孔Ti-Mg系生物复合材料的制备与性能研究[D].南京:南京航空航天大学,2010:1页
    [24] Suehanek W, Yoshimura M. Processing and properties of hydroxy apatite-basedbiomaterials of use as hardtissuere replacerement implants[J]. Journal of MaterialsResearch.1998,13(1):94-117P
    [25]王志刚.钛表面多孔化及生物活化的研究[D].济南:山东大学,2006:2-3页
    [26]李伯琼.多孔钛的孔隙特征和力学性能的研究[D].大连:大连交通大学,2005:2-6页
    [27]余耀庭,张兴栋.生物医用材料[M].天津:天津大学出版社.2000:120-126页
    [28]郑玉峰,李莉.生物医用材料学[M].西安:西北工业大学出版社.2009:8-12页
    [29] Cao W P, Hench L L. Bioactive materials[J]. Ceramics Internaional.1996,22:493-507P
    [30] Huiskes R, Welnans H, Riebergen B. The relationship between stress shielding and boneresorption around total hip stems and the effects of flexible materials[J]. ClinicalOrthopaedics and Related Research.1992,274:124-134P
    [31] Sumner D R, Gatante J D. Determinants of stress shielding:design versus materialsversus interface[J]. Clinical Orthopaedics and Related Research.1992,274:202-212P
    [32] Tengball P, Lundstrom I. Physico-chemical considerations of titanium as abiomaterials[J]. Clinical materials.1992,9(2):115-134P
    [33] Bothe R T. Beaton L E. Davenport H A. Reaction of Bone to Multiple Metallic Implants.Surg Gynecol Obstet.1940,71:598-602P
    [34]柯华,宁聪琴,贾德昌,周宇,宋桂明.羟基磷灰石及钛作为骨替代材料的研究进展[J].有色金属.2001,53(4):8-14页
    [35] Leventhal G S. Titanium, a metal for surgery[J]. The Journal of Bone and Joint Surgery.1951,33A(2):473-474P
    [36] Van Noort R. Titanium: the implant of today[J]. Journal of Materials Science.1987,22(11):3801-3811P
    [37] Yao J, Glant T T, Lark M W, Mikecz K, Jacobs J J, Hutchinson N I, Hoerrner L A,Kuettner K E, Galante J O. The potential role of fibroblasts in periprosthetic osteolysis:fibroblast response to Ti particles[J]. Journal of Bone and Mineral Research.1995,10(9):1417-1427P
    [38] Barrere F, Valk C M, Meijer G, Dalmeijer R A, Geoot K, Layrolle P. Osteointegration ofbiomimetic apatite coating applied onto dense and porous metal implants in femurs ofgoats[J]. Journal of Biomedical Materials Research.2003,67(1):655-665P
    [39] Marino C E B,Biaggio S R,Rocha-Filho R C, Bocchi N. Voltammetric stability ofanodic films on the Ti6A14V alloy in chloride medium[J]. Electrochimica Acta.2006,51:6580-6583P
    [40] Long M, Rack H J. Titanium alloys in total joint replacement-a materials scienceperspective[J]. Biomaterials.1998,19(18):1621-1639P
    [41] Wang K. The Use of Titanium for Medical Application in the USA[J]. Materials Scienceand Engineering.1996,213(1-2):134-137P
    [42] Yanovska A, Kuznetsov V, Stanislavov A, Danilchenko S, Sukhodub L. Synthesis andcharacterization of hydroxyapatite-based coatings for medical Implants obtained onchemically modified Ti6Al4V substrates[J]. Surface and Coatings Technology.2011,205(23-24):5324-5329P
    [43] Liu Y J, Luo J, Liu B, Zhang J Y. The cytocompatibility investigation of Ti6Al4Vmodified with a fluorine-contained copolymer thin film[J]. Applied Surface Science.2011,257(15):6429-6434P
    [44] Panjwani B, Satyanarayana N, Sinha S K. Tribological characterization of abiocompatible thin film of UHMWPE on Ti6Al4V and the effects of PFPE as toplubricating layer[J]. Journal of the Mechanical Behavior of Biomedical Materials.2011,4(7):953-960P
    [45] Semlitsch M, Staub F, Webber H. Titanium-Aluminum-Niobium Alloy, Development forBiocompatible, High Strength Surgical Implants[J]. Biomed Technik.1985,30(12):334-339P
    [46] Cui W F, Guo A H. Microstructures and properties of biomedical TiNbZrFe β-titaniumalloy under aging conditions[J]. Materials Science and Engineering.2009,527(1-2):258-262P
    [47]查树银,崔振铎,朱胜利,杨贤金.新型医用β-Ti13Nb13Zr合金组织[J].金属热处理.2006,31(2):57-59页
    [48] Niinonmi M, Kuroda D, Fukunaga K I, Morinaga M, Kato Y, Yashiro T, Suzuki A.Corrosion wear fracture of new β type biomedical titanium alloys[J]. Materials Scienceand Engineering A.1999,263(2):193-199P
    [49]张玉梅,郭天文,李佐臣.钛及钛合金在口腔应用的研究方向[J].生物医学工程学杂志.2000,17(2):206-208页
    [50] Kuroda D, Niinonmi M, Morinaga M, Kato Y, Yasshiro T. Design and mechanicalproperties of new β Type titanium alloys for implant materials[J]. Materials Science andEngineering A.1998,243(1-2):244-249P
    [51] Buly R L.Titanium wear debris in failed cemented total hip arthroplasty: an analysis of71cases[J]. The Journal of Arthroplasty.1992,7(3):315-323P
    [52]黄利军.新型医用高强低弹钛合金研究[D].北京:北京航空材料研究所,2006:21页
    [53] Daeulsi G, Passuti N. Effect of the macroporosity for osseous substitution of calciumphosphate ceramics[J]. Biomaterials.1990,11(1):86-87P
    [54] Hench L L. Bioceramics from concept to clinic[J]. Journal of the American CeramicSociety.1991,74(7):1487-1510P
    [55] Lu J X, Flautre B, Banselme K, et al. Role of interconnections in porous bioceramics onbone recolonization in vitro and in vivo[J]. Journal of Materials Science:Materials inMedicine.1999,10(2):111-120P
    [56] Brekke J H, Toth J M. Principles of tissue engineering applied to programmableosteogenesis[J]. Journal of Materials Research.1998,43:380-398P
    [57]胡紫英,李美姮,徐威,陈芊,胡望宇,苏勇.多孔钛的粉末冶金法制备及其力学性能[J].钛工业进展.2010,27(4):12-15页
    [58]李新化,郑治祥,汤文明,吕君,刘君武.羟基磷灰石生物陶瓷材料的现状及展望[J].合肥工业大学学报(自然科学版).2002,25(6):1148-1153页
    [59] Agrawal C M. Reconstructing the human body using biomaterials[J]. Journal of theMinerals Metals and Materials Society.1998,50(1):31-35P
    [60] Wen C E, Yamada Y, Shimdima K, Chino Y, Asahina T, Mabuchi M. Processing andmechanical properties of autogenous titanium implant materials[J]. Journal of MaterialsScience:Materials in Medicine.2002,13(4):397-401P
    [61] Head W C, Bauk D J, Emerson R H. Titanium as the material of choice for cementlessfemoral components in total hip Arthroplasty[J]. Clinical Orthopaedics and RelatedResearch.1995,311:85-90P
    [62] Ryad G, Pandit A, Apatsidis D P. Fabrication methods of porous metals for use inorthopaedic applications[J]. Biomaterials.2006,27(13):2651-2670P
    [63] Anselme K. Osteoblast adhesion on biomaterials[J]. Biomaterials.2000,21(7):667-681P
    [64] Cheal E, Spector M, Hayes W. Role of loads and prostheses material properties on themechanics of the proximal femur after total hip arthroplasty[J]. Journal of OrthopaedicResearch.1992,10(3):405-422P
    [65] Banhart J. Manufacture, characterisation and application of cellular metals and metalfoams[J].Progress in Materials Science.2001,46(6):559-632P
    [66]李伯琼,王德庆,陆兴.粉末冶金多孔钛的研究[J].大连铁道学院学报.2004,25(1):74-78页
    [67]黄培云.粉末冶金原理[M].北京:冶金工业出版社.1982: l-3页
    [68] Liu P S, Lian K M. Functional materials of porous metals made by P/M, electroplatingand some other techniques[J]. Journal of Materials Science.2001,36(21):5059-5072P
    [69] Oh I H, Nomura N, Hanada S. Microstructures and mechanical properties of poroustitanium compacts prepared by powder sintering[J]. Materials Transactions.2002,43(3):443-446P
    [70] Oh I H, Nomura N, Masahashi N, Hanad S. Mechanica properties of porous Titaniumcompacts prepared by powder Sintering[J]. Scripta Materialia.2003,49(12):1197-1202P
    [71] Ricceri R, Arcuri F, Matteazzi P. Porous titanium obtained by P/M[J]. Journal DePhysique Archives.2001,11:51-57P
    [72] Nomura N, Kohama T, Oh I H, Hanada S, Chiba A, Kanehira M, Sasaki K. Mechanicalproperties of porous Ti-15Mo-5Zr-3Al compacts prepared by powder sintering[J].Materials Science and Engineering.2005,25(3):330-335P
    [73] Goi K L S, Butler D L, Jarfors A E W, Yong J M S, Lim D C S. Elastic modulus ofsintered porous Ti-Si-Zr, using activation by Ti-Si mechanically alloyed powder andTiH2powder[J]. Materials Science and Engineering: A.2008,475(1-2):45-51P
    [74] Wen C E, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T. Processing ofbiocompatible porous Ti and Mg[J]. Scripta Materialia.2001,45(10):1147-1153P
    [75] Dewidar M, Mohamed H F, Lim J K. A new approach for manufacturing a high porosityTi-6Al-4V[J]. Journal of Materials Science and Technology.2008,24(6):931-935P
    [76] Esen Z, Bor S. Characterization of T-6Al-4V alloy foams synthesized by space holdertechnique[J]. Materials Science and Engineering: C.2011,528(7-8):3200-3209P
    [77] Nouri A, Hodgson P D, Wen Cuie. Effect of ball-milling time on the structuralcharacteristics of biomedical porous Ti-Sn-Nb alloy[J]. Materials Science andEngineering: C.2011,31(5):921-928P
    [78] Wang Y Q, Tao J, Zhang J L, Wang T. Effects of addition of NH4HCO3on porecharacteristics and compressive properties of porous Ti-10%Mg composites[J].Transactions of Nonferrous Metals Society of China.2011,21(5):1074-1079P
    [79] Li J P, Li S H, Groot K D, Layroll P. Preparation and characterization of poroustitanium[J]. Key Engineering Materials.2002,218-220:51-54P
    [80]李虎,虞奇峰,张波,王辉,范红松,张兴栋.浆料发泡法制备生物活性多孔钛及其性能[J].稀有金属材料与工程.2006,35(1):154-157页
    [81] Chu C L, Chung C Y, Lin P H, Wang S D. Fabrication and properties of porous NiTishape memory alloys for heavy load-bearing medical applications[J]. Journal ofMaterials Processing Technolgy.2005,169(1):103-107P
    [82] He G, Liu P, Tan Q. Porous titanium materials with entangled wire structure forload-bearing biomedical applications[J]. Journal of the Mechanical Behavior ofBiomedical Materials.2012,5(1):16-31P
    [83]刘培生,黄林国.多孔金属材料制备方法[J].功能材料.2002,33(1):5-11页
    [84] Zou C M, Zhang E L, Li M W, Zeng S Y. Preparation, Microstructure and mechanicalproperties of porous titanium sintered by Ti fibres[J]. Journal of Materials Science:Materials in Medicine.2008,19(1):401-405P
    [85]邹鹑鸣,张二林,曾松岩.纤维烧结多孔钛及其表面生长仿生Ca-P涂层[J].稀有金属材料与工程.2007,36(8):1394-1397页
    [86] Zhang E L, Zou C M. Porous Titanium and silicon-substituted hydroxyapatitebiomodification prepared by a biomimetic Process: characterization and in vivoevaluation[J]. Acta Biomaterialia.2009,5(5):1732-1741P
    [87] Kokubo T, Kim H M, Kawashita M. Novel bioactive materials with different mechanicalproperties[J]. Biomaterials.2003,24(13):2161-2175P
    [88]宁聪琴. Ti/HA生物复合材料的力学性能与生物学行为[D].哈尔滨:哈尔滨工业大学,2001:95页
    [89]邓迟,张亚平,高家诚.激光熔覆生物陶瓷涂层和界面的研究[J].应用激光.2006,26(1):21-23页
    [90]张亚平,高家诚,文静,王勇.钛基激光涂覆生物陶瓷涂层的生物相容性[J].中国生物医学工程学报.2002,21(3):242-245页
    [91] Katto M, Nakamura M, Tanaka T, Nakayama T. Hydroxyapatite coatings deposited bylaser-assisted Laser ablation method[J]. Applied Surface Science.2002,30(197-198):768-771P
    [92] SziliE J, Kumar S, SmartR S C, Nicolas H, Voelcher. Generation of stable surfaceconcentration of amino groupson silica coatedonto titanium subtrates by the plasmaEenhanced chemical vapour deposition method[J]. Applied Surface Science.2009,255(15):6846-6850P
    [93] Jones M I, Mccoll I R, Grant D M, Parker K G, Parker T L. Protein adsorption andplatelet attachment and activation, on TiN, TiC, and DLC Ccoatings on titanium forcardiovascular applications[J]. Journal of Biomedical Materials Research.2000,52(2):413-421P
    [94] Luo Z S, Cui F Z, Feng Q L,. Li H D, Zhu X D, Spector M. In vitro and in vivoevaluation of degradability of hydroxyapatite coatings synthesized by ion beam-assisteddeposition[J]. Surface and Coatings Technology.2000,131(1-3):192-195P
    [95]李旭东,翁杰,王培禄,赵纯培,张兴栋.离子束技术沉积羟基磷灰石薄膜的结构及溶解性能[J].无机材料学报.1998,13(4):541-546页
    [96]王昌祥,陈治清.离子束辅助沉积技术制备HA/TI植入材料的设计[J].生物医学工程学杂志.1999,16(2):140-142页
    [97] Gaona M, Lima R S, Marple B R. Nanostructured titania/hydroxyapatite compositecoatings deposited by high belocity oxy-fuel(HVOF) spraying[J]. Materials Science andEngineering A.2007,458(1-2):141-149P
    [98] Lima R S, Khor K A, Li H, Cheang P. HVOF spraying of nanostructured hydroxyapatitefor biomedical applications[J]. Materials Science and Engineering.2005,396(1-2):181-187P
    [99] Li M Q, Ma C, Shang D S. Hydroxyapatite graded coatings made through subsonicthermal sprapying[J]. Materials Science Forum.2003,423-425:327-330P
    [100] Lin D Y, Zhao Y T, Zhang Z. Preparation of hydroxyapatite coating deposited on thetitanium alloy surface with magnetron sputtering technique[J]. Chinese Journal ofClinical Rehabilitation.2006,10(33):155-157P
    [101] Ding S J. Properties and immersion behavior of magnetron-sputtered multi-layeredhydroxyapatite/titanium composite coatings[J]. Biomaterials.2003,24(23):4233-4238P
    [102] Maitz M F, Poon R W, Liu X Y, Pham M T, Chu P K. Bioactivity of titanium followingsodium plasma immersion ion implantation and deposition[J]. Biomaterials.2005,26(27):5465-5473P
    [103]周友龙,黄楠,张继春.爆炸法制备钛基体羟基磷灰石涂层试验研究[J].西南交通大学学报.2002,37(1):49-52页
    [104]贺永信,顾云峰,曹海萍,常程康,毛大立.羟基磷灰石涂层种植体骨愈合的实验研究[J].上海口腔医学.2002,11(4):335-339页
    [105] Zhan C, Leng Y, Chen J. Elastic and plastic behavior of plasma-sprayed droxyapatitecoating on a Ti6A14V substrate[J]. Biomaterials.2001,22(1):1357-1363P
    [106] Chang C K, Huang J Q, Xia J Y, Ding C.X. Study on crystallization kinetics of plasmasprayed hydroxyapatite coating[J]. Ceramics international.1999,25(5):479-483P
    [107] Yang Y C, Chang E, Hwang B H, Lee S.Y. Biaxial residual stress states ofplasma-sprayed hydroxyapatite coatings on titanium alloy substrate[J]. Biomaterials.2000,21(13):1327-1337P
    [108] Grassmann O, Heimann R B. Compositional and microstructural changes of engineeredplasma-sprayed hydroxyapatite coatings on Ti6Al4V substrates during incubation inprotein-free simulated body fluid[J]. Journal of Biomedical Materials Rsearch.2000,53(6):685-693P
    [109] Zheng X B, Huang M H, Ding C X. Bond strength of plasma-sprayed hydroxyapatite/Ticomposite coatings[J]. Biomaterials.2000,21(8):841-849P
    [110] Jaworski R, Pierlot C, Pawlowski L, Bigan M, Martel M. Design of the synthesis of fineHA powder for suspension plasma spraying[J]. Surface and Coatings Technology.2009,203(15):2092-2097P
    [111] Rakngarm A, Mutoh Y. Characterization and fatigue damage of plasma sprayed HAptop coat with Ti and HAp/Ti bond coat layers on commercially pure titanium substrate[J].Journal of the Mechanical Behavior of Biomedical Materials.2009,2(5):444-453P
    [112] Feng C F, Khor K A, Liu E J, Cheang P. Phase transformations in plasma sprayedhydroxyapatite coatings[J]. Scripta Materialia.2000,42(1):103-109P
    [113]曹辉亮,刘宣勇,丁传贤.医用钛合金表面改性的研究进展[J].中国材料进展.2009,28(9-10):9-15页
    [114] Hwang K, Lim Y. Chemical and structural changes of hydroxyapatite films by using asol-gel method[J]. Surface and Coatings Technology.1999,115(2-3):172-175P
    [115] Liu D M, Yang Q Z, Troczynski T. Sol-gel hydroxyapatite coatings on stainless steelsubstrates[J]. Biomaterials.2002,23(3):691-698P
    [116] Hwang K, Song J, Kang B, Park Y. Sol-gel derived hydroxyapatite films on aluminasubstrates[J]. Surface and Coatings Technology.2000,123(2):252-255P
    [117] Paital S R, Dahotre N B. Calcium phosphate coatings for bio-implant applications:materials, performance factors, and methodologies[J]. Materials Science andEngineering.2009,66(1-3):1-70P
    [118] Arnould C, Volcke C, Lam arque C, Thiry P A, Delhalle J, Mekhalif Z. Titaniummodified with layer-by-layer sol-gel tantalum oxide and an organod iphosphonic acid: acoating for hydroxyapatite growth[J]. Journal of Colloid and Interface Science.2009,336(2):497-503P
    [119] Im K H, Lee S B, Kim K M, Lee Y K. Improvement of bonding strength to titaniumSurface by Sol-Gel Derived Hybrid Coating of Hydroxyapatite and Titania by Sol-Gelprocess[J]. Surface and Coatings Technology.2007,202(4-7):1135-1138P
    [120] Milella E, Cosentino F, Licciulli A, Massaro C. Preparation and characterization oftitania/hydroxyapatite composite coatings obtained by sol-gel process[J]. Biomaterials.2001,22(11):1425-1431P
    [121] Harle J, Kim H W, Jonathan N M, Knowles C, Salih V. Initial responses of humanosteoblasts to sol-gel modified titanium with hydroxyapatite and titania composition[J].Acta Biomaterialia.2006,2(5):547-556P
    [122] Hsieh M F, Perng L H, Chin T S. Hydroxyapatite coating on Ti6Al4V alloy using asol-gel derived precursor[J]. Materials Chemistry and Physics.2002,74(3):245-250P
    [123] Yang W Z, Zhou C X. Xiao B. Bioactivity of sol-gel derived apatite/wollastonite porousbioactive glass-ceramic[J]. Chinese Journal of Clinical Rehabilitation.2006,10(9):185-187P
    [124] Weng W J, Zhang S, Cheng K, Qu H B, Du P Y, Shen G, Yuan J, Han G. Sol-gelpreparation of bioactive apatite films[J]. Surface and Coatings Technology.2003,167(2-3):292-296P
    [125]马臣,王颖慧,曲立杰,张向宇.钛合金微弧氧化技术的研究现状及展望[J].中国陶瓷工业.2007,14(1):46-49页
    [126]李利群,袭建军,姚英学.钛合金微弧氧化技术的研究[J].焊接.2008,(5):15-18页
    [127] Song W H, Ryu H S, Hong S H. Apatite induction on Ca-containing titania formed bymicro-arc oxidation[J]. Journal of the USA Ceramic Society.2005,88(9):2642-2644P
    [128] Wang Y M, Jiang B L, Lei T Q, Guo L X. Microarc oxidation coatings formed onTi6A14V in Na2SiO3system solution: microstructure, mechanical and tribologicalproperties[J]. Suface and Coatings Technology.2006,201(1-2):82-89P
    [129] Song W H, Jun Y K, Han Y, Hong S H. Biomimetic apatite coatings on micro-arcoxidized titania[J]. Biomaterials.2004,25(17):3341-3349P
    [130] Takebe J, Itoh S, Okada J, Ishibashi K. Anodic oxidation and hydrothermal treatment oftitanium results in a surface that causes increased attachment and altered cytoskeletalmorphology of rat bone marrow stromal cells in Vitro[J]. Journal of BiomedicalMaterials Research.2000,51(3):398-407P
    [131] Wei D Q, Zhou Y, Jia D C, Wang Y M. Influence of applied voltage on the structure ofmMicro-plasma oxidized titania coating that formed in an electrolyte containingnano-HA and calcium and phosphate salts[J]. Key Engineering Materials.2008,368-372:1209-1211P
    [132] Wei D Q, Zhou Y, Wang Y M, Jia D C. Effect of dehydration on structure and inductioncapability for apatite formation of anodic spark deposited TiO2-based film with chemicalmodification[J]. Thin Solid Film.2008,516:6413-6420P
    [133]魏大庆,周玉,王亚明,贾德昌.微弧氧化钛合金表面形成含钙磷生物梯度涂层研究[J].稀有金属材料与工程.2008,37(1):569-572页
    [134] Wei D Q, Zhou Y. Characteristic and biocompatibility of the TiO2-based coatingscontaining amorphous calcium phosphate before and after heat treatment[J]. AppliedSurface Science.2009,255(12):6232-6239P
    [135]黄紫洋,刘榕芳,肖秀峰.电泳沉积羟基磷灰石生物陶瓷涂层的研究进展[J].硅酸盐学报.2003,31(6):591-597页
    [136] Olbrich K C, Andersen T T, Blumenstock F A, Bizios R. Surfaces modified withcovalently-immobilized adhesive peptides affect fibroblast population motility[J].Biomaterials.1996,17(8):759-764P
    [137] Stoch A, Bro ek A, Kmita G, Stoch J, Jastrzebski W, Rakowska A. Electrophoreticcoating of hydroxyapatite on titanium implants[J]. Journal of Molecular Structure.2001,596(1-3):191-200P
    [138] Shirkhanzadeh M. Calcium phosphate coatings prepared by electrostallization fromaqueous electrolytes[J]. Journal of Materials Science: Materials in Medicine.1995,6:90-93P
    [139] Shirkhanzadeh M. Bioactibe calcium phosphate coatings prepared byelectrodeposition[J]. Journal of Materials Science Letters.1991,10(23):1415-1417P
    [140] Zhang Y Y, Tao J, Pang Y C, Wang W, Wang T. Electrochemical deposition ofhydroxyapatite coatings on titanium[J]. Transactions of Nonferrous Metals Society ofChina.2006,16(3):633-637P
    [141] Nishiguchi S, Kato H, Fujita H. Titanium metal form direct bonding to bone after alkaliand heat treatment[J]. Biomaterials.2001,22(18):2525-2532P
    [142] Kokubo T, Kim H M, Miyaji F, Takadama H, Miyazaki T. Ceramic-metal andceramic-ploymer composites prepared by a biomimetic process[J]. Composites Part A:Applied Science and Manufacturing.1999,30(4):405-409P
    [143]徐淑华,王迎军,罗承萍.生物羟基磷灰石涂层材料的研究进展[J].材料导报.2002,26(1):48-56页
    [144]魏大庆. Ti6Al4V表面微弧氧化生物涂层结构修饰与磷灰石形成动力学[D].哈尔滨.哈尔滨工业大学,2008:16-17页
    [145] Kim H M, Miyaji F, Kokubo T, Nakamura T. Preparation of bioactive Ti and its alloysvia simple chemical surface treatment[J]. Journal of Biomedical Materials Research.1996,32(2):409-417P
    [146] Kim H M, Miyaji F, Kokubo T, Nishiguchi S, Nakamura T. Graded surface structure ofBioactive titanium prepared by chemical treatment[J]. Journal of Biomedical MaterialsResearch.1999,45(2):100-107P
    [147] Kim H M, Kokubo T, Fujibayashi S, Nishiguchi S, Nakamura T. Bioactive macroporoustitanium surface layer on titanium substrate[J]. Journal of Biomedical Materials Research.2000,52(3):553-557P
    [148] Wang C X, Wang M, Zhou X. Nucleation and growth of apatite on chemically treatedtitanium alloy: an electrochemical impedance spectroscopy study[J]. Biomaterials.2003,24(18):3069-3077P
    [149] Takadama H, Kim H M, Kokubo T, Nakamura T. An X-Ray photoelectron spectroscopystudy of the process of apatite formation on bioactive titanium metal[J]. Journal ofBiomedical Materials Research.2001,55(2):185-193P
    [150] Fujibayashi S, Nakamura T, Nishiguchi S, Tamura J, Uchida M, Kim H M, Kokubo T.Bioactive titanium: Effect of sodium removal on the bone-bonding ability of bioactivetitanium prepared by alkali and heat treatment[J]. Journal of Biomedical MaterialsResearch.2001,56(4):562-570P
    [151] Kato H, Nakamura T, Nishiguchi S, Matsusue Y, Kobayashi M, Miyazaki T, Kim H M,Kokubo T. Bonding of alkali-and heat-treated tantalum implants to bone[J]. Journal ofBiomedical Materials Research.2000,53(1):28-35P
    [152] Yan W Q, Nakamura T, Kobayashi M, Kim H M, Miyaji F, Kokubo T. Bonding ofchemically treated titanium implants to bone[J]. Journal of Biomedical MaterialsResearch.1997,37(2):267-275P
    [153] Gao Z F, Li Q Y, He F, Huang Y, Wan Y Z. Mechanical modulation and bioactivesurface modification of porous Ti–10Mo alloy for bone implants[J]. Materials andDesign.2012,42:13-20P
    [154] Liang F H, Zhou L, Wang K G. Apatite formation on porous titanium by alkali andheat-treatment[J]. Surface and Coatings Technology.2003,165(2):133-139P
    [155] Buser D, Nydegger T, Oxland T,Cochran D L, Schenk R K, Hirt H P, Snétivy D, NolteL P. Interface shear strength of titanium implants with asandblasted and acid-etehedsurfsce: a biomeehanical study in the maxilla of miniature pigs[J]. Journal of BiomedicalMaterials Research.1999,45(2):75-83P
    [156] Pan J, Liao H, Leygraf C, Thierry D, Li J. Variation of oxide films on titanium inducedby osteoblast-like cell culture and the influence of an H2O2pretreatment[J]. Journal ofBiomedical Materials Research.1998,40(2):244-256P
    [157] Turkan U, Guden M. The effect of surface treatment on CaP deposition of Ti6Al4Vopen cell foams in SBF solution[J]. Ceramics International.2010,36(6):1805-1816P
    [158] Zhao L, Chu P K, Zhang Y, Wu Z. Antibacterial coatings on titanium implants[J].Joumal of Biomedical Materials Research.2009,91(1):470-480P
    [159] Lee D, Cohen R E, Rubner M F. Antibacterial properties of Ag nanoparticle loadedmultilayers and formation of magnetically direeted antibacterial microparticles[J].Langlluir.2005,21(21):9651-9659P
    [160] Kim J S, Kuk E, Yu K N, Kim J H, Park S J, Lee H J, Kim S H, Park Y K, Park Y H,Hwang C Y, Kim Y K, Lee Y S, Jeong D H, Cho M H. Antimicrobial effects of silvernanoparticles[J]. Nanomedicine.2007,3(1):95-101P
    [161] Yamamoto K, Ohashi S, Aono M, Kokubo T, Yamada I, Yamauchi J. Antibacterialaetivity of silver ions implanted in SiO2filler on oral streptococci[J]. Dental Materials.1996,12(4):227-229P
    [162] Yoshinari M, Oda Y, Kato T, Okuda K. Influence of surface modifications to titanium onantibacterial activity in vitro[J]. Biomaterials.2001,22(14):2043-2048P
    [163] Shimazaki T, Miyamoto H, Ando Y, Noda I, Yonekura Y, Kawano S, Miyazaki M,Mawatari M, Hotokebuchi T. In vivo antibacterial and silver-releasing properties ofnovel thermal sprayed silve-containing hydroxyapatite coating[J]. Joumal of BiomedicalMaterials Research Part B: Applied Biomaterials.2010,92(2):386-389P
    [164] Chen W, Liu Y, Courtney H S, Bettenga M, Agrawal C M, Bumgardner J D, Ong J L. InVitro antibacterial and biologieal properties of magnetron co-sputtered silver-containinghydroxyapatite coating[J]. Biomaterials.2006,27(32):5512-5517P
    [165] GaPido C G, Kobayashi H, Miyakawa O, Kohno S. Fatigue resistance of cast occlusalrests using Co-Cr and Ag-Pd-Cu-Au alloys[J]. Journal of Prosthetic Dentistry.2003,90(3):261-269P
    [166] Patro T K, Singh B P, Singh V. Corrosion behaviour of an indigenous Ag-Sn-Cu castdental alloy in artificial saliva[J]. Journal of Oral Rehabilitation.1998,25(4):292-298P
    [167] Koike M, Ferraeane J L, Adey J D, Fujii H, Okabe T. Initial mercury evaporation fromexperimental Ag-Sn-Cu amalgams containing Pd[J]. Biomaterials.2004,25(16):3147-3153P
    [168] Mante F, Greener E H, Gilbert J, Lin J H. The effect of matrix phase morphology on thestructure of Ag-Cu-Pd dispersed phase dential amalgam[J]. Joumal of OralRehabilitation.1995,22(9):711-715P
    [169] Herda E,Higuchi-Rusli R. Effects of palladium on the thermal behavior of thel-Phase of the Ag-Sn-Cu dental amalgam[J]. Materials Letters.1997,30(5):347-350P
    [170] Aiiyeh B S, Costagliola M, Hayek S N, Dibo S A. Effect of silver on burn woundinfection control and healing: review of the literature[J]. Bums.2007,33(2):139-148P
    [171] Klasen H J. Historical review of the use of silver in the treatment of burns. I. Earlyuses[J]. Bums.2000,26(2):117-130P
    [172] Klasen H J. A historical review of the use of silver in the treatment of burns. II.Renewed interest for silver[J]. Burns.2000,26(2):131-138P
    [173] Feng Q L, Wu J, Chen G Q, Cui F Z, Kim T N, Kim J O. A mechanistic study of theantibacterial effect of silver ions on escherichia coli and staphylococcus[J]. Journal ofBiomedical Materials Research.2000,52(4):662-668P
    [174] K.G Kostov, M. Ueda, Lepiensky M, Soares P C, Gomes G F, Silva M M, Reuther H.Surface modification of metal alloys by plasma immersion ion implantation andsubsequent plasma nitriding[J].Surface and Coatings Technology.2004,186(1-2):204-208P
    [175] Mueuer H J, Hirthe R W. Electrochemical characterization and immersion corrosion ofa consolidated silver dental biomaterial[J]. Biomaterials.2001,22(19):2635-2646P
    [176] Wang F, Yand H B, Fan Z K. Preparation and application of active compositeantibacterial material containing Ag+and Zn2+[J]. Journal of Wuhan University ofTechnology-Materials Science Edition.2005,20(12):238-241P
    [177] Tang H Q, Liu T, Liu X, Gu H Q, Zhao J. A study on biocompatibility and bactericidalproperties of pyrolytic carbon by silver ion implantation[J]. Nuclear Instrucments andMethods in Physics Research B.2007,255(2):304-308P
    [178] Alt V, Bechert T, Steinrucke P, Wagener M, Seidel P, Dingeldein E, Domann E,Schnettler R. An in vitro assessment of antibacterial properties and cytotoxicity ofnanoparticulate silver bone cement[J]. Biomaterials.2004,25(18):4383-4391P
    [179] Chi G J, Yao S W, Fan J, Wang H Z. Antibacterial activity of anodized aluminium withdeposited silver[J]. Sureface and Coatings Technology.2002,157(2-3):162-165P
    [180] Wang J, Li J X, Ling R, Zhao A, Li P, Leng Y X, Sun H, Huang N. Antibacterial activityof silver surface modified polyethylene terephthalate by filtered cathodic vacuum arcmethod[J]. Surface and Coatings Technoloy.2007,201(15):6893-6896P
    [181] Blaker J J, Nazhat S N, Boccaccini A R. Development and characterization ofsilver-doped bioactive glass coated sutures for tissue engineering and wound healingapplications[J]. Biomaterials.2004,25(7-8):1319-1329P
    [182] Marambio-Jones C, Hoek E M V. A review of the antibacterial effects of silvernanomaterials and potential implications for human health and the environment[J].Journal of Nanoparticle Research.2010,12(5):1531-1551P
    [183] Asharani P V, Low G L K, Hande M P, Valiyaveettil S. Cytotoxicity and genotoxicity ofsilver nanoparticles in human cells[J]. ACS Nano.2009,3(2):279-29P
    [184] Choi O, Deng K K, Kim N J, Ross L, Surampalli R Y, Hu Z Q. The inhibitory effects ofsilver nanoparticles, silver ions, and silver chloride colloids on microbial growth[J].Water Research.2008,42(12):3066-3074P
    [185] Chaloupka K, Malam Y, Seifalian A M. Nanosilver as a new generation of nanoproductin biomedical applications[J]. Trends in Biotechnology.2010,28(11):580-588P
    [186] Smetana A B, Klabunde K J, Marchin G R, Sorensen C. M. Biocidal activity ofnanocrystalline silver powders and particles[J]. Langmuir.2008,24(14):7457-7464P
    [187] Morones J R, Elechiguerra J L, Camacho A. C, Holt K, Kouri J B, Ramirez J T,Yacaman M. The bactericidal effect of silver nanoparticles[J]. Nanotechnology.2005,16(10):2346-2353P
    [188] Amro N A, Kotra L P, Wadu-Mesthrige K, Bulychev A, Mobashery S, Liu G Y.High-resolution atomic force microscopy studies of the Escherichia coli outer membrane:structural basis for permeability[J]. Langmuir.2000,16(6):2789-2796P
    [189] Park H J, Kim J Y. J. Kim, Lee H J, Hahn J S, Gu M B, Yoon J. Silver-ion-mediatedreactive oxygen species generation affecting bactericidal activity[J]. Water Research.2009,43(4):1027-1032P
    [190]梁金生,王静,金宗哲,王家胜.无机非金属材料的抗菌性能[J].山东陶瓷.2003,26(4):77-81页
    [191] Poon V K, Burd A. In vitro cytotoxity of silver: implication for clinical wound care[J].Burns.2004,30(2):140-147P
    [192] Bosetti M, Mass A, Tobin E, Cannas M. Silverc coated materials for external fixationdevices:in vitro biocompatibility and genotoxicity[J]. Biomaterials.2002,23(3):887-892P
    [193] Necula B S, Fratila-Apaehitei L E, Zaat S A, Apachitei I, Duszczyk J. In vitroantibacterial activity of porous TiO2-Ag composite layers against methicillin-resistantstaphylococcus aureus[J]. Acta Biomaterialia.2009,5(9):3573-3580P
    [194] Jing H, Yu Z, Li L. Antibacterial properties and corrosion resistance of Cu and Ag/Cuporous materials[J]. Journal of Biomedical Materials Research Part A.2008,87(1):33-37P
    [195] Shirkhanzadeh M, Azadegan M, Liu G Q. Bioactive delivery systems for the slowrelease of antibiotics: incorporation of Ag+ions into micro-porous hydroxyapatitecoatings[J]. Materials Letters.1995,24(1-3):7-12P
    [196] Zhao J, Feng H J, Tang H Q, Zheng J H. Bactericidal and corrosive properties of silverimplanied TiN thin films coated on AISI317stainless steel[J]. Surface and CoatingsTechnology.2007,201(9-11):5676-5679P
    [197] Zhao J, Feng H J, Tang H Q, Zheng J H. Bactericidal and corrosive properties of silverimplanied TiN thin films coated on AISI317stainless steel[J]. Surface and CoatingsTechnology.2007,201(9-11):5676-5679P
    [198] Wen M, Li Y Q, Zhang J M, Guan W M, Li Y C, WenCC, Hodgson P. Synthesis andcharacterization of nanostructured Ag on porous titania[J]. Applied Surface Science.2011,257(11):4836-4843P
    [199] Wen M, Zhou L M, Guan W M, Li Y Q, Zhang J M. Formation and bioactivity ofporous titania containing nanostructured Ag[J]. Applied Surface Science.2010,256(13):4226-4230P
    [200] Chen W, Oh S, Ong A P, Oh N, Liu Y, Courtney H S, Appleford M, Ong J L.Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatingsproduced using a sol-gel process[J]. Journal of Biomedical Materials Research Part A.2007,82(4):899-906P
    [201] Dowling D P, Betts A J, Pope C, Connell M. L M, Eloy R, Anlaud M N. Anti-bacterialsilver coatings exhibiting enhanced aectivity through the addition of platinum[J]. Surfaceand Coatings Technology.2003,163-164:637-640P
    [202] Feng Q L, Kim T N, Wu J, Park E S, Kim J O, Lim D Y, Cui F Z. Antibacterial effeetsof Ag-HAP thin films on alumina substrates[J]. Thin Solid Films.1998,335(1-2):214-219P
    [203] Jeon H J, Yi S C, Oh S G. Preparation and antibacterial effects of Ag-Si02thin films bysol-gel method[J]. Biomaterials.2003,24(27):4921-4928P
    [204] Wassall M A, Santin M, Isalberti C, Cannas M, Denyer S P. Adhesion of bacteria tostainless steel and silver-coated orthopedic external fixation pins[J]. Journal ofBiomedical Materials Research.1997,36(3):325-330P
    [205] Ahmed I, Ready D, Wilson M, Knowles J C. Antimicrobial effect of silver-dopedphosphate-based glasses[J]. Journal of Biomedical Materials Rsearch Part A.2006,79(3):618-626P
    [206] Masuda N, Kawashita M, Kokubo T. Antibacterial activity of silver-doped silica glassmicrospheres prepared by a sol-gel method[J]. Journal of Biomedical Materials ResearchPart B: Applied Biomaterials.2007,83(1):114-120P
    [207] Kumar R, Munstedt H. Silver ion release from antimicrobial polyamide/silverecomposites[J]. Biomaterials.2005,26(14):2081-2088P
    [208] Bellantone M, Williajms H D, Hench L L. Broad-Spectrum bactericidal activity ofAg2O-doped bioactive glass[J]. Antimicrobial Agents and Chemotherapy.2002,46(6):1940-1945P
    [209] Kawashita M, Tsuneyama S, Miyaji F, Kokubo T, Kozuka H, Yamamoto K.Antibacterial silver-containing silica glass prepared by sol-gel method[J]. Biomaterials.2000,21(4):393-398P
    [210] Alt V, Bechert T, Steinrücke P, Whgener M, Seidel P, Dingeldein E, Domann E,Selmettler R. An invitro assessment of the antibaeterial properties and cytotoxicity ofnanoparticulate silver bone cement[J].Biomaterials.2004,25(18):4383-4391P
    [211]葛志明.钛的二元系相图[M].北京:国防工业出版社.1977:5-6页
    [212] Shim H M, Oh K T, Woo J Y, Kim K N. Corrosion resistance of titanium-silver alloys inan artificail saliva containing fluoride ions[J]. Journal of Biomedical Materials ResearchPartB:Applied Biomaterials.2005,73(2):252-259P
    [213] Oh K T, Shim H M, Kim K N. Properties of titanium-silver alloys for dentalapplication[J]. Journal of biomedical materials research Patt B.2005,74(1):649-658P
    [214] Takahashi M, Kikuchi M, Takada Y, Okuno O. Mechanical properties andmicrostructures of dental cast Ti-Ag and Ti-Cu alloys[J]. Dental Materials Journal.2002,21(3):270-280P
    [215] Kikuchi M, Tankahashi M, Okuno O. Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cualloys[J]. Dental Materials.2006,22(7):641-646P
    [216] Takahashi M, Takada Y, Kikuchi M, Okuno O. Released ions and microstructures ofdental cast experimental Ti-Ag alloys[J]. Interface Oral Health Science.2007:311-316P
    [217] Zhang B B, Wang B L, Li L, Zheng Y F. Corrosion behavior of Ti-5Ag alloy with andwithout thermal oxidation in artificail saliva solution[J]. Dentl Materials.2011,27(3):214-220P
    [218] Zhang B B, Zheng Y F, Liu Y. Effect of Ag on the corrosion behavior of Ti-Ag alloys inartificial saliva solutions[J]. Dental Materails.2009,25(5):672-677P
    [219]张斌斌. Ti-Ag基合金的组织结构与生物性能[D].哈尔滨:哈尔滨工程大学,2011:37页
    [220] Kang D K, Moon S K, Oh K T, Choi G S, Kim K N. Properties of experimentaltitanium-silver-copper alloys for dental applications[J]. Journal of Biomedical MaterailsResearch Part B: Applied Biomaterials.2009,90(1):446-451P
    [221] Mayouf A M, Swayih A A, Mobarak N A, Jabab A S. Corrosion behavior of a newtitanium alloy for dental implantaplications in fluoride media[J].Materials Chemistry andPhysics.2004,86(2-3):320-329P
    [222] Zhang B B, Wang B L, Wang Y B, Li L, Zheng Y F, Liu Y. Development of Ti-Ag-Feternary titanium alloy for dental application[J]. Journal of Biommedical MaterialsRearch Part B.2012,100(1):185-196P
    [223] Oh K T, Joo U H, Park G H, Hwang C J, Kim K N. Effect of silver addition on theproperties of nickel-titanium alloys for dental applicaiton[J]. Journal of BiomedicalMaterials Research Part B:Applied Biomaterials.2006,76(2):306-314P
    [224] Zamponi C, Wutting M, Quandt E. Ni-Ti-Ag shape memory thin films[J]. ScriptaMaterialia.2007,56:1075-1077P
    [225] Quandt E, Zamponi C. Superelastic NiTi thin films for medical applications[J].Advances in Science and Technology.2008,59:190-197P
    [226] Zheng Y F, Zhang B B, Wang B L, Wang Y B, Li L, Yang Q B, Cui L S. Introduction ofantibaeterial function into biomedieal TiNi shapememory alloy by the addition ofelement Ag[J]. Acta Biomaterialia.2011,7(6):2758-2767P
    [227] Iyengar G V, Kollmer W E, Bowen H J M. The elemental composition of human tissuesand body fluids: a compilation of values for adults[M]. New York:Verlag Chemie.1978
    [228] A.M.Pietak,J.W.Reid,M.J.Stott,M.Sayer. Silicon substitution in the calcium phosphatebioceramics[J]. Biomaterials.2007,28(28):4023-4032P
    [229] Carlisle E M. Silicon: a possible factor in bone calcification[J]. Science.1970,167(3916):279-280P
    [230] Carlisle E M. A relationship between silicon and calcium in bone formation[J].Federation Proceedings.1970,29:565P
    [231] Carlisle E M. Silieon: A requirement in bone formation independent of vitamin[J].Caleified Tissue Intemational.1981,33(1):27-34P
    [232] Y. Tanizawa, T. Suzuki. Effects of silicate ions on the formation and transformation ofcalcium phosphates in neutral aqueous solutions[J]. Journal of the Chemical Society,Faraday Transactions.1995,91(19):3499-3503P
    [233] Damen J J,Ten Cate J M. Silica-induced precipitation of calcium phosphate in thepresence of inhibitors of hydroxyapatite formation[J]. Journal of Dental Research.1992,71(3):453-457P
    [234] Hott M, Pollak C D, Mominique M, Marie P J. Short term effects of organic silicon ontrabecular bone in mature ovariectomized rats[J]. Calcified Tissue International.1993,53(3):174-179P
    [235] Carlisle E M. Silicon: an essential element for the chick[J]. Nutrition Reviews.1982,40(7):210-213P
    [236] Schwarz K, Milne D B. Growth-promoting effects of silicon in rats[J]. Nature.1972,239:333-334P
    [237] Ni.S, Chang J, Chou L, Zhai W. Comparison of osteoblast-like cell responses to calciumsilicate and tricalcium phosphate ceramics in vitro[J]. Journal of Biomedical MaterialsRsearch Part B.2007,80(1):174-183P
    [238] Hing K A, Revell P A, Smith N, Buckland T. Effect of silicon level on rate, quality andprogression of bone healing within silicatesubstituted porous hydroxyapatite scaffolds[J].Biomaterials.2006,27(29):5014-5026P
    [239] Lai W, Garino J, Ducheyne P. Si excretion from bioactive glass implanted in rabbitbone[J]. Biomaterials.2002,23(1):213-217P
    [240] Hench L L. Splinter R J, Allen W C, Greenlee T K. Bonding mechanism at the interfaceof ceramic prosthetic materials[J]. Journal of Biomedical Materials Rsearch Part A.1971,5(6):117-141P
    [241] Hench L L, Wilson J. Surface-active biomaterls[J]. Science.1984,226:630-636P
    [242] Ducheyne P, Qui Q. Bioactive ceramics: the effect of surface reactivity on boneformation and function[J]. Biomaterials.1999,20(23-24):2287-2303P
    [243] Wan X H, Chang C K, Mao D L, Jiang L, Li M. Preparation and invitro bioactivities ofcalcium silicate nanophase materials[J]. Materials Science and Enginerring: C.2005,25(4):455-461P
    [244] Lin K L, Zhai W J, Ni S Y, Chang J, Zeng Y, Qian W J. Study for the mechanicalproperty and in vitro biocompatibility of CaSiO3ceramics[J]. Ceramcis International.2005,31(2):323-326P
    [245] Liu X, Ding C, Chu P K. Mechanism of apatite formation on wollastonitecoatings insimulated body fluids[J]. Biomaterials.2004,25(10):1755-1761P
    [246]林开利,常江,汪正.多孔硅酸钙生物陶瓷的制备及体外活性和降解性研究[J].无机材料学报.2005,20(3):692-698页
    [247] Siriphannon P, Hayashi S, Yasumori A,Okada K. Preparation and sintering of CaSiO3from coprecipitated powder using NaOH as precipitant and its apatite formation insimulated body fluid solution[J]. Journal of Materials Research.1999,14(2):529-536P
    [248] De Aza PN, Luklinska Z B, Anseau M, GuitiAn F, De Aza S. Morphological studies ofpseudowollastonite for biomedical application[J]. Journal of Microscopy.1996,182:24-31P
    [249] De Aza P N, GuitiAn F, Merlos A, Merlos A, Lora-Tamayo E, De Aza S.Bioceramics-simulated body fluid interfaces: pH and its influence of hydroxyapatiteformation[J]. Journal of Materials Science: Materials in Medicine.1996,7(7):399-402P
    [250] De Aza P N, Luklinska Z B, Martinez A, Anseau M R, Guiltitan, De Aza S.Morphological and structural study of pseudowollastonite implants in bone[J]. Journal ofMicroscopy.2000,197(1):60-67P
    [251] Dufrane D, Delloye C, McKay I J, et al. Indirect cytotoxicity evaluation ofpseudowollastonite[J]. Journal of Materials Science: Materials in Medicine.2003,14(1):33-38P
    [252] Kokubo T, Ito S, Sakka S, et al. Formation of a high-strength bioactive glass-ceramic inthe system MgO-CaO-SiO2-P2O5[J]. Journal of Materials Science.1986,21(2):536-540P
    [253] Liu X, Ding C X, Wang Z. Apatite formed on the surface of plasma-sprayedwollastonite coating immersed in simulated body fluids[J]. Biomaterials.2001,22(14):2007-2012P
    [254] Liu X, Ding C X. Plasma sprayed wollastonite/TiO2composite coatings on titaniumalloys[J]. Biomaterials.2002,23(20):4065-4077P
    [255] Liu X, Ding C X. Reactivity of plasma-sprayed wollastonite coating in simulated bodyfluids[J]. Journal of Biomedical Materials Rsearch Part A.2002,59(2):259-264P
    [256] Liu X, Ding C, Chu P K. Mechanism of apatite formation on wollastonite coatings insimulated body fluids[J]. Biomaterials.2004,25(10):1755-1761P
    [257] Hench L L, Wilson J. An introduction to bioceramics[M]. Singapore: World SeientificPublishing Co. Pte. Ltd.1993:80-139P
    [258] Vallet-Reg I M, Arcos D. Silicon substituted hydroxyapatites. A method to upgradecalcium phosphate based implants[J]. Journal of Materials Chemistry.2005,15(15):1509-1516P
    [259] Botelho C M, Brooks R A, Best S M, Lopes M A, Santos J D, Ruston N,Spence G,bonfield W. Human osteoblast response to silicon-substituted hydroxyapatite[J]. Journalof Biomedical Materials Rsearch Part A.2006,79(3):723-730P
    [260] Botelho C M, Brooks R A, Spence G, McFarlane I, Lopes M A, Best S M, Santos J D,Ruston N, bonfield W. Differentiation of mononuclear precursors into osteoclasts on thesurface of Si-substituted hydroxyapatite[J]. Journal of Biomedical Materials Rsearch PartA.2006,78(4):709-720P
    [261] N.Patel, S. Best, W. Bonfield, I.Gibson, K. Hing, E. Damien. A comparitive study onthe in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules[J].J ournal of Materials Science: Materials in Medicine.2002,13(12):1199-1206P
    [262] Balas F, Pérez-Pariente J, Vallet-Regí M. In vitro bioactivity of silicon-substitutedhydroxyapatites[J]. Journal of Biomedical Materials Research Part A.2003,66(2):364-375P
    [263] Kim S. R., Lee J. H., Kim.Y. T, Riu D H, Jung S J, Lee Y J, Chung S C, Kim Y H.Synthesis of Si, Mg substituted Hydroxyapatite and their sintering behavours[J].Biomaterials.2003,24(8):1389-1398P
    [264] Botelho C M, Brooks R A, Kawai T, Ogata S, Ohtsuki C, Best S M, Lopes M A, SantosJ D, Russhton N, Bonfied W. In vitro analysis of proteins adhersion to phase purehydroxyapatite and silicon substituted hydroxyapatite[J]. Key Engineering Materials.2005,284-286:461-464P
    [265] Langstaff S, Sayer M, Smith T, Pugh S M. Resorbable bioceramics based on stabilizedcalcium phosphates. PartⅡ: evaluation fo biological responsse[J]. Biomaterials.2001,22(2):135-150P
    [266] Mastrogiacoma M, Corsi A, Francioso E, Comite M D., Monetti F, Scaglione S, Favia A,Crovace A, Bianco P, Cancedda R. Reconstruction of extensive long bone defects insheep using resorbable biocermics based on silicon stabilized tracalcium phosphate[J].Tissue Engineering.2006,12(5):1261-1273P
    [267]董飞,何国强,张贵田.合金元素Si在钛合金中作用的研究进展[J].金属热处理.2007,32(11):5-10页
    [268] Wu H, Han Y F, Chen X C. Study on microstruetures and properties of Ti-Si eutectiealloys[J]. Chinese Journal of aeronautics.2003,16(1):42-46P
    [269] Saha R L, Nandy,T K.,Misra R D K,et al. Microstructural changes induced by ternaryaddit ions in a hypo-eutectic titanium-silicon alloy[J]. Journal of materials science.1991,26(10):2637-2644P
    [270]刘培生,马晓明.多孔材料检测方法[M].冶金工业出版社.2006:14页
    [271] Kokubo T. Bioactive Glass Ceramics: Properties and Applications[J]. Biomaterials.1991,12(2):155-163P
    [272] Habibovic P, Li J P, van der Valk CM, Meijer G, Layrolle P, Blitterswijk C A, Groot K.Biological performance of uncoated and octacalcium phosphate-coated Ti6A14V[J].Biomaterials.2005,26(1):23-36P
    [273] Nishiguchi S,Kato H,Neo M,Oka M,Kim HM,Kokubo T,Nakamura T. Alkali-andheat-treated porous titanium for orthopedic implants[J]. Journal of Biomedical MaterialsResearch.2001,54(2):198-208P
    [274] Nishiguchi S, Fujibayashi S, Kim H M, Kokubo T, Nakamura T. Biology of alkali-andheat-treated titanium implants[J]. Journal of Biomedical Materials Research Part A.2003,67(1):26-35P
    [275] Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yammamuro T. Solutions able to reproducein vivo surface structure changes in bioactive glassceramic A-W[J]. Journal ofBiomedical Materials Research.1990,24(6):721-734P
    [276]新宫秀夫.メカニカルスロィニヶの热力学[J].日本金属学会会报.1988,27(10):803-807页
    [277] Suryanarayana C. Mechanical alloying and milling[J]. Progress in Materials Science.2001,46(1-2):1-184P
    [278] Fecht H J. Nanostructure formation by mechanical attrition[J]. NanostructuredMaterials.1995,6(1-4):33-42P
    [279]谢焕文,蔡一湘,谭立新,刘辛.高能球磨制备涂料用超细钛粉[J].中国有色金属学报.2010,20:978-980页
    [280]陈玉勇,于宏宝,张德良,孔凡涛.低温高能球磨Ti/Al复合粉显微组织结构变化[J].稀有金属材料与工程.2008,37(2):236-239页
    [281]陈汉宾,吴护林,张隆平,贾代金,杨滨.液氮球磨过程中钛粉的形貌和组织演变[J].稀有金属材料与工程.2012,41(7):1255-1258页
    [282] Cen X B, Li Y C, Hodgson P D, Wen C. The importance of particle size in poroustitanium and nonporous counterparts for surface energy and its impact on apatiteformation[J]. Acta Biomaterialia.2009,5(6):2290-2302P
    [283] Niu W J. Bai C G, Qiu G B, Wang Q. Processing and properties of porous titaniumusing space holder technique[J]. Materials Science and Engineering A.2009,506(1-2):148-151P
    [284] Xiang C S, Zhang Y, Li Z F, Zhang H L, Huang Y P, Tang H P. Preparation andcompressive behavior of porous titanium prepared by space holder sintering process[J].Procedia Engineering.2012,27:768-774P
    [285] Li Y H, Chen R B, Qi G X, Wang Z T, Deng Z Y. Powder sintering of porous Ti-15Moalloy from TiH2and Mo powders[J]. Journal of Alloys and Compounds.2009,485(1-2):215-218P
    [286] Kim H M, Kim Y S, Woo K M, Park S J, Rey C, Kim Y, Kim J K, Ko J S. Dissolutionof poorly crystalline apatite crystals by osteoclasts determined on artificial thin-filmapatite[J]. Biomaterials.2001,56(2):250-256P
    [287] Jonasova L, Muller F A, Helebrant A, Strnad J, Greil P. Biomimetic apatite formationon chemically treated titanium[J]. Biomaterials.2004,25(7-8):1187-1194P
    [288] Kim H M,Miyaji F,Kokubo T. Effect of heat treatment on apatite-forming ability of Timetal induced by alkali treatment[J]. Journal of materials Sceince: Materials in medicine.1997,8(6):341-347P
    [289] Nishiguchi S, Nakamura T, Kobayashi M, Kim H M, Miyaji F, Kokubo T. The effect ofheat treatment on bone-bonding ability of alkali-treated titanium[J]. Biomaterials.1999,20(5):491-500P
    [290] Uchida M, Kim H M, Kokubo T, Fujibaryashi S, Nakamura T. Effect of water treatmenton the apatite-forming ability of NaOH-treated titanium metal[J]. Journal of Materialsresearch.2002,63(5):522-530P
    [291] Wen H B,Wijin J R. Liu Q, Groot D. A simple method to prepare calcium phosphatecoatings on Ti6A14V[J]. Journal of Materials Science: Materials in Medicine.1997,8(12):765-770P
    [292] Kokubo T. Apatite formation on surfaces of ceramics, metals and polymers in bodyenvironment[J]. Acta Materials.1998,46(7):2519-2527P
    [293] Kim H M, Miyaji F, Kokubo T, Nakamura T. Apatite-forming ability of alkali-treated Timetal in body environment[J]. Journal of the Ceramic Society of Japan.1997.105(2):111-116P
    [294] Takadama H, Kim H M, Kokubo T, Nakamura T. TEM-EDX study of mechanism ofapatite formation on bioactive titanium metal in simulated body fluid[J]. Journal ofBiomedical Materials Research.2001,57(3):441-448P
    [295]李虎.生物力学相容多孔钛的制备及其活化研究[D].成都:四川大学,2005:27-28页
    [296] Trambukis J, Munir Z A. Effect of particl dispersion on the mechanism of combustionsynthesis of titanium sillicide[J]. Journal of the American Cermic Society.1990,73(5):1240-1245P
    [297] Riley D P, Oliver C P, Kisi E H. In-situ neutron diffraction of titanium silicide, Ti5Si3,during selef-propagating high-temperature synthesis(SHS)[J]. Intermetallics.2006,14(1):33-38P
    [298]汤慧萍,黄伯云,刘咏,欧阳洪武.粉末冶金钛合金致密化研究的进展[J].稀有金属材料与工程.2003,32(9):677-680页
    [299] Kazuhiko M. A study on sintered titanium alloy produced by blended elementalprocess[J]. Journal of the Japan Society of Powder and Powder Metallurgy.1989,36(8):917-925P
    [300] Ren Z D, Huang Y F, Shen M, Song C L, Weng W J, Han G R, Ma N, Du P Y. Electricaland corrosion properties of the Ti5Si3thin films coated on glass substrate by APCVDmethod[J]. Journal of Non-Crystalline Solids.2011,357(15):2802-2809P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700