用户名: 密码: 验证码:
低熔点金属与不锈钢表面交互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着核电的快速发展,核电装备的国产化制造成为影响核电自主创新的关键环节。核电装备具有高可靠性和长寿命的特点,因此构件在加工制造过程中,对材料表面洁净度提出更高的要求。低熔点金属作为表面污染形式之一,尽管ASME和RCC-M标准明确禁止低熔点金属与过流部件表面接触,然而对低熔点金属如何与材料表面交互作用以及低熔点金属粘附后如何影响材料性能等问题的理解还不够深入。不锈钢是核电装备制造中广泛应用的材料,钝化是不锈钢的重要特性。但是,低熔点金属与不锈钢交互作用的研究还未见相关报道。因此本文研究低熔点金属与不锈钢之间的交互作用,分析不锈钢表面钝化状态对交互作用的影响规律并揭示交互作用机制,将对核电不锈钢装备的高洁净度制造提供理论依据和技术支持。
     本文以低熔点金属Sn和Zn为对象,研究Sn、Zn与新鲜表面、空气自钝化及化学钝化等典型不锈钢表面的交互作用,分析了交互作用后形成的Fe-Sn禾(?)Fe-Zn化合物组织结构演变特征,基于组织结构特征提出了钝化影响交互作用的评估方法,结合不锈钢钝化膜质量的显色检测表征,揭示了钝化对交互作用的影响机制,探讨了低熔点金属Sn、Zn与不锈钢交互作用后,形成的化合物对不锈钢常温腐蚀性能和高温腐蚀性能的影响。主要结论如下:
     (1)明确了低熔点金属Sn、Zn与不锈钢的交互作用。结果表明:当液相Sn与新鲜表面的不锈钢交互作用时,以形成片状和长条状的(Fe,Cr)Sn2化合物的方式发生冶金结合,固相Sn与不锈钢在220℃接触54h,不发生冶金结合作用;当液相和固相Zn与不锈钢交互作用时,以形成细小颗粒状的δ-(Fe,Cr)Zn10相和块状的ζ-(Fe,Cr)Zn13化合物的方式发生冶金结合。
     (2)阐明了不锈钢表面钝化状态对交互作用的影响规律。结果表明:对于不同钝化状态的304不锈钢与低熔点金属Sn、Zn的交互作用,空气自钝化使Fe-Sn冶金结合层不均匀生长,化学钝化进一步抑制Fe-Sn化合物的形成;而钝化处理不能有效抑制Zn在不锈钢表面的冶金结合作用。对于不同种类的不锈钢与低熔点金属Sn的交互作用,420不锈钢表面完全被Fe-Sn化合物覆盖,钝化处理降低了化合物的生长速率但不能抑制化合物的形成;Fe-Sn化合物在钝化的316不锈钢表面局部生长,不锈钢空气自钝化的时间越长,生长化合物的覆盖率越小,厚度越低;液相Sn与空气自钝化和化学钝化的2205不锈钢未发生冶金结合作用。
     (3)揭示了邻菲罗啉显色值—不锈钢钝化膜完整性—低熔点金属粘附程度之间的关系。结果表明:利用邻菲罗啉检测不锈钢表面,发现从新鲜表面到空气自钝化再到化学钝化,邻菲罗啉显色值逐渐降低,说明邻菲罗啉能够检测钝化膜的完整性,对比空气自钝化处理,化学钝化不锈钢表面生长相对较完整的钝化膜;不同钝化状态的不锈钢与低熔点金属Sn、Zn交互作用,发现形成化合物的粘附程度存在差异,从而提出表面覆盖率因子评价钝化膜对Sn、Zn与不锈钢交互作用的影响,建立覆盖率因子与显色值之间的关系,发现表面覆盖率因子与邻菲罗啉显色值之间存在线性关系,较大的邻菲罗啉显色值,钝化膜的完整性相对较低,钝化膜对低熔点金属Sn、Zn与不锈钢交互作用的阻碍能力降低,生长化合物的表面覆盖率增加。不锈钢表面钝化膜完整性是影响低熔点金属Sn、Zn与不锈钢交互作用的重要因素。
     (4)研究了交互作用形成的Fe-Sn和Fe-Zn化合物对不锈钢常温腐蚀性能和高温腐蚀性能的影响。结果表明:在常温腐蚀条件下,Fe-Sn化合物粘附区域易于形成点蚀坑,进而加速了不锈钢的点蚀,并且化合物粘附的比例越大,不锈钢点蚀的数量越多。在高温高压水腐蚀条件下,Fe-Sn和Fe-Zn化合物粘附使腐蚀产物由不规则颗粒状的α-(Fe,Cr)2O3和多面体块状的(Fe, Cr)3O4向SnO2、ZnO和大块状Fe的氧化物转变,在长时间高温氧化条件下,低熔点金属氧化物的剥落,进一步降低不锈钢基体的耐腐蚀性能。
With the rapid development of nuclear power, the equipment manufacturing in localization has become the key factor for the independent innovation. Nuclear power equipment should have the characteristics of high reliability and long service life. Therefore, the quality assurance requirements for cleanness of nuclear power equipment during manufacturing are proposed. Low melting point metal contamination is one of the surface contaminations during manufacturing. Though the contact of low melting point metal is strongly prohibited by ASME and RCC-M international standards; the phenomena associated with the influence of low melting point metal on the material as well as the interactions between them can be considered as the issues requiring an in-depth study. Stainless steel is a widely used construction material in nuclear power plant. Passivation is an important characterization for stainless steel. However, the interaction of low melting point metal with stainless steel has not been studied till now. Therefore, the interaction of low melting point metal with stainless steel was investigated in the study. The effect of passivation on the interaction was analyzed and the interaction mechanism was revealed. The results could provide a theoretical basis and technical supports to the cleanness manufacturing for stainless steel equipment in nuclear power plant.
     In the study, taking low melting point metals Sn and Zn as research object, the interaction of low melting point metal with stainless steel after passivation free, exposure in air and passivation in nitric acid was investigated. The microstructure evolution during the interaction was analyzed, and then the assessment method for the effect of passivation on the interaction was proposed. Combined with the chromaticity inspection of passive film on stainless steel, the interaction mechanism was revealed. The effect of low melting point metal on corrosion property at room temperature and corrosion property in high temperature water of stainless steel was discussed. The main conclusions are as follows:
     (1) The interaction of low melting point metal with stainless steel was identified. Liquid Sn reacted with stainless steel by the formation of interfacial (Fe, Cr)Sn2layer with plated-type and block-type morphology, while there was no metallurgical intermetallics layer formation for the contact of solid Sn with stainless steel at220℃for54h. Liquid Zn and solid Zn reacted with stainless steel by the formation of interfacial columnar8phase (Fe, Cr)Zn10with tiny granule ζ phase (Fe, Cr)Zn13intermetallics.
     (2) The effect of passivation on the interaction between low melting point metals and stainless steel was clarified. For the interaction of low melting point metal with passivation304stainless steel, the native oxide film grown in air resulted in the non-uniform growth of Fe-Sn intermetallics layer. The chemical passive film grown in nitric acid prevented the formation of Fe-Sn layer. Passivation did not effectively hinder the metallurgical adherence of Zn with stainless steel. For the interaction of Sn with stainless steels, liquid Sn was prone to metallurgically interact with420stainless steel by the formation of (Fe, Cr)Sn2intermetallics. Passivation decreased the growth rate of the intermetallics but can not prevent the intermetallics formation. Fe-Sn intermetallics grown on passivation316stainless steel were non-uniform, and the thickness and coverage ratio of the intermetallics decreased with the increasing exposure time in air. The metallurgical interaction of2205stainless steel with liquid Sn was prevented by passivation in air and chemical passivation.
     (3) The relationship for pheanthroline colouration measurement—integrity of passive film grown on stainless steel—adherence degree of low melting point metal was revealed. The pheanthroline colouration measurement was employed to detect the stainless steel surface. Pheanthroline colouration value decreased with the increasing exposure time in air, but the pheanthroline solution did not change colour when it contacted with chemical passivation stainless steel. The integrity of passive film could be evaluated by the pheanthroline colouration measurement. Compared to the native film grown on stainless steel exposure air, the relative integrity passivation film grew on chemical passivation stainless steel. It is different for the adherence degree of Fe-Sn and Fe-Zn intermetallics on various passivation stainless steel. The coverage ratio factor was proposed to characterize the effect of passivation on the interaction between low melting point metal and stainless steel. The relationship of coverage ratio factor with pheanthroline colouration value was built. There was a linear relationship for the coverage ratio factor with the colouration value. The larger the colouration value of pheanthroline was, the lower the integrity of passive film was. The inhibition of passive film to the interaction between low melting point metal and stainless steel was decreased, so the coverage ratio of intermetallics increased. The integrity of passive film was an important factor for the interaction between low melting point metals with stainless steels.
     (4) The effect of Fe-Sn and Fe-Zn intermetallics adherence on corrosion property at room temperature and corrosion property in high temperature water of stainless steel was investigated. For corrosion property at room temperature, Fe-Sn intermetallics adherence accelerated the pitting formation on stainless steel, and the pittings increased with the increasing amount of Fe-Sn intermetallics. For corrosion property in high temperature water, Fe-Sn and Fe-Zn intermetallics adherence changed the oxide scale from the irregularly shaped (Fe, Cr)2O3and faced (Fe, Cr)3O4particles to SnO2, ZnO and the faced substrate oxides. By increasing the oxide time, the corrosion resistance of stainless steel decreased because the SnO2and ZnO particles gradually fell off.
引文
[1]宋冠宇.核级奥氏体钢加工过程中铁污染的产生及检测[D].大连:大连理工大学,2011.
    [2]宋明强.中国内陆核电发展必要性分析[J].科技创新与应用,2012(10Z):178.
    [3]朱华.核电与核能[M].浙江:浙江大学出版社,2009:29-30.
    [4]邹树梁.世界核电发展的历史、现状与新趋势[J].南华大学学报(社会科学版),2005,6(6):38-42.
    [5]WANG H, CAI W, YANG J, et al. A Study on Appropriate Technology of Building Energy Efficiency Retrofit in Low Carbon City [J]. Scientific Journal of Architecture,2012, 2(3):73-83.
    [6]叶奇.后福岛时期我国核电的发展[J].低碳世界,2012,(3):1-8.
    [7]叶奇蓁.中国核电发展战略研究[J].电网与清洁能源,2010,26(1):3-8.
    [8]钱达中,谢学军.核电站水质工程[M].北京:中国电力出版社,2008:57.
    [9]杨鑫.新型A1203基陶瓷刀具的切削性能研究[D].大连:大连理工大学,2012.
    [10]陈伟,张军,李桂菊.核电技术现状与研究进展[J].世界科技研究与发展,2007,29(5):81-86.
    [11]欧阳予,汪达升.国际核能应用及其前景展望与我国核电的发展[J].华北电力大学学报,2007,34(5):1-10.
    [12]沈飞.AP1000核主泵高效水力模型设计与性能研究[D].大连:大连理工大学,2012.
    [13]欧阳予.世界核电技术发展趋势及第3代核电技术的定位[J].发电设备,2007,21(5):325-331.
    [14]阮於珍.核电厂材料[M].北京:原子能出版社,2010:47-48.
    [15]邱乙亩,郭辉.浅谈AP1000主泵及改进[J].中国核科学技术进展报告,2011,10:1-6.
    [16]宋冠宇,赵杰,程从前,等.核电用奥氏体不锈钢表面铁素体污染的影响及对策[J].腐蚀与防护,2011,32(10):813-817.
    [17]袁丹青,张孝春,陈向阳,等.第三代反应堆主泵的发展现状及展望[J].流体机械,2010,38(1):31-34.
    [18]张明乾,刘昱,李承亮.浅谈压水堆核电站AP1000屏蔽式电动主泵[J].水泵技术,2008,(4):1-5.
    [19]李金桂,张启富,袁训华.环境保护相关领域研究进展[C].材料与环境,北京,2011:27-31.
    [20]田晓青,张存来,石巨岩.304不锈钢焊管酸洗后表面质量的初步分析[J].机械工程与自动化,2004,(1):62-63.
    [21]郭双全,周张健,冯云彪,等.316L不锈钢基体表面钨功能梯度涂层残余应力的模拟分析[J].材料导报,2010,24(22):68-72.
    [22]CHEN X H, XUE P. Effect of superplastic deformation on the bonding property of OOCr25Ni7Mo3N duplex stainless steel [J].矿物冶金与材料学报:英文版,2012,19(4):317-321.
    [23]谈育煦,任立平.表面层亚结构和残余应力对不锈钢和低碳钢疲劳强度的影响[J].金属学报,1989,25(5):A369-A374.
    [24]王梅丰,李光东,杜楠.表面粗糙度对304不锈钢早期点蚀行为影响的电化学方法[J].失效分析与预防,2012,7(2):86-90.
    [25]LUO J, CHENG H K, ASL K M, et al. The Role of a Bilayer Interfacial Phase on Liquid Metal Embrittlement [J]. Science,2011,333 (6050):1730-1733.
    [26]ASL K M, LUO J. Impurity effects on the intergranular liquid bismuth penetration in polycrystalline nickel [J]. Acta Materialia,2012,60 (1):149-165.
    [27]POPOVICH V V, DMUKHOVSKAYA I G. The embrittlement of metals and alloys being deformed in contact with low-melting alloys-(A review of foreign literature) [J]. Soviet Materials Science,1987,23 (6):535-544.
    [28]Association F. RCC-M Design and construction rules for mechanical components of PWR nuclear island [S]. Paris:French:AFCEN,2000.
    [29]上海核工程研究设计院.NQA-1核设施质量保证要求[S].上海科学技术文献出版社,2004:74.
    [30]Materials A S F T. A380-99 Standard practice for cleaning, descaling, and passivation of stainless steel parts, equipment, and systems [S]. Philadelphia:2005.
    [31]FRIEDMAN H, REICH S, POPOVITZ-BIRO R, et al. Micro-and Nano-spheres of Low Melting Point Metals and Alloys, Formed by Ultrasonic Cavitation [J]. Ultrasonics Sonochemistry, 2013,1 (20):432-444.
    [32]郜学云.基于Bi、Pb、In、Sn的低熔点合金纳米微粒的制备及摩擦学性能研究[D].郑州:河南大学,2009.
    [33]PEI D Z, HAI Y. A case study of Bi -Sn induced embrittlement [J]. Engineering Failure Analysis,1996,3(4):241-247.
    [34]CHENG C Q, ZHAO J, XU Y. Kinetics of intermetallic compound layers and Cu dissolution at Snl.5Cu/Cu interface under high magnetic field [J]. Journal of Materials Research, 2010,25 (2):359-368.
    [35]PREDEL B, FREBEL M. Precipitation behavior of solid solutions of the Fe-Sn system [J]. Metallurgical and Materials Transactions B,1973,4(1):243-249.
    [36]HUANG Y C, GIERLOTKA W, CHEN S W. Sn-Bi-Fe thermodynamic modeling and Sn-Bi/Fe interfacial reactions [J]. Intermetallics,2010,18 (5):984-991.
    [37]KUMAR K C, WOLLANTS P, DELAEY L. Thermodynamic evaluation of Fe-Sn phase diagram [J]. Calphad,1996,20 (2):139-149.
    [38]MARGOLIN H. Constitution of Binary Alloys [J].Journal of the American Chemical Society,1959,81 (10):2600.
    [39]VANBEEK A, STOLK A, VANLOO J J. Multiphase Diffusion in the Systems Fe-Sn and Ni-Sn [J]. Zeitschrift fur Metallkunde,1982,73 (7):439-444.
    [40]BIBER H E, HARTER W T. The growth of FeSn2 layers on specifically oriented iron single crystals [J]. Journal of the Electrochemical Society,1966,113 (8):828-834.
    [41]HWANG C W, SUGANUMA K, LEE J G, et al. Interface microstructure between Fe-42Ni alloy and pure Sn [J]. Journal of Materials Research,2003,18 (5):1202-1210.
    [42]SAIZ E, HWANG C W, SUGANUMA K, et al. Spreading of Sn-Ag solders on FeNi alloys [J]. Acta Materialla,2003,51 (11):3185-3197.
    [43]NAGESWARARAO M, MCMAHON C J, HERMAN H. The solubil ity and solution behavior of antimony and tin in a-iron and the effects of nickel and chromium additions [J]. Metallurgical Transactions,1974 (5):1061-1069.
    [44]NAKANO J, MALAKHOV D V, PURDY G R. A crystallographically consistent optimization of the Zn-Fe system [J]. Calphad,2005,29 (4):276-288.
    [45]CULCASI J D, SERE P R, ELSNER C I, et al. Control of the growth of zinc-iron phases in the hot-dip galvanizing process [J].Surface & Coatings Technology,1999,122 (1): 21-23.
    [46]ONISHI M, WAKAMATSU Y, MIURA H. Formation and growth kinetics of intermediate phases in Fe-Zn diffusion couples [J]. Transactions of Japan Institute Metals,1974,15 (5): 331-337.
    [47]KAINUMA R, ISHIDA K. Reactive diffusion between solid Fe and liquid Zn at 723 K [J]. ISIJ International,2007,47 (5):740-744.
    [48]MARDER A R. The metallurgy of zinc-coated steel [J]. Progress in Materials Science, 2000,45 (3):191-271.
    [49]MA S, XING J, FU H, et al. Interfacial morphology and corrosion resistance of Fe-B cast steel containing chromium and nickel in liquid zinc [J]. Corrosion Science,2011, 53 (9):2826-2834.
    [50]DE ABREU Y, DA SILVA A, RUIZ A, et al. Study of zinc coatings on steel substrate attained by two different techniques [J]. Surface & Coatings Technology,1999,120:682-686.
    [51]胡强,黄安国,李忠锁.无铅钎料对不锈钢的腐蚀性研究[J].电子工业专用设备,2005,34 (1): 53-57.
    [52]SONG G M, VYSTAVEL T, VANDERPERS N, et al. Relation between microstructure and adhesion of hot dip galvanized zinc coatings on dual phase steel [J]. Acta Materialia,2012, 60(6-7):2973-2981.
    [53]REUMONT G, VOGT J B, IOST A, et al. The effects of Fe-Zn intermetallic containing coating on the stress corrosion cracking behavior of a hot-dip galvanized steel [J]. Surface & Coatings Technology,2001,139 (2-3):265-271.
    [54]BELLHOUSE E M, MCDERMID J R. Analysis of the Fe-Zn interface of galvanized high Al-low Si TRIP steels [J]. Materials Science and Engineering A,2008,491 (1):39-46.
    [55]MA S Q, XING J D, YI D W, et al. Microstructure and corrosion behavior of cast Fe-B alloys dipped into liquid zinc bath [J]. Materials Characterization,2010,61 (9): 866-872.
    [56]林克培.AP1000核电涂料国产化可行性分析[J].中国涂料,2011,26(5):13-17.
    [57]乔文义.锌对奥氏体不锈钢污染的影响与检验方法[J].焊接技术,1993,4:6-10.
    [58]张耀.核电专用涂层应用分析[J].电镀与涂饰,2008,(7):57-60
    [59]赵志祥,夏海鸿.加速器驱动次临界系统(ADS)与核能可持续发展[J].中国核电,2009,2(3):202-212.
    [60]许咏丽,龙斌.ADS结构材料在液态Pb-Bi合金中的腐蚀[J].原子能科学技术,2003,37(4):325-334.
    [61]AUGER T, LORANG G. Liquid metal embrittlement susceptibility of T91 steel by lead-bismuth [J]. Scripta Materialia,2005,52 (12):1323-1328.
    [62]SAPUNDJUEV D, VANDYCKk S, BOGAERTSs W. Liquid metal corrosion of T91 and A316L materials in Pb-Bi eutectic at temperatures 400-600℃[J]. Corrosion Science,2006, 48 (3):577-594.
    [63]QI Y, TAKAHASHI M. Study on Corrosion phenomena of steels in Pb-Bi flows[J]. Proceeding Icone,2003,11:363-375.
    [64]许咏丽,张金权,楮风敏.国产316LN不锈钢在动态Pb-Bi中的腐蚀[J].中国原子能科学研究院年报,2008:10-13.
    [65]KURATA Y, FUTAKAWA M, SAITO S. Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb-Bi at 450 and 550 degrees ℃[J]. Journal of Nuclear Materials,2005,343 (1-3):333-340.
    [66]RAO V S, LIM J, HWANG I S, et al. Characterization of oxide scales grown on 216L stainless steels in liquid lead-bismuth eutectic [J]. Corrosion Science,2012,63: 113-118.
    [67]YELISEYEVA 0, TSISAR V, BENAMATI G. Influence of temperature on the interaction mode of T91 and AISI 316L steels with Pb-Bi melt saturated bt oxygen [J].Corrosion Science, 2008,50:1672-1683.
    [68]姜磊.压水堆核电站加锌技术的研究与应用[J].中国核科学技术进展报告,2011,10:74-79.
    [69]许明霞.压水堆一回路冷却剂活化腐蚀产物钴银锑[J].核安全,2012,1:1-9.
    [70]乔培鹏,张乐福,刘瑞芹.压水堆条件下锌对奥氏体不锈钢腐蚀性能的影响[J].原子能科学技术,2010,44(6):690-694.
    [71]王皓宇.关于轻水堆核电站辐射源项控制几项新技术的讨论[J].辐射防护通讯,2006,26(1):12-17.
    [72]AGRAWAL A K, PAINE J P N. Lead cracking of alloy 600-a review:On Environmental Degradation of Materials in Nuclear Power Systems [C]. JekyII Island,1989:271-280.
    [73]GARCIA-MAZARIO M, LANCHA A M, HERNANDEZ M, et al. Effect of lead on Inconel 600 and Incoloy 800 oxide layers formed in simulated steam generator secondary environments [J]. Nuclear Engineering and Design,1996,167 (2):155-167.
    [74]SHI H W, LIU F C, HAN E H. The corrosion behaviour of zinc-rich paints on steel: Influence of simulated salt deposition in an offshore atmosphere at the steel/paint interface [J]. Surface and Coatings Technoogy,2011,205 (19):4532-4539.
    [75]李磊,刘文红,宋生印,等.X95钢级钻杆开裂原因分析[J].机械工程材料,2012,35(11):109-112.
    [76]CLEGG R E, JONES D. Liquid metal embrittlement of tensile specimens of En19 steel by tin [J]. Engineering Failure Analysis,2003,10 (1):119-130.
    [77]陈俊文,邵孝沛.低熔点金属对钢铁零件的熔蚀[J].金属热处理,1988(7):51-55.
    [78]苏淑娟.核电厂水化学概述[M].北京:原子能出版社,2010:7.
    [79]HOAR T P. The production and breakdown of the passivity of metals [J]. Corrosion Science,1967,7 (6):341-355.
    [80]SATO N. An overview on the passivity of metals [J]. Corrosion Science,1990, (31): 1-19.
    [81]STEELE D F. Corrosion control in nuclear fuel reprocessing [J]. Industrial Lubrication and Tribology,1986,38 (5):164-169.
    [82]CHIN L F, CHAO C Y, MACDONALD D D. A point defect model for anodic passive films [J]. Journal of Electrochemical Society,1981,128:1194.
    [83]TZVETKOFF T, KOLCHAKOV J. Mechanism of growth, composition and structure of oxide films formed on ferrous alloys in molten salt electrolytes-a review [J]. Materials Chemistry and Physics,2004,87 (1):201-211.
    [84]JIN S, ATRENS A. Passive films on stainless steels in aqueous media [J]. Applied Physics A:Materials Science and Processing,1990,50 (3):287-300.
    [85]MACDONALD D D. The point defect model for the passive state [J]. Journal of the Electrochemical Society,1992,139 (12):3434-3449.
    [86]MACDONALD D D. Passivity-the key to our metals based civilization [J]. Pure and Applied Chemistry,1999,71 (6):951-978.
    [87]SIKORA E, SIKORA J, MACDONALD D D. A new method for estimating the diffusivities of vacancies in passive films [J]. Electrochimica Acta,1996,41 (6):783-789.
    [88]SIKORA J, SIKORA E, MACDONALD D D. The electronic structure of the passive film on tungsten [J]. Electrochimica Acta,2000,45 (12):1875-1883.
    [89]ZHANG L, MACDONALD D D, SIKORA E, et al. On the kinetics of growth of anodic oxide films [J]. Journal of the Electrochemical Society,1998,145 (3):898-905.
    [90]OLSSON C 0 A, LANDOLT D. Passive films on stainless steels—chemistry, structure and growth [J]. Electrochimica Acta,2003,48 (9):1093-1104.
    [91]STOYCHEV D, STEFANOV P, NICOLOVA D, et al. Chemical composition and corrosion resistance of passive chromate films formed on stainless steels 316L and 1.4301 [J]. Materials Chemistry and Physics,2002, (73):252-258.
    [92]GERVASI C A, MENDEZ C M, BILMES P D, et al. Analysis of the impact of alloy microstructural properties on passive films formed on low C 13CrNiMo martensitic stainless steels [J]. Materials Chemistry and Physics,2011,126 (1):178-182.
    [93]WIJESINGHE T L, BLACKWOOD D J. Characterisation of passive films on 300 series stainless steels [J]. Applied Surface Science,2006,253 (2):1006-1009.
    [94]JUSSILA P, LAHTONEN K, LAMPIM A K M, et al. Influence of minor alloying elements on the initial stages of oxidation of austenitic stainless steel materials [J]. Surface and Interface Analysis,2008,40 (8):1149-1156.
    [95]FERREIRA M, HAKIKI N E, GOODLET G, et al. Influence of the temperature of film formation on the electronic structure of oxide films formed on 304 stainless steel [J]. Electrochimica Acta,2001,46 (24):3767-3776.
    [96]DONIK V C, KOCIJAN A, MANDRINO D, et al. Initial oxidation of duplex stainless steel [J]. Applied Surface Science,2009,255 (15):7056-7061.
    [97]ASAMI K, HASHIMOTO K. An X-ray photoelectron spectroscopic study of surface treatments of stainless steels [J]. Corrosion Science,1979,19 (12):1007-1017.
    [98]DA CUNHA BELO M, RONDOT B, COMPERE C, et al. Chemical composition and semiconducting behaviour of stainless steel passive films in contact with artificial seawater [J]. Corrosion Science,1998,40 (2):481-494.
    [99]CAMEZIM M J, SIMOES A M, MONTEMOR M F, et al. Capacitance behavior of passive films on ferritic and austenitic stainless steel [J]. Corrosion science,2005,47 (3): 581-591.
    [100]VARGA K, MALECZKI E, HORANYI G. On the simultaneous role of Cr in the passivity of stainless steel and in the sorption of HSO4- and Cl- ions in the passive film [J]. Electrochimica Acta,1988,33 (12):1775-1778.
    [101]KOCIJAN A, DONIK V C, JENJO M. Electrochemical and XPS studies of the passive film formed on stainless steels in borate buffer and chloride solutions [J]. Corrosion Science,2007,49 (5):2083-2098.
    [102]LORANG G, BELO M D C, SIMOES A, et al. Chemical composition of passive films on AISI 304 stainless steel [J]. Journal of the Electrochemical Society,1994,141 (12): 3347-3356.
    [103]OLSSON C 0 A. The influence of nitrogen and molybdenum on passive films formed on the austenoferritic stainless steel 2205 studied by AES and XPS [J]. Corrosion Science, 1995,37 (3):467-479.
    [104]FENG Z, CHENG X, DONG C, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy [J]. Corrosion Science,2010,52 (11):3646-3653.
    [105]NINGSHEN S, KAMACHI MUDALI U, MITTAL V K, et al. Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels [J]. Corrosion Science, 2007,49 (2):481-496.
    [106]LEE J B, KIM S W. Semiconducting properties of passive films formed on Fe-Cr alloys using capacitiance measurements and cyclic voltammetry techniques [J]. Materials Chemistry and Physics,2007,104 (1):98-104.
    [107]HAMADOU L, KADRI A, BENBRAHIM N, et al. Characterization of thin anodically grown oxide films on AISI 304L stainless steel [J]. Journal of the Electrochemical Society, 2007,154 (12):G291-G297.
    [108]NINGSHEN S, KAMACHI MUDALI U, MITTAL V K, et al. Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels [J]. Corrosion Science, 2007,49 (2):481-496.
    [109]HUANG J, WU X, HAN E H. Electrochemical properties and growth mechanism of passive films on Alloy 690 in high temperature alkaline environments [J]. Corrosion Science, 2010,52 (10):3444-3452.
    [110]DA CUNHA BELO M, RONDOT B, FERREIRA M, et al. Study of passive films formed on AISI 304 stainless steel by impedance measurements and photoelectrochemistry [Z].1990.
    [111]AUGER T, LORANG G, GU E Rin S, et al. Effect of contact conditions on embrittlement of T91 steel by lead-bismuth [J]. Journal of Nuclear Materials,2004,335 (2):227-231.
    [112]薛中华,刘秀辉,卢小泉.电化学分析仪器[M].北京:化学工业出版社,2010:23.
    [113]PIERAGGI B, MACDOUGALL B, RAPP R A. The role of the metal/oxide interface in the growth of passive films in aqueous environments [J]. Corrosion Science,2005,47 (1):247-256.
    [114]BARBOSA M A, GARRIDO A, CAMPILHO A, et al. The surface composition and corrosion behavior of AISI 304 stainless steel after immersion in 20% HNO3 solution [J]. Corrosion Science,1991,32 (2):179-184.
    [115]LEE J, PARK J, JEON S H. Wetting of low-carbon, interstitial-free steel surfaces with nanostructured oxides by liquid zinc [J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science,2009,40 (6):1035-1040.
    [116]CHENG C Q, ZHAO J, XU Y. Effect of high magnetic field on the morphology of (Cu, Ni)6Sn5 at Sn0.3Ni/Cu interface [J]. Materials Letters,2009, (63):1478-1480.
    [117]PETIT E J, GROSBETY Y, ADEN-ALI S, et al. Microstructure of the coating and mechanical properties of galvanized chromium-rich martensitic steel [J]. Surface & Coatings Technology,2010, (205):2404-2411.
    [118]LIN C S, MESHII M. The effect of steel chemistry on the formation of Fe-Zn intermetallic compounds of galvanneal-coated steel sheets [J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science,1994,25 (5): 721-730.
    [119]XU J, Bright M A, Liu X, et al. Liquid metal corrosion of 316L stainless steel,410 stainless steel, and 1015 carbon steel in a molten zinc bath [J]. Metallurgical and Materials Transactions A-Process Metallurgy and Materials Processing Science,2007, 38A (11):2727-2736.
    [120]付琴琴.304奥氏体不锈钢钝化膜的显色检测[D].大连:大连理工大学,2012.
    [121]CHENG C Q, ZHAO J, CAO T S, et al. Facile chromaticity approach for the inspection of passive films on austenitic stainless steel [J]. Corrosion Science,2013, (70): 235-242.
    [122]HAKIKI N E, Belo M. Electronic structure of passive films formed on molybdenum-containing ferritic stainless steels [J]. Journal of the Electrochemical Society,1996,143 (10):3088-3094.
    [123]Marcus P. Surface science approach of corrosion phenomena [J]. Electrochimica Acta, 1998,43 (1-2):109-118.
    [124]BELO M D, Hakiki N E, Ferreira M. Semiconducting properties of passive films formed on nickel-base alloys type Alloy 600:influence of the alloying elements [J]. Electrochimica Acta,1999,44 (14):2473-2481.
    [125]HAKIKI N E. Comparative study of structural and semiconducting properties of passive films and thermally grown oxides on AISI 304 stainless steel [J]. Corrosion Science, 2011,53 (9):2688-2699.
    [126]尹玲,陈昌国,刘渝萍,等.不锈钢钝化膜半导体特性的研究进展[J].材料导报,2011,25(21):62-65.
    [127]林玉华,杜荣归,胡融刚,等.不锈钢钝化膜耐蚀性与半导体特性的关联研究[J].物理化学学报,2005,21(7):740-745.
    [128]ZHU X M, GUO Y, XING Z Q, et al. Effect of nitrogen on semiconducting properties of passive films of a high nitrogen face-centered-cubic Phase formed on austenitic stainless stee 1 [J]. Journal of the Electrochemical Society,2012,159 (8):C319-C325.
    [129]RIES L, BELO M, FERREIRA M, et al. Chemical composition and electronic structure of passive films formed on Alloy 600 in acidic solution [J]. Corrosion Science,2008,50 (4):968-977.
    [130]WEGRELIUS L, SJODEN B. Passivation treatment of stainless steel [J]. A Corrosion Management and Applications Engineering,2004, (4):1-10.
    [131]HAKIKI N E. Structural and photoelectrochemical characterization of oxide films formed on AISI 304 stainless steel [J]. Journal of Applied Electrochemistry,2010,40 (2):357-364.
    [132]ZHENG Z J, GAO Y, GUI Y, et al. Corrosion behaviour of nanocrystalline 304 stainless steel prepared by equal channel angular pressing [J]. Corrosion Science,2012,54: 60-67.
    [133]VARGA K, BARADLAI P, HIRSCHBERG G, et al. Corrosion behaviour of stainless steel surfaces formed upon chemical decontamination [J]. Electrochimica Acta,2001,46 (24): 3783-3790.
    [134]VAYER M, REYNAUD I, ERRE R. XPS characterisations of passive films formed on martensitic stainless steel:qualitative and quantitative investigations [J]. Journal of Materials Science,2000,35 (10):2581-2587.
    [135]MARCUS P, MAURICE V, STREHBLOW H H. Localized corrosion (pitting):Amodel of passivity breakdown including the role of the oxide layer nanostructure [J]. Corrosion Science, 2008,50 (9):2698-2704.
    [136]MORRISON S R. Electrochemistry at semiconductor and oxidized metal electrodes [M]. New York:Plenum Press,1980:1-401.
    [137]WANG C H, CHEN H H, LI P Y, et al. Kinetic analysis of Ni5Zn21 growth at the interface between Sn-Zn solders and Ni [J]. Intermetallics,2012,22:166-175.
    [138]FATTAH-ALHOSSEINI A, SOLTANI F, SHIRSALIMI F, et al. The semiconducting properties of passive films formed on AISI 316 L and AISI 321 stainless steels:A test of the point defect model (PDM) [J]. Corrosion Science,2011,53 (10):3186-3192.
    [139]ASAMI K, HASHIMOTO K. An X ray photo-electron spectroscopic study of surface treatments of stainless steels [J]. Corrosion Science,1979,19 (12):1007-1017.
    [140]BARBUCCI A, CERISOLA G, CABOT P L. Effect of cold-working in the passive behavior of 304 stainless steel in sulfate media [J]. Journal of the Electrochemical Society, 2002,149 (12):B534-B542.
    [141]SHIH C C, SHIH C M, SU Y Y, et al. Effect of surface oxide properties on corrosion resistance of 316L stainless steel for biomedical applications [J]. Corrosion Science, 2004,46 (2):427-441.
    [142]叶大伦.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002.
    [143]PAN C, LIU L, LI Y, et al. Passive film growth mechanism of nanocrystalline 304 stainless steel prepared by magnetron sputtering and deep rolling techniques [J]. Electrochimica Acta,2011,56 (22):7740-7748.
    [144]HARJAC S J, ATRENS A, MOSS C J, et al. Influence of solution chemistry and surface condition on the critical inhibitor concentration for solutions typical of hot potassium carbonate C02 removal plant [J]. Journal of Materials Science,2007, (42): 7762-7771.
    [145]FERREIRA M, HAKIKIN E, GOODLET G, et al. Influence of the temperature of film formation on the electronic structure of oxide films formed on 304 stainless steel [J]. Electrochimica Acta,2001,46 (24-25):3767-3776.
    [146]彭建国,骆素珍,袁敏.304奥氏体不锈钢高温氧化行为研究[J].宝钢技术,2007,(4):29-32.
    [147]CHEN X, STUBBINS J F, HOSEMANN P, et al. Analysis of corrosion scale structure of pre-oxidized stainless steel 316 in molten lead bismuth eutectic and the relation to impedance spectroscopy response [J]. Journal of Nuclear Materials,2010,398 (1-3): 172-179.
    [148]SRISRUAL A, COINDEAU S, GALERIE A, et al. Identification by photoelectro chemistry of oxide phases grown during the initial stages of thermal oxidation of AISI 441 ferritic stainless steel in air or in water vapour [J]. Corrosion Science,2009,51 (3):562-568.
    [149]MA Y H, CEYLAN AKIS B, ENGIN AYTURK M, et al. Characterization of intermetallic diffusion barrier and alloy formation for Pd/Cu and Pd/Ag porous stainless steel composite membrances [J]. Industrial & Engineering Chemistry Research,2004, (43): 2936-2945.
    [150]JORDAN C E, MARDER A R. The effect of iron oxide as an inhibition layer on iron-zinc reactions duriing hot-dip galvanizing [J]. Metallurgical and Materials Transactions B-Process Metallurgy And Materials Processing Science,1998, (29B):479-485.
    [151]GORDON P, AN H H. The mechanisms of crack initiation and crack-propagation in metal-induced embrittlement of metals [J]. Metallurgical Transactions A-Physical Metallurgy and Materials Science,1982,13 (3):457-472.
    [152]PENG B, LU B T, LUO J L, et al. Investigation of passive films on nickel Alloy 690 in lead-containing environments [J]. Journal of Nuclear Materials,2008,378 (3): 333-340.
    [153]刘道新,刘双梅,何家文.固态金属致脆裂纹的萌生与致脆原子输运机制[J].西安交通大学学报,1999,33(4):57-61.
    [154]OLD C F. Liquid-metal embrittlement of nuclear materials [J]. Journal of Nuclear Materials,1980,92 (1):2-25.
    [155]CISSE S, LAFFONT L, TANGUY B, et al. Effect of surface preparation on the corrosion of austenitic stainless steel 304L in high temperature steam and simulated PWR primary water [J]. Corrosion Science,2012,56:209-216.
    [156]韩恩厚,王俭秋,吴欣强,等.核电高温高压水中不锈钢和镍基合金的腐蚀机制[J].金属学报,2010,46(11):1379-1390.
    [157]WARZEE M, HENNAUT J, MAURICE M, et al. Effect of surface treatment on the corrosion of stainless steels in high temperature water and steam [J]. Journal of the Electrochemical Society,1965,112 (7):670-674.
    [158]STELLWAG B. The mechanism of oxide film formation on austenitic stainless steels in high temperature water [J]. Corrosion Science,1998,40 (2-3):337-370.
    [159]MIYAZAWA T, TERACHI T, UCHIDA S, et al. Effects of hydrogen peroxide on corrosion of stainless steel, (V) characterization of oxide film with multilateral surface analyses [J]. Journal of Nuclear Science and Technology,2006,43 (8):884-895.
    [160]KUANG W, WU X, HAN E H. Influence of dissolved oxygen concentration on the oxide film formed on 304 stainless steel in high temperature water [J]. Corrosion Science,2012, 63:259-266.
    [161]TERACHI T, ARIOKA K. Characterization of oxide film behaviors on 316 stainless steels in high temperature water-influence of hydrogen and oxygen considerations for initiation of SCC [J]. Corrosion,2006, (3):12-16.
    [162]KIM D J, KWON H C, KIM H P. Effects of the solution temperature and the pH on the electrochemical properties of the surface oxide films formed on Alloy 600 [J]. Corrosion Science,2008,50 (5):1221-1227.
    [163]MONTEMOR M F, FERREIRA M, WALLS M, et al. Influence of pH on properties of oxide films formed on type 316L stainless steel, Alloy 600, and Alloy 690 in high-temperature aqueous environments [J]. Corrosion,2003,59(1):11-21.
    [164]SZKLARSKA-SMICLOWSKA Z, CHOU K C, XIA Z. The composition and properties of oxide films on type 304 stainless steel on exposure to lithiated water at 100-350℃[J]. Corrosion Science,1991,32(5):609-619.
    [165]KUANG W, WU X, HAN E H. The oxidation behavior of 304 stainless steel in oxygenated high temperature water [J]. Corrosion Science,2010,52 (12):4081-4087.
    [166]INAGAKI H, NISHIKAWA A, SUGITA Y, et al. Synergy effect of simultaneous zinc and nickel addition on cobalt deposition onto stainless steel in oxygenated high temperature water [J]. Journal of Nuclear Science and Technology,2003,40 (3):143-152.
    [167]LIU X, WU X, HAN E H. Effect of Zn injection on established surface oxide films on 316 L stainless steel in borated and lithiated high temperature water [J]. Corrosion Science,2012, (65):136-144.
    [168]KUANG W, WU X, HAN E H, et al. Effect of nickel ion from autoclave material on oxidation behaviour of 304 stainless steel in oxygenated high temperature water [J]. Corrosion Science,2011,53 (3):1107-1114.
    [169]KUANG W, HAN E H, WU X, et al. Microstructural characteristics of the oxide scale formed on 304 stainless steel in oxygenated high temperature water [J]. Corrosion Science,2010,52 (11):3654-3660.
    [170]ZIEMNIAK S E, HANSON M, SANDER P C. Electropolishing effects on corrosion behavior of 304 stainless steel in high temperature, hydrogenated water [J]. Corrosion Science, 2008,50 (9):2465-2477.
    [171]刘忠良,康朝阳,唐军,等.SiC/Al2O3界面结构的同步辐射x射线掠入射衍射研究[J].真空科学与技术学报,2012,32(1):79-83.
    [172]姜晓明,贾全杰,郑文莉,等.同步辐射X射线掠入射衍射实验技术及应用[J].高能物理与核物理,2000,24(12):1185-1190.
    [173]梁旺胜,陶冶,刘红亮.同步辐射掠入射X射线衍射法研究TiAIN薄膜离子注入层的微观结构[J].物理测试,2011,(2):5-9.
    [174]VEDER J P, NAFADY A, CLARKE G, et al. A flow cell for transient voltammetry and in situ grazing incidence X-ray diffraction characterization of electrocrystallized cadmium (Ⅱ) [J]. Electrochimica Acta,2011,56 (3):1546-1553.
    [175]刘忠良,刘金锋,任鹏,等.3C-SiC/Si(111)的掠入射X射线衍射研究[J].无机材料学报,2008,23(5):928-932.
    [176]KUANG W, WU X, HAN E H, et al. Effect of alternately changing the dissolved Ni ion concentration on the oxidation of 304 stainless steel in oxygenated high temperature water [J]. Corrosion Science,2011,53 (8):2582-2591.
    [177]GHOSH S, KUMAR M K, KWIN V. High temperature oxidation behaviour of AISI 304L stainless steel-effect of surface working operations [J]. Applied Surface Science,2012,264 (1): 312-319.
    [178]ZIEMNIAK S E, HANSON M. Corrosion behavior of 304 stainless steel in high temperature, hydrogenated water [J]. Corrosion Science,2002,44 (10):2209-2230.
    [179]MA X X, HE Y D, WANG D R, et al. Enhanced high-temperature corrosion resistance of (Al2O3-Y2O3)/Pt micro-laminated coatings on 316L stainless steel alloy [J]. Corrosion Science,2012, (54):183-192.
    [180]LIU H H, CHENG W J, WANG C J. The mechanism of oxide whisker growth and hot corrosion of hot-dipped Al-Si coated 430 stainless steels in air-NaCl(g) atmosphere [J]. Applied Surface Science,2011,257 (24):10645-10652.
    [181]FRAUNHOF. J A, LUBINSKI A T. Polarity reversal in zinc mild steel couple [J]. Corrosion Science,1974,14 (3):225-232.
    [182]JUN W S, YUN P S, LEE E C. Leaching behavior of tin from Sn-Fe alloys in sodium hydroxide solutions [J]. Hydrometallurgy,2004,73 (1-2):71-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700