用户名: 密码: 验证码:
典型难生物降解污水的毒性鉴别和高效处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类生活水平的提高和现代工业的发展,排放到环境中的污染物的种类和数量也日益增加。其中,尤为令人担忧的就是难生物降解的污水,这些污水通常具有毒性大,易生物积累等特点,如不加以妥善处理,其必然对人类的生存环境造成巨大影响。
     本论文主要研究了三种典型的难生物降解污水:化工废水,老龄垃圾渗滤液和目前引起广泛关注的药品与个人护理用品污水的毒性鉴别和相关处理措施,具体可分为如下3个部分:
     1.以老龄化工废水为例,创新的采用小麦根伸长抑制毒性试验和传统的大型蚤急性毒性试验,鉴别出了化工废水中的主要有毒污染物为Cl-和重金属Cu~(2+),Pb~(2+)和Zn~(2+)。根据该废水的高盐度特点,研究发现附近泰达污水处理厂的连续间歇曝气(DAT-IAT)工艺对生活污水与化工废水混合污水的化学需氧量(COD),总磷(TP)和总氮(TN)的去除率可达85.08%,89.29%和96.54%,处理后的污水毒性可降低到0.5TU。证明对化工废水和生活污水共处理是一种可行且成本较低的方法。
     2.从常规污染物去除和生态毒性削减两方面,研究了混凝吸附联用法对垃圾渗滤液的处理效果,结果表明:聚合硫酸铁(PFS)对老龄垃圾渗滤液的处理效果最佳,在投加量为0.3gFe~(3+)/L,pH为5.5时,COD去除率为70%,浊度去除率为99%,悬浮固体(SS)去除率为93%,毒性去除率为74%。以PFS处理后的垃圾渗滤液为活性炭吸附法的进水,在活性炭剂量为10g/L,反应时间为90min时,残留COD约为407mg/L。混凝吸附联用法总的COD去除率可达86%,毒性削减率可达78%。
     3.研究了Fenton法和类Fenton法对污水处理厂出水中常检测到的药品与个人护理用品(PPCPs):对乙酰氨基芬,安替洛尔,双氯芬酸,美托洛尔,狄兰汀,已酮可可碱,咖啡因,碘普罗胺,氟西汀,甲氧卞氨嘧啶,普奈洛尔,磺胺甲恶唑,布洛芬,奈普生,二甲苯氧庚酸,避蚊胺,立痛定,氧苯酮,双酚A和阿特拉津的降解效率优化和降解动力学,以及在Fenton和类Fenton反应过程中,二级出水中有机物(EfOM)的迁移转化规律和氧化副产物,并探讨了EfOM的紫外光谱参数和荧光光谱参数与PPCPs降解率的关系,具体结论如下:
     (1)综合考虑PPCPs降解效率和处理成本,Fenton法降解PPCPs的较优条件为:H_2O_2/Fe~(2+)摩尔比2.5,Fe~(2+)剂量为10mg/L,pH为3,反应时间为30min。类Fenton法降解PPCPs的较优条件为:H_2O_2/Fe~(3+)摩尔比2.5,Fe~(3+)剂量为10mg/L,pH为3,反应时间为120min。在污水总溶解有机碳(DOC)为8.287mg/L和较优条件下,PPCPs的去除率都可达到90%以上。
     (2) Fenton对PPCPs的降解动力学符合联合一级反应动力学;类Fenton法对双氯酚酸,氟西汀和二甲苯氧庚酸的降解符合二级反应动力学;对其余PPCPs的降解符合一级反应动力学。
     (3)采用竞争动力学模型计算了Fenton和类Fenton反应中OH氧化PPCPs的反应速率常数kPPCPs-OH,除了由于反应条件差异造成避蚊胺,甲氧卞氨嘧啶,布洛芬,双氯芬酸,咖啡因和二甲苯氧庚酸与报道值有偏差外,其余都和报道值接近,这证明了在Fenton和类Fenton反应中,PPCPs本质上是被OH氧化降解,而不是被混凝作用去除的。
     (4) Fenton法和类Fenton法通过OH氧化和混凝共同作用对DOC的去除率最大可达30%和38%,分子排阻色谱(SEC)数据表明,Fenton法和类Fenton法优先去除高表观分子量的有机物,并且可以将大分子量有机物氧化分解为小分子量有机物。
     (5) Fenton法和类Fenton法氧化EfOM的产物为甲酸、乙酸、草酸和浓度相对较低的甲醛、乙醛、丙醛和乙醇醛,其中,在H_2O_2/Fe~(2+)摩尔比2.5,Fe~(2+)剂量为20mg/L,pH为3,反应时间为30min的条件下,Fenton法中羧酸类有机物和醛类有机物的产率分别为11.62%和1.01%;在H_2O_2/Fe~(3+)摩尔比2.5,Fe~(3+)剂量为20mg/L,pH为3,反应时间为120min的条件下,类Fenton法中羧酸类有机物和醛类有机物的产率分别为13.2%和1.34%。
     (6)随着Fenton和类Fenton试剂剂量和反应时间的增加,污水EfOM的紫外光谱逐渐降低。EfOM的差值吸光度光谱在波长265-275nm范围内有一个较明显的峰。这个峰和UV254,SUVA254值的降低可能表明Fenton法和类Fenton法会优先去除芳香族有机物。
     污水的紫外吸光光谱容易受无机离子的影响,在消除干扰的情况下,对于同一种废水,在Fenton反应或类Fenton反应中,波长254nm处的吸光度的相对变化(A_(254)/A_(254)~0)与PPCPs降解,OH暴露和羧酸浓度都具有一致的关系,且该关系不受时间或剂量条件影响,说明A_(254)/A_(254)~0可以用来监测Fenton高级氧化过程中的PPCPs的降解和EfOM氧化程度。
     (7)根据污水EfOM的三维荧光光谱,可将EfOM分为分为蛋白质类有机物/可溶性微生物代谢产物,腐殖酸类有机物和富里酸类有机物三种,其中,蛋白质类有机物/可溶性微生物代谢产物最容易被Fenton法和类Fenton法去除;腐殖酸类有机物的区域总荧光强度相对变化(TF0腐殖酸类/TF腐殖酸类)和峰荧光强度相对变化(PF腐殖酸类/PF0腐殖酸类)与PPCPs降解,OH暴露和羧酸浓度变化存在一致的关系,且该关系不受Fenton反应或类Fenton反应或反应条件影响。因此,该参数可用来监测高级氧化过程中PPCPs的降解和EfOM氧化。
With the improvement of people’s living standard and development of modernindustry, the variety and quantity of the pollutants discharged into the environment iscontinuously increasing. Among them, the non-degradable wastewater attracted moreand more attention. The non-degradable wastewater is characterized by biologicalaccumulation and high toxicity to ecosystem; it may cause severe damage toecosystem and environment without appropriate treatment.
     This research mainly studied the treatment methods of three typicalnon-degradable wastewater: chemical industrial wastewater, old landfill leachate andthe secondary effluent with pharmaceutical and personal care products (PPCPs)frequently detected, which attracted widely attention. And this research can beclassified to3parts:
     1. Took old chemical industrial wastewater for example, emploied wheat rootelongation inhibition toxicity experiment for the first time and conventional daphniamagna toxicity experiment and identified the major toxic pollutants were Cl-andheavy metal Cu~(2+), Pb~(2+)and Zn~(2+).
     Based on the high salinity characterization of the wastewater, co-treatment ofmunicipal wastewater and chemical industrial wastewater by the demand aerationtank-intermittent aeration tank (DAT-IAT) process used in TEDA wastewatertreatment plant was evaluated, and the chemical oxygen demand (COD), totalphosphorus (TP) and total nitrogen (TN) removal efficiency of the mixed wastetwatercan reach up to85.08%,89.29%and96.54%, the toxicity unit of the wastewater aftertreatment was0.5TU. This result demonstrated that co-treatment of municipalwastewater and chemical industrial wastewater is a feasible and cost effectivemethod.
     2. Based on the conventional pollutants removal and toxicity reduction, thetreatment efficiency of old landfill leachate by the combined process of coagulationand powder active carbon adsorption was evaluated. Polyferric sulfate (PFS)(dosage 0.3g Fe~(3+)/L) showed the best treatment efficiency, with the removal of COD, turbidity,solid suspension (SS) and toxicity up to70%,99%,93%and74%at pH5.5. UsingPFS coagulated wastewater as the influent of adsorption and after powder activatedcarbon (PAC) adsorption (10g/L) treatment for90min, the residual COD was about407mg/L. The total COD and toxicity removal efficiency of this combined processwas86%and78%, respectively.
     3. Optimized the degradation efficiency and studied the degradation kinetics ofPPCPs frequently detected in secondary wastewater, including acetaminophen,atenolol, diclofenac, metoprolol, dilantin, pentoxifylline, caffeine, iopromide,fluoxetine, trimethoprim, propranolol, sulfamethoxazole, ibuprofen, naproxen,gemfibrozil, DEET, carbamazepine, oxybenzone, bisphenol-A, atrazine, by Fentonand Fenton-like process; Transformation and oxidation byproducts of effluent organicmatter (EfOM) in Fenton and Fenton-like process was also quantified, and thefeasibility of absorbance and fluorescence surrogates used to predict PPCPsdegradation and EfOM oxidation was also explored, the conclusions are as following:
     (1) Considering the degradation efficiency of PPCPs and treatment cost, theoptimal conditions for Fenton process were: molar ratio of H_2O_2/Fe~(2+)of2.5, Fe~(2+)dosage of10mg/L, pH3, reaction time of30min; the optimal conditions forFenton-like process were: molar ratio of H_2O_2/Fe~(3+)of2.5, Fe~(3+)dosage of10mg/L,pH3, reaction time of120min. Under these conditions and the initial dissolvedorganic matter (DOC) of8.287mg/L, the removal efficiency of PPCPs can reach upto90%.
     (2) The degradation of PPCPs by Fenton process follows combined first orderreaction kinetic; the degradation of diclofenac, fluoxetine and gemfibrozil byFenton-like process follows second order reaction kinetic, and the degradation ofother PPCPs by Fenton-like process follows first order reaction.
     (3) The reaction constants of PPCPs and OH (kPPCPs-OH) calculated based on thecompetition kinetic model were close with the previously reported values, except thatthe values for DEET, trimethoprim, ibuprofen, diclofenac, caffeine and gemfibrozilwere a little different from reported values because of the different reaction condition.This confirmed that PPCPs was removed by OH oxidation during Fenton and Fenton-like reaction other than coagulation effect.
     (4) Fenton and Fenton-like reaction caused30%and38%of DOC removal byOH oxidation and coagulation. Size exclusion chromatography (SEC) datademonstrated that Fenton and Fenton-like process preferentially remove highmolecular weight EfOM molecules and break them down into smaller fragments.
     (5) The oxidation byproduct of EfOM by Fenton and Fenton-like process wereformate, acetate, oxalate and less prominently, formaldehyde, acetaldehyde,propionaldehyde and glycolaldehyde. The yields of carboxylic acids and aldehydes ascarbon were11.62%and1.01%of the initial DOC by Fenton process under thereaction condition of molar ratio of H_2O_2/Fe~(2+)of2.5, Fe~(2+)dosage of20mg/L, pH3,reaction time of30min; The yields of carboxylic acids and aldehydes as carbon were13.2%and1.34%of the initial DOC by Fenton-like process under the reactioncondition of molar ratio of H_2O_2/Fe~(3+)of2.5, Fe~(3+)dosage of20mg/L, pH3, reactiontime of120min.
     (6) The UV absorbance of EfOM decreases with the increase of theFenton/Fenton-like reagent dosage and reaction time. The differential absorbancespectra show a prominent feature at wavelength265-275nm. This feature, and thedecrease of UV254, SUVA254value may demonstrate the preferential removal ofaromatic organic matter.
     The UV absorbance spectra were sensitive to the inorganic matter. Aftereliminating the interference, the relative changes of absorbance at254nm (donated as
     A_(254)/A_(254)~0) were strongly correlated with PPCPs removal, OH exposure and theconcentration of carboxylic acids irrespective of whether the wastewater was treatedwith Fenton process or Fenton-like process at any Fe doses and treatment times. Thisdemonstrated that A_(254)/A_(254)~0could be used as a surrogate to predict the PPCPsdegradation and EfOM oxidation extent in advanced oxidation processes.
     (7) According to the three dimension fluorescence spectra, EfOM can beclassified as protein-like species/soluble microbial products, humic-like species andfulvic-like species. Protein-like species/soluble microbial products are the mostreadily removed part by Fenton and Fenton-like processes.
     The total integrated fluorescence relative change (TFhumic/TFhumic0) and peak intensity relative change (PFhumic/PFhumic0) of humic-like species were stronglycorrelated with PPCPs degradation, OH exposure and carboxylic acid concentrationirrespective of whether the wastewater was treated with Fenton process or Fenton-likeprocess at any Fe doses and treatment times. This demonstrated that TFhumic/TFhumic0and PFhumic/PFhumic0could be used as surrogates to predict the PPCPs degradationand EfOM oxidation extent in advanced oxidation process.
引文
[1]世界水资源现状.水利水电技术,2003,4(4):40.
    [2]我国与世界的水资源现状.纺织导报,2008,8:111.
    [3]王学峰.我国水资源的现状与合理利用.内江科技,2009,2:23,41.
    [4]张锐.水污染,扑向世界的”头号杀手”.聚焦,2010,12:14-15.
    [5]2010年全国水环境质量状况.中华人民共和国环境保护部.http://wfs.mep.gov.cn/swrkz/shzl/201106/t20110603_211631.htm.
    [6] Shon, H.K., Vigneswaran, S., Snyder, S.A. Effluent organic matter (EfOM) in wastewater:constituents, effects and treatment. Critical Reviews in Environmental Science and Technology,2006,36(4):327-374.
    [7]郭瑾,盛丰,马民淘,等.污水二级生化出水有机物(EfOM)性质表征及去除现状研究.北京工业大学学报,2011,37(1):131-138.
    [8]李泰平.径河高浓度化工废水治理方案研究:[硕士学位论文].武汉:华中科技大学,2006.
    [9]彭松,蒋克彬,陈红艳.化工废水治理措施综述.江苏环境科技,2008,21(增1):122-124.
    [10] Kurniawan, T.A., Lo, W.H., Chan, G.Y.S. Physicochemical treatments for removal ofrecalcitrant contaminants from landfill leachate. Journal of Hazardous Materials,2006,129(1-3):80-100.
    [11]倪晋仁,邵世云,叶正芳.垃圾渗滤液特点与处理技术比较.应用基础与工程科学学报,2004,12(2):148-160.
    [12] Renou, S., Givaudan, J.G., Poulain, S., et al. Landfill leachate treatment: review andopportunity. Journal of Hazardous Materials,2008,150(3):468-493.
    [13] Alvarez-Vazquez, H., Jefferson, B., Judd, S.J. Membrane bioreactor vs conventionalbiological treatment of landfill leachate: a brief review. Journal of Chemical Technology andbiotechnology,2004,79(10):1043-1049.
    [14] Chian, E.S.K., DeWalle, P.B. Sanitary landfill leachates and their leachate treatment. Journalof the Environmental Engineering Division,1976,102(2):411-431.
    [15] Foo, K.Y., Hameed, B.H. An overview of landfill leachate treatment via activated carbonadsorption process. Journal of Hazardous Materials,2009,171(1-3):54-60.
    [16] Rivas, F.J., Beltrán, F., Carvalho, F., et al. Stabilized leachates: sequentialcoagulation-flocculation+chemical oxidation process. Journal of Hazardous Materials,2004,116(1-2):95-102.
    [17]刘莹,管运涛,水野忠雄,等.药品与个人护理用品类污染物研究进展.清华大学学报(自然科学版),2009,49(3):369-373.
    [18] Ellis, J.B. Pharmaceutical and personal care products (PPCPs) in urban receiving waters.Environmental Pollution,2006,144(1):184-189.
    [19] Daughton, C.G. Non-regulated water contaminants: emerging research. EnvironmentalImpact Assessment Review,2004,24(7-8):711-732.
    [20] Daughton, C.G., Ternes, T.A. Pharmaceuticals and personal care products in the environment:agents of subtle change? Environmental Health Perspectives,1999,107(suppl.6):907-938.
    [21]乔俊军,张锡辉,欧慧婷.药品和个人护理用品在水环境中污染状况的研究与展望.给水排水,2009,35(7):121-130
    [22] www.poseidon.geo.uni-mainz.de/publications.htm
    [23] Kolpin, D.W., Furlong, E.T., Meyer, M.T., et al. Pharmaceuticals, hormones and otherorganic wastewater contaminants in US streams,1999-2000: a national reconnaissance.Environmental Science and Technology,2002,36(6):1202-1211.
    [24] Herberer, T., Schmidt-B umler, K., Stan, H.J. Occurrence and distribution of organiccontaminants in the aquatic system in Berlin. Acta Hydrochimica et Hydrobiologica,1998,26(5):272-278.
    [25] Nakada, N., Komori, K., Suzuki, Y., et al. Occurrence of70pharmaceutical and personal careproducts in Tone River basin in Japan. Water Science and Technology,2007,56(12):133-140.
    [26] Lishman, L., Smyth, S.A., Sarafin, K., et al. Occurrence and reductions of pharmaceuticalsand personal care products and estrogens by municipal wastewater treatment plants in Ontario,Canada. Science of the Total Environment,2006,367(2-3):544-558.
    [27] Boyd, G.R., Reemtsma, H., Grimm, D.A., et al. Pharmaceuticals and personal careproducts(PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Scienceof the Total Environment,2003,311(1-3):135-149.
    [28] Ryu, J., Yoon, Y., Oh, J. Occurrence of endocrine disrupting compounds and pharmaceuticalsin11WWTPs in Seoul, Korea. KSCE Journal of Civil Engineering,2011,15(1):57-64.
    [29] Kosma, C.I., Lambropoulou, D.A., Albanis, T.A. Occurrence and removal of PPCPs inmunicipal and hospital wastewaters in Greece. Journal of Hazardous Materials,2010,179(1-3):804-817.
    [30] Lin, A.Y.C., Lin, C.F., Tsai, Y.T., et al. Fate of selected pharmaceuticals and personal careproducts after secondary wastewater treatment processes in Taiwan. Water Science andTechnology,2010,62(10):2450-2458
    [31] Patrick K. J. Excretion and ecotoxicity of pharmaceutical and personal care products in theenvironment. Ecotoxicology and Environmental safety,2006,63(1):113-130
    [32] Fent, K., Weston, A.A., Caminada, D. Ecotoxicology of human pharmaceuticals. Aquatictoxicology,2006,76(2):122-159.
    [33] Brooks, B.W., Foran, C.M., Richards, S.M., et al. Aquatic ecotoxicology of fluoxetine.Toxicology Letters,2003,142(3):169-183.
    [34] Ferrari, B., Paxéus, N., Giudice, R.L., et al. Ecotoxicological impact of pharmaceuticalsfound in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac.Ecotoxicology and Environmental Safety,2003,55(3):359-370.
    [35] Isidori, M., Lavorgna, M., Nardelli, A., et al. Ecotoxicity of naproxen and itsphototransformation products. Science of the Total Environment,2005.348(1-3):93-101.
    [36]王慧珠,罗义,徐文青等.四环素和金霉素对水生生物的生态毒性效应.农业环境科学学报,2008,27(4):1536-1539.
    [37] Brausch, J.M., Rand, G.M. A review of personal care products in the aquatic environment:Environmental concentrations and toxicity. Chemosphere,2011,82(11):1518-1532.
    [38] Smith, G.R., Burgett, A.A. Effects of three organic wastewater contaminants on Americantoad, Bufo americanus, Tadpoles. Ecotoxicology,2005,14(4):477-482.
    [39] Raut, S.A., Angus, R.A. Triclosan has endocrine-disrupting effects in male westernmsquitofish, Gambusia affinis. Environmental Toxicology and Chemistry,2010,29(6):1287-1291.
    [40] Carlsson, G., rn, S., Andersson, P.L., et al. The impact of musk ketone on reproduction inzabrafish (Danio rerio). Marine Environmental Research,2000,50(1-5):237-241.
    [41] Onesios, K.M., Yu, J.T., Bouwer, E.J. Biodegradation and removal of pharmaceuticals andpersonal care products in treatment systems: a review. Biodegradation,2009,20(4):441-466.
    [42]李本玉,顾国维.混凝法处理混合化工废水的试验研究.四川环境,2004,23(5):1-3,18.
    [43]田丽娟,纪振,陈莉.混凝/水解/好氧/气浮工艺处理高浓度医药化工废水.中国给水排水,2009,25(18):73-75.
    [44] Amokrane, A., Comel, C., Veron, J. Landfill leachates pretreatment coagulation-flocculation.Water Research,1997,31(11):2775-2782.
    [45] Monje-Ramirez, I., Orta de Velásquez, M.T. Removal and transformation of recalcitrantorganic matter from stabilized saline landfill leachates by coagulation-ozonation couplingprocesses. Water Research,2004,38(9):2359-2367.
    [46] Carballa, M., Omil, F., Lema, J.M. Removal of cosmetic ingredients and pharmaceuticals insewage primary treatment. Water Research,2005,39(19):4790-4796.
    [47] Ternes, T.A., Meisenheimer, M., Mcdowell, D., et al. Removal of pharmaceuticals duringdrinking water treatment. Environmental Science and Technology,2002,36(17):3855-3863.
    [48] Westerhoff, P., Yoon, Y., Snyder, S., et al. Fate of endocrine-disruptor pharmaceutical, andpersonal care product chemicals during simulated drinking water treatment. EnvironmentalScience and Technology,2005,39(17):6649-6663.
    [49]金祥福,高全喜,张相阳.高浓度有机化工废水的物化处理技术.天津化工,2008,22(5):61-64.
    [50]李凤镱,谭君山.活性炭吸附法处理染料废水研究的进展概况.广州环境科学,2010,25(1):5-8.
    [51]孙璐,张继义.混凝-活性炭吸附对化工废水深度处理效果的研究.北方环境,2010,22(1):55-58.
    [52] Kargi, F., Pamukoglu, M.Y. Simultaneous adsorption and biological treatment of pre-treatedlandfill leachate by fed-batch operation, Process Biochemisty,2003,38(10):1413-1420.
    [53] Yue, X., Li, X.M., Wang, D.B. Simultaneous phosphate and CODcr removal for landfillleachate using modified honeycomb cinders as an adsorbent. Journal of Hazardous Materials,2011,190(1-3):553-558.
    [54]谢胜,李娟英,赵庆祥.磺胺类抗生素的活性炭吸附过程研究.环境工程学报,2012,6(2):483-488.
    [55] Liu, Y., Lu, X., Wu, F., et al. Adsorption and photooxidation of pharmaceuticals and personalcare products on clay minerals. Reaction Kinetics, Mechanisms and Catalysis,2011,104(1):61-73.
    [56]刘欣然,高乃云,马艳.高级氧化法去除水中药物和个人护理用品的研究进展.四川环境,2010,29(3):82-87.
    [57] Kurniawan, T.A., Lo, W.H., Chan, G.Y.S. Radicals-catalyzed oxidation reactions fordegradation of recalcitrant compounds from landfill leachate. Chemical Engineering Journal,2006,125(1):35-57.
    [58] Von Gunten, U. Ozonation of drinking water-part I. Oxidation kinetics and product formation.Water Research,2003,37(7):1443-1467.
    [59]王春敏,步启军,王维军.有机废水处理的高级氧化技术研究.内蒙苦石油化工,2005,12:8-10.
    [60] Zhao, W., Liu, F., Yang, Y., et al. Ozonation of cationic Red X-GRL in aqueous solution:Kinetics and modeling. Journal of Hazardous Materials,2011,187(1-3):526-533.
    [61]肖春景,吴延忠,万维光,等.石化废水深度处理用臭氧催化氧化体系的研究.油气田环境保护,2011,21(6):47-50.
    [62] Li, W., Zhou, Q., Hua, T. Removal of organic matter from landfill leachate by advancedoxidation processes: a review. International Journal of Chemical Engineering,2010, article ID:270532,10pp.
    [63] Wable, O., Jousset, M., Courant, P. et al. Oxidation of landfill leachate by ozone andhydrogen peroxide: a French example. Proceedings of the International Symposium onOzone-Oxidation methods for Water and Wastewater treatment. Berlin, Germany,1993.
    [64] Schulte, P., Bayer, A., Kuhn, F., et al. H2O2/O2, H2O2/UV and H2O2/Fe2+process for theoxidation of hazardous wastes. Ozone Science and Engineering,1995,17:119-134.
    [65]陈家斌,周雪飞,张亚雷.水环境中PPCPs的臭氧氧化和高级氧化技术.给水排水,2009,35(增刊):85-90.
    [66]闫海生,刘博,喻为福,等.氧化预处理技术在农药废水处理中的应用研究进展.农药,2006,45(2):78-83.
    [67]建筑部科学技术司.废水处理与资源化新工艺.中国建筑工艺出版社,北京,第一版,2006.
    [68] Tang, C., Chen, V. The photocatalytic degradation of reactive black5using TiO2/UV in anannular photoreactor. Water Research,2004,38(11):2775-2781.
    [69] Catanzaro, I., Avellone, G., Marcì, G., et al. Biological effects and photodegradation by TiO2of terpenes present in industrial wastewater. Journal of Hazardous Materials,2011,185(2-3):591-597.
    [70] Jia, C., Wang, Y., Zhang, C., et al. UV-TiO2photocatalytic degradation of landfill leachate.Water, Air and Soil Pollution,2011,217(1-4):375-385.
    [71]王里奥,黄本生,吕红,等.光催化氧化处理生活垃圾渗滤液.中国给水排水,2003,19(6):56-58.
    [72] Kaniou, S., Pitarakis, K., Barlagianni, I., et al. Photocatalytic oxidation of sulfamethazine.Chemosphere,2005,60(3):372-380.
    [73] Méndez-Arriaga, F., Maldonado, M.I., Gimenez, J., et al. Abatement of ibuprofen by solarphotocatalysis process: Enhancement and scale up. Photocatalysis: Catalysis Today,2009,144(1-2):112-116.
    [74]郭英,高超.难降解废水高效处理技术.给水排水,2009,35(增刊):296-299.
    [75]刘福兴,李永义.电化学催化氧化降解有机物的机理及研究进展.四川环境,2005,24(1):52-56.
    [76]程迪,赵馨,邱峰,等.电化学氧化处理难降解废水的研究进展.化学与生物工程,2011,28(4):1-5.
    [77]褚兆晶,徐婷,郭景,等.电化学氧化处理丙烯腈废水及对可生化性的提高.生态环境学报,2010,19(8):1956-1959.
    [78] Bernal-Martìnez, L.A., Barrera-Díaz, C., Solís-Morelos, C., et al. Synergy of electrochemicaland ozonation processes in industrial wastewater treatment. Chemical Engineering Journal,2010,165(1):71-77.
    [79] Moraes, P.B., Bertazzoli, R. Electrodegradation of landfill leachate in a flow electrochemicalreactor. Chemosphere,2005,58(1):41-46.
    [80] Bashir, M.J.K., Isa, M.H., Kutty, S.R.M., et al. Landfill leachate treatment by electrochemicaloxidation. Waste Management,2009,29(9):2534-2541.
    [81] González, T., Domínguez, J.R., Palo, P., et al. Conductive-diamond electrochemical advancedoxidation of naproxen in aqueous solution: optimizing the process. Journal of ChemicalTechnology and Biotechnology,2011,86(1):121-127.
    [82] Radjenovic, J., Escher, B.I., Rabaey, K. Electrochemical degradation of the-blockermetoprolol by Ti/Ru0.7Ir0.3O2and Ti/SnO2-Sb electrodes. Water Research,2011,45(10):3205-3214.
    [83]周雅莉,袁凤英. Fenton法及组合Fenton法在炸药废水处理中的应用.科技情报开发与经济,2005,15(15):172-173.
    [84]李春娟.芬顿法和类芬顿法对水中污染物的去除研究:[博士学位论文].哈尔滨:哈尔滨工业大学,2009.
    [85] Walling, C. Fenton’s reagent revisited. Accounts of Chemical Research.1975,8(4):125-131.
    [86] Neyens, E., Baeyens, J. A review of classic Fenton’s peroxidation as an advanced oxidationtechnique. Journal of Hazardous Materials,2003,98(1-3):33-50.
    [87] Deng, Y. Physical and oxidative removal of organics during Fenton treatment of maturemunicipal landfill leachate. Journal of Hazardous Materials,2007,146(1-2):334-340.
    [88] Lau, I.W.C., Wang, P., Fang, H.H.P. Organic removal of anaerobically treated leachate byFenton coagulation. Journal of Environmental Engineering,2001,127(7):666-669.
    [89] Wang, P., Lau, I.C.W., Fang, H.H.P., et al. Landfill leachate treatment with combined UASBand Fenton coagulation. Journal of Environmental Science and Health, Part A: Toxic/HazardousSubstances and Environmental Engineering,2000,35(10):1981-1988.
    [90] Bautista, P., Mohedano, A.F., Casas, J.A., et al. An overview of the application of Fentonoxidation to industrial wastewaters treatment. Journal of Chemical Technology and Biotechnology,2008,83(10):1323-1338.
    [91] Jones, C.W. Applications of hydrogen peroxide and derivates. The Royal Society ofChemistry. Cambridge. UK.1999.
    [92]孙剑辉,孙胜鹏,王慧亮. Fenton氧化技术处理难降解工业有机废水研究进展.工业水处理,2006,26(12):9-13.
    [93]陈迪,刘丹,刘咏. Fenton试剂处理难降解垃圾渗滤液的研究.环境科学与管理,2010,35(1):64-67.
    [94]李平,吴锦华,朱能武. Fenton法对老龄垃圾渗滤液难降解有机毒物的削弱.环境工程,2012,30(1):39-42.
    [95] Elmolla, E., Chaudhuri, M. Optimization of Fenton process for treatment of amoxicillin,ampicillin, and cloxacillin antibiotics in aqueous solution. Journal of Hazardous Materials,2009,170(2-3):666-672.
    [96] Rodríguez-Gil, J.L., Catalá, M., Alonso, G.S., et al. Heterogeneous photo-Fenton treatmentfor the reduction of pharmaceutical contamination in Madrid rivers and ecotoxicologicalevaluation by a miniaturized fern spores bioassay. Chemosphere,2010,80(4):381-388.
    [97] Rozas, O., Contreras, D., Mondaca, M.A., et al. Experimental design of Fenton andphoto-Fenton reactions for the treatment of ampicillin solutions. Journal of Hazardous Materials,2010,177(1-3):1025-1030.
    [98] Tchobanoglous, G., Burton, R.L. Wastewater Engineering: Treatment, Disposal and reuse,3rd,ed. New York: McGraw-Hill,1991.
    [99]沈国,李茵.废水处理系统中有机物分子量分布及其变化.环境科学与技术,2010,33(11):43-45.
    [100]王磊,王旭东,刘莹,等.水中残留有机物分子量分布特征和对膜性能的影响.水处理技术,2006,32(6):21-26.
    [101] Her, N., Amy, G., Foss, D., et al. Optimization of method for detecting and characterizingNOM by HPLC-size exclusion chromatography with UV and on-line DOC detection.Envrionmental Science and Technology,2002,36(5):1069-1076.
    [102] Her, N., Amy, G., McKnight, D., et al. Characterization of DOM as a function of MW byfluorescence EEM and HPLC-SEC using UVA, DOC, and fluorescence detection. Water Research,2003,37(17):4295-4303.
    [103] Jarusutthirak, C., Amy, G. Understanding soluble microbial products (SMP) as a componentof effluent organic matter (EfOM). Water Research,2007,41(12):2787-2793.
    [104]崔红艳,刘玉,扬桂花,等.紫外-可见光谱技术及其在纸浆研究中的应用.江苏造纸,2011,1:29-33.
    [105]吴元清,杜树新,严贇.水体中有机污染物浓度检测中的紫外光谱分析方法.光谱学与光谱分析,2011,31(1):233-237.
    [106]魏康林,温志渝,武新,等.基于紫外-可见光谱分析的水质监测技术研究进展.光谱学与光谱分析,2011,31(4):1074-1077.
    [107]蒋绍阶,刘宗源. UV254作为水处理中有机物控制指标的意义.重庆建筑大学学报,2002,24(2):61-65.
    [108] Wert, E.C., Rosario-Ortiz, F.L., Snyder, S.A. Using ultraviolet absorbance and color toassess pharmaceutical oxidation during ozonation of wastewater. Environmental Science andTechnology,2009,43(13):4858-4863.
    [109] Korshin, G.V., Li, C., Benjamin, M.M. Monitoring the properties of natural organic matterthrough UV spectroscopy: a consistent theory. Water Research,1997,31(7):1787-1795.
    [110] Nam, S.N., Amy, G. Differentiation of wastewater effluent organic matter (EfOM) fromnatural organic matter (NOM) using multiple analytical technique. Water Science and Technology,2008,57(7):1009-1015.
    [111] Chen, W., Westerhoff, P., Leenheer, J.A., et al. Fluorescence excitation-emission matrixregional integration to quantify spectra for dissolved organic matter. Environmental Science andTechnology,2003,37(24):5701-5710.
    [112]赵庆良,贾婷,魏亮亮,等.污水厂二级出水中THMs前体物卤代活性荧光光谱分析[J].中国环境科学,2009,29(11):1164-1170.
    [113]叶少帆,吴志超,王志伟,等. Fenton法处理垃圾渗滤液过程中有机物分子质量分布和荧光特性.环境科学研究,2010,23(8):1049-1054.
    [114] USEPA. Methods for aquatic toxicity identification evaluation, phase I. Toxicitycharacterization procedures. EPA600/6-91/003. USEPA, washtington, DC,1991.
    [115] USEPA. Methods for aquatic toxicity identification evaluation, phase II. Toxicityidentification procedures for sample exhibiting acute and chronic toxicity. EPA600/R-92/080.USEPA, washtington, DC,1993.
    [116] USEPA. Methods for aquatic toxicity identification evaluation, phase III. Toxicityconfirmation procedures for sample exhibiting acute and chronic toxicity. EPA600/6-91/003.USEPA, washtington, DC,1991.
    [117] Behera, S.K., Kim, H.W., Oh, J., et al. Occurrence and removal of antibiotics, hormones andseveral other pharmaceuticals in wastewater treatment plants of the largest industrial city of korea.Science of the total Environment,2011,409(20):4351-4360.
    [118] Yoon, Y., Ryu, J., Oh, J., et al. Occurrence of endocrine disrupting compounds,pharmaceuticals, and personal care products in the Han River (Seoul, South Korea), Science ofthe Total Environment,2010,408(3):636-643.
    [119] Kibbey, T.C.G., Paruchuri, R., Sabatini, D.A., et al. Adsorption of beta blockers toenvironmental surfaces. Environmental Science and Technology,2007,41(15):5349-5356.
    [120]梅卓华,楼霄.废水毒性鉴别评价方法.重庆环境科学,1997,19(4):47-51.
    [121] OECD (Organization for Economic Co-operation and Development). Daphnia sp., acuteimmobilization test: Guideline for testing of chemicals, no.202. OECD, Paris,2004.
    [122] USEPA. Ecological effects test guidelines, OPPTS850.4200: Seed germination/rootelongation toxicity test. OPPTS, Washington, DC,1996.
    [123] APPA (American Public Health Association). Standard methods for the examination ofwater and wastewater.20thed. APHA, Washington, DC.1998.
    [124] GB11894-89.水质-总氮的测定-碱性过硫酸钾消解紫外分光光度法.国家环境保护局.北京,1990.
    [125] GB11893-89.水质-总磷的测定-钼酸铵分光光度法.国家环境保护局.北京,1990.
    [126] Kuo, C. Improved application of ion chromatographic determination of carboxylic acids inozonated drinking water. Journal of Chromatography A,1998,804(1-2):265-272.
    [127]牟世芬.羧酸的离子色谱法分离和测定.环境科学丛刊,1987,8(12):10-15.
    [128] Yu, H., Cheng, J., Cui, Y., et al. Application of toxicity identification evaluation procedureson wastewaters and sludge from a municipal sewage treatment works with industrial inputs.Ecotoxicology and Environmental Safety,2004,57(3):426-430.
    [129] Hunt, J., Anderson, B., Phillips, B., et al. Use of toxicity identification evaluations todetermine the pesticide mitigation effectiveness of on-farm vegetated treatment systems.Environment Pollution,2008,156(2):348-358.
    [130] Yang, L., Yu, H., Yin, D., et al. Application of the simplified toxicity identificationevaluation procedures to a chemical works effluent. Chemosphere,1999,38(15):3571-3577.
    [131] Fj llborg, B., Dave, G. Toxicity of copper in sewage sludge. Environment International,2003,28(8):761-769.
    [132] Cao, Q., Hu, Q.H., Khan, S., et al. Wheat phytotoxicity from arsenic and cadmiumseparately and together in solution culture and in a calcareous soil. Journal of HazardousMaterials,2007,148(1-2):377-382.
    [133] Jo, H.J., Park, E.J., Cho, K., et al. Toxicity identifi cation and reduction of wastewaters froma pigment manufacturing factory. Chemosphere,2008,70(6):949-957.
    [134] Arambasic, M.B., Bjelic, S., Subakov, G. Acute toxicity of heavy metals (copper, lead, zinc),phenol and sodium on Allium cepa L., Lepidium sativum L. and Daphnia Magna St.: Comparativeinvestigations and the practical applications. Water Research,1995,29(2):497-503.
    [135] Wang, M., Zhou, Q. Single and joint toxicity of chlorimuron-ethyl, cadmium, and copperacting on wheat Triticum aestivum. Ecotoxicology and Environmental Safety,2005,60(2):169-175.
    [136] Munzuroglu, O., Geckil, H.2002. Effects of metals on seed germination, root elongation,and coleoptiles and hypocotyl growth in Triticum aestivum and Cucumis sativus. Archives ofEnvironmental Contamination and Toxicity,2002,43(2):203-213.
    [137]宋玉芳,周启星,许华夏,等.重金属对土壤中小麦种子发芽与根伸长抑制的生态毒性.应用生态学报,2002,13(4):459-462.
    [138] An, Y.J., Kim, Y.M., Kwon, T.I., et al. Combined effect of copper, cadmium, and lead uponCucumis sativus growth and bioaccumulation. Science of the Total Environment,2004,326(1-3):85-93.
    [139] Luo, X.S., Li, L.Z., Zhou, D.M.2008. Effect of cations on copper toxicity to wheat root:Implications for the biotic ligand model. Chemosphere,2008,73(3):401-406.
    [140] Lefebvre, O., Moletta, R. Treatment of organic pollution in industrial saline wastewater: Aliterature review. Water Research,2006,40(20):3671-3682.
    [141] Panswad, T., Anan, C. Impact of high chloride wastewater on an anaerobic/anoxic/aerobicprocess with and without inoculation of chloride acclimated seeds. Water Research,1999,33(5):1165-1172.
    [142] Reid, E., Liu, X., Judd, S.J. Effect of high salinity on activated sludge characteristics andmembrane permeability in an immersed membrane bioreactor. Journal of Membrane Science,2006,283(1-2):164-171.
    [143] Kargi, F., Dincer, A.R. Effect of salt concentration on biological treatment of salinewastewater by fed-batch operation. Enzyme Microbial Technology,1996,19(7):529-537.
    [144] Amokrane, A., Comel, C., Veron, J. Landfill leachate pretreatment bycoagulation-flocculation. Water Research,1997,31(11):2775-2782.
    [145] Tatsi, A.A., Zouboulis, A.I., Matis, K.A., et al. Coagulation-flocculation pretreatment ofsanitary landfill leachates. Chemosphere,2003,53(7):737-744.
    [146] Wang, X., Chen, S., Gu, X., et al. Pilot study on the advanced treatment of landfill leachateusing a combined coagulation, Fenton oxidation and biological aerated filter process, WasteManagement,2009,29(4):1354-1358.
    [147] Trebouet, D., Schlumpf, J.P., Jaquen, P., et al. Stabilized landfill leachate treatment bycombined physicochemical-nanofiltration processes. Water Research,2001,35(12):2935-2942.
    [148] Ching, H.W., Tanaka, T.S., Elimelech, M. Dynamics of coagulation of kaolin particles withferric chloride. Water Research,1994,28(3):559-569.
    [149] Duan, J., Gregory, J., Coagulation by hydrolysing metal salts, Advances in Colloid andInterface Science,2003,100-102:475-502.
    [150]栾兆坤,汤鸿霄,于忱非.混凝过程中铝与聚合铝水解形态动力学转化及其稳定性.环境科学学报,1997,17(3):321-327.
    [151] Méndz-Arriaga, F., Esplugas, S., Giménez, J. Degradation of the emerging contaminantibuprofen in water by photo-Fenton. Water Research,2010,44(2):589-595.
    [152] Pérez-Moya, M., Graells, M., Castells, G., et al. Characterization of the degradationperformance of the sulfamethazine antibiotic by photo-Fenton process. Water Research,2010,44(8):2533-2540
    [153] Klamerth, N., Rizzo, L., Malato, S., et al. Degradation of fifteen emerging contaminants atμg/L initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Research,2010,44(2):545-554.
    [154] Song, W., Cooper, W.J., Mezyk, S.P., et al. Free radical destruction of beta-blockers inaqueous solution. Environmental Science and Technology,2008,42(4):1256-1261.
    [155] Acero, J.L., Stemmler, K., Von Gunten. U. Degradation kinetics of atrazine and itsdegradation products with ozone and OH radicals: A predictive tool for drinking water treatment.Environmental Science and Technology,2000,34(4):591-597.
    [156] Huber, M.M., Canonica, S., Park, G.Y., et al. Oxidation of pharmaceuticals during ozonationand advanced oxidation processes Environmental Science and Technology,2003,37(5):1016-1024.
    [157] Song, W., Cooper, W.J., Peake, B.M., et al. Free-radical-induced oxidative and reductivedegradation of N,N’-diethyl-m-toluamide (DEET): Kinetic studies and degradation pathway.Water Research,2009,43(3):635-642.
    [158] Dodd, M.C., Buffle, M.O., Von Gunten, U. Oxidation of antibacterial molecules by aqueousozone: Moiety-specific reaction kinetics and application to ozone-based wastewater treatment.Environmental Science and Technology,2006,40(6):1969-1977.
    [159] Bensalah, N.,Khodary, A.,Abdel-Wahab, A. Kinetic and mechanistic investigations ofmesotrione degradation in aqueous medium by Fenton process. Journal of Hazardous Materials,2011,189(1-2):479-485.
    [160] Farré, M.J., Brosillon, S., Domènech, X., et al. Evaluation of the intermediates generatedduring the degradation of Diuron and Linuron herbicides by the photo-Fenton reaction, Journal ofPhotochemistry and Photobiology. A: Chemistry,2007,189(2007):364-373.
    [161] Rosario-Ortiz, F.L., Mezyk, S.P., Doud, D.F.R., et al. Quantitative correlation of absolutehydroxyl radical rate constants with non-isolated effluent organic matter bulk properties in water.Environmental Science and Technology,2008,42(16):5924-5930.
    [162] Wert, E.C., Rosario-Ortiz, F.L., Snyder, S.A. Effect of ozone exposure on the oxidation oftrace organic contaminants in wastewater. Water Research,2009,43(4):1005-1014.
    [163] Dong, M.M., Mezyk, S.P., Rosario-Ortiz, F.L. Reactivity of effluent organic matter (EfOM)with hydroxyl radical as a function of molecular weight. Environmental Science and Technology,2010,44(15):5714-5720.
    [164] wietlik, J., Dabrowska, A., Raczyk-Stanis awiak, U., et al. Reactivity of natural organicmatter fractions with chlorine dioxide and ozone. Water Research,2004,38(3):547-558.
    [165] Wert, E.C., Rosario-Ortiz, F.L., Drury, D.D., et al. Formation of oxidation byproducts fromozonation of wastewater. Water Research,2007,41(7):1481-1490.
    [166] Korshin, G.V., Benjamin, M.M., Chang, H., et al. Examination of NOM chlorinationreactions by conventional and stop-flow differential absorbance spectroscopy. EnvironmentalScience and Technology,2007,41(8):2776-2781.
    [167] Nanaboina, V., Korshin, G.V. Evolution of absorbance spectra of ozonated wastewater andits relationship with the degradation of trace-level organic species. Environmental Science andTechnology,2010,44(16):6130-6137.
    [168] Abellán, M.N., Bayarri, B., Giménez, J, et al. Photocatalytic degradation ofsulfamethoxazole in aqueous suspension of TiO2. Applied Catalysis B: Environmental,2007,74(3-4):233-241.
    [169] Janhom, T., Wattanachira, S., Pavasant, P. Characterization of brewery wastewater withspectrofluorometry analysis. Journal of Environmental Management,2009,90(2):1184-1190.
    [170] McKnight, D.M., Boyer, E.W., Westerhoff, P.K., et al. Spectrofluorometric characterizationof dissolved organic matter for indication of precursor organic material and aromaticity.Limnology and Oceanography,2001,46(1):38-48.
    [171] Abdelmelek, S.B., Greaves, J., Ishida, K.P., et al. Removal of pharmaceutical and personalcare products from reverse osmosis retentate using advanced oxidation processes. EnvironmentalScience and Technology,2011,45(8):3665-3671.
    [172] Korshin, G., Chow, C.W.K., Fabris, R., et al. Absorbance spectroscopy-based examinationof effects of coagulation on the reactivity of fractions of natural organic matter with varyingapparent molecular weights. Water Research,2009,43(6):1541-1548.
    [173] Wang, S. A comparative study of Fenton and Fenton-like reaction kinetics indecolourisation of wastewater. Dyes and Pigments,2008,76(3):714-720.
    [174] Ifelebuegu, A.O., Ezenwa, C.P. Removal of Endocrine Disrupting Chemicals in wastewatertreatment by Fenton-like oxidation. Water Air and Soil Pollution,2011,217(1-4):213-220.
    [175] De Laat, J., Gallard, H. Catalytic decomposition of hydrogen peroxide by Fe(III) inhomogeneous aqueous solution: Mechanism and kinetic modeling. Environmental Science andTechnology,1999,33(16):2726-2732.
    [176] Broseus, R., Vincent, S., Aboulfadl, K., et al. Ozone oxidation of pharmaceuticals,endocrine disruptors and pesticides during drinking water treatment. Water Research,2009,43(18):4707-4717.
    [177] Packer, J.L., Werner, J.J., Latch, D.E., et al. Photochemical fate of pharmaceuticals in theenvironment: Naproxen, diclofenac, clofibric acid, and ibuprofen. Aquatic Science,2003,65(4):342-351.
    [178] Razavi, B., Song, W., Cooper, W.J., et al. Free-radical-induced oxidative and reductivedegradation of fibrate pharmaceuticals: Kinetic studies and degradation mechanisms. Journal ofPhysical Chemistry A,2009,113(7):1287-1294.
    [179] Vanderford, B.J., Pearson, R.A., Rexing, D.J., et al. Analysis of endocrine disruptors,pharmaceuticals, and personal care products in water using liquid chromatography/tanderm massspectrometry. Analytical Chemistry,2003,75(22):6265-6274.
    [180] Vanderford, B.J., Snyder, S.A. Analysis of pharmaceuticals in water by isotope dilutionliquid chromatography/tandem mass spectrometry. Environmental Science and Technology,2006,40(23):7312-7320.
    [181] Korshin, G.V., Kumke, M.U., Li, C.W., et al. Influence of chlorination on chromophores andfluorophores in humic substances. Environmental Science and Technology,1999,33(8):1207-1212.
    [182] Zhang, H., Lu, J., Ma, J., et al. Fluorescence spectroscopic characterization of DOMfractions isolated from a filtered river water after ozonation and catalytic ozonation. Chemosphere,2008,71(5):911-921.
    [183] Uyguner, C.S.; Bekbolet, M. Evaluation of humic acid photocatalytic degradation byUV-vis and fluorescence spectroscopy. Catalysis Today,2005,101(3-4):267-274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700