基于辐射传输机理的鄱阳湖悬浮颗粒物浓度遥感反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水色遥感作为一种可以大范围同步获取湖泊水体水色参数信息的先进技术,在一定程度上解决了传统方法水体参数现场观测不便、数据获取难度大的困境,是进行湖泊水环境动态监测的重要手段,可为区域经济社会生产和全球变化研究提供重要的定量信息,对我国湖泊功能的可持续利用也具有重要意义。
     鄱阳湖是长江中下游最大的淡水湖,湖泊独特的“吞吐性、季节性”特征导致的湖泊面积变化剧烈、水体光学特性复杂、底质类型丰富多变,是进行水色遥感辐射传输机理研究的天然试验场,本文以鄱阳湖最受关注的水体参数——悬浮颗粒物浓度为切入点,针对鄱阳湖水体光学特性较强的季节性与区域性特征,研究悬浮颗粒物浓度遥感定量反演的机理和方法。
     本研究所完成的工作以及取得的创新性成果主要体现在如下几个方面:
     1.鄱阳湖水体光学特性的观测与测量方法研究:通过分析2005年、2008年、2009年、2011年四个航次的观测,研究了鄱阳湖水体观测方法的适用性。结果表明,水面以上观测法是适合鄱阳湖浅水湖泊的遥感反射率观测方法;鄱阳湖水体中大量细小的无机悬浮颗粒物导致目前常用的散射系数观测设备仅在悬浮颗粒物浓度低于75mg/L的水体中适用;相对于目前海洋与湖泊水体悬浮颗粒物吸收系数实验室测定中普遍采用的光透射法,光透射.反射法对于高浓度悬浮颗粒物水体中颗粒物光谱的提取更为有效。
     2.鄱阳湖水体悬浮颗粒物固有光学特性及其对水体光学特性的贡献:对鄱阳湖水体中有色溶解有机物(CDOM)、非藻类颗粒物和藻类颗粒物的吸收特性进行光谱特征分析,获取了鄱阳湖各水体组分吸收系数的空间分布规律与季节性差异,研究表明非藻类颗粒物是鄱阳湖水体吸收的主要贡献者,悬浮颗粒物浓度与总颗粒物吸收系数、非藻类颗粒物吸收系数之间均存在较好的相关关系:对水体总悬浮颗粒物散射系数进行有机颗粒物与无机颗粒物的散射光谱分解发现,鄱阳湖大部分水域无机颗粒物对鄱阳湖水体散射起主导作用。
     3.水动力学数值模拟与遥感结合的光学浅水区与光学深水区的判别方法研究:针对鄱阳湖水体深度、浑浊度季节性变化的特点,将水动力模型与遥感相结合进行鄱阳湖水体深度的模拟,并通过分析水体透明度与遥感反射率之间的关系,构建了水体透明度反演模型,并综合水深模拟结果与透明度反演结果实现了鄱阳湖水体光学浅水区、潜在光学浅水区以及光学深水区的判别,结果表明,鄱阳湖水体光学浅水区主要分布于鄱阳湖南部水域,且随着季节的变化,光学浅水区的分布存在差异。
     4.基于辐射传输理论的光学浅水区/光学深水区悬浮颗粒物浓度反演模型研究:根据鄱阳湖水体光学特性,分别对光学深水区与光学浅水区实测遥感反射率与水体固有光学特性的定量表达进行分析,建立了适合鄱阳湖水体特征的深水区半分析模型和浅水区迭代优化模型,并根据悬浮颗粒物浓度在不同季节、不同水域与水体固有光学特性的关系,构建了固有光学量与悬浮颗粒物浓度的反演模型。结果表明:采用实测数据构建的辐射传输模型比经验模型具有更高的精度和时相稳定性。
     5.悬浮颗粒物浓度反演模型的遥感实现与误差分析:采用神经网络方法对具有同步观测数据的MODIS陆地反射率影像进行大气校正,采用水动力学过程数值模拟与遥感结合的方法对影像上的光学深水区与光学浅水区进行判别:考虑MODIS卫星影像波段设置,在基于实测数据建立的悬浮颗粒物浓度辐射传输反演模型基础上,进行MODIS影像的悬浮颗粒物浓度遥感反演,利用现场同步观测结果对反演模型进行精度评价,结果表明:采用光学浅水区/光学深水区分别计算的辐射传输模型,可以有效地提高反演精度,并具有较好的时相稳定性,基本能够满足湖泊水质监测的应用需求。
Water color remote sensing is an advanced technique to acquire the synoptic view of lake. It has big advantage in water quality monitoring, which is difficult to acquire by the traditional filed investigation for its hard accessibility. Water color parameters retrieved from remote sensing images can provide quantitative information about regional economic, social development and global change. It is significant to sustainably exploit lakes.
     As the largest freshwater lake lies in the middle reach of Yangtze River in China, Poyang Lake is a seasonal and throughput lake, which leads to its dramatic water area changes, complex water optical properties, and various bottom types. Therefore, it becomes a natural study area for the mechanism of radiative transfer process under water. Taking the most concerned water color parameter, suspended particulate matter concentration as an example, the dissertation discusses the seasonal and spatial variations of the optical properties in the Poyang Lake, and investigates the mechanism and method of quantitative retrieval of water color parameters based on radiative transfer theory.
     The main contributions are shown as follows:
     1. Measurement of aquatic optical properties and analysis of the applicability of different measurement methods in Poyang Lake.
     Four cruises of observation were performed in2005,2008,2009and2011, and the applicability of measurement methods for inherent and apparent optical properties were studied. Comparisons of methods of remote sensing reflectance measurements show that the above-water method was suitable for the shallow Poyang Lake. Due to the large number of small tiny mineral particles in Poyang Lake, the usage of current in-situ observation equipment was limited and in-situ particle scattering coefficients were only available for samples which the suspended sediment concentrations is less than75mg/L. For laboratory analysis the suspended particulate absorption, the transmission-reflection method was more efficient in the spectrum extracting in turbid waters than the transmission method, which is widely used in the laboratory determination of the absorption coefficient of suspended particulate matter in ocean and coastal waters.
     2. Inherent optical properties of suspended particulate matters and their optical contributions in Poyang Lake.
     Spectral features of Colored Dissolved Organic Matter (CDOM), non-algal particles and algae particles absorption properties were analyzed. Spatial and seasonal variations in absorption of each water components were also discussed. The study showed that non-algal particulate matter is the major contributor to the total absorption, and a good correlation relationship was existed between concentration of suspended particulate matters, total suspended particulate absorption coefficients and non-algal particulate absorption coefficients. Scattering properties of suspended particle were also investigated.A regional model was developed for partitioning total particulate scattering into the contributions of organic and inorganic particles. The results of scattering spectrum partition show that inorganic particles scattering plays a dominant role in Poyang Lake.
     3. Identification of optical shallow and deep waters by coupling the hydrodynamic simulation and remote sensing.
     Considering the seasonal variability of water depth and turbidity in Poyang Lake, advantage of hydrodynamic simulation and remote sensing technology was fully used to derive the real time water depth. Water clarity retrieval model was established based on the relationship between water clarity and remote sensing reflectance. Combining the retrieved water clarity and simulated water depth, the optical shallow water area, potential shallow water area, and optical deep water area can be identified. The distribution pattern for different water types in Poyang Lake indicated that the optical shallow water is mainly locates in the south Poyang Lake and the spatial distribution pattern of shallow water varies seasonally.
     4. Retrieval of suspended particulate matter concentration in optical shallow and deep water respectively, based on radiative transfer theory.
     According to water optical properties of Poyang Lake, the relationship between remote sensing reflectance and inherent optical properties was examined with in-situ data in the optical shallow and deep water areas. Based on radiative transfer theory, a semi-analysis model for inherent optical parameter retrieval was established in optical deep water area, while an iterative optimization model in the shallow water area. There is a significant correlation between inherent optical properties and suspended particulate matter concentration in different seasons and different regions, and retrieval model of suspended particulate matter concentration was constructed base on the relationships. The results indicated that the radiative transfer model performed well for the in-situ data, and it was more accurate and stable than the empirical model.
     5. Implementation of suspended particulate matter retrieval model on remote sensing images and error analysis.
     In the dissertation, method of neural network was used to remove the atmospheric affection on MODIS land reflectance images. Water type classification combined with hydrodynamic and remote-sensing was carried out on corrected images acquired on October20,2008and July20,2011. Considering the band setting of MODIS sensor, radiative transfer model of suspended particulate matter retrieval from MODIS image was established. Evaluation of radiative transfer model using in-situ simultaneous observation data showed that calculated concentration of suspended particulate matter in optical shallow and deep water separately can effectively improve the retrieval accuracy and make the results temporally stable. The model developed in this paper can approximately meet the needs of water quality monitoring.
引文
[1]Aas E. Two stream irradiance model for deep waters. Applied Optics,1987,26: 2095-2101.
    [2]Ackleson S G, Klemas V. Two-flow simulation of the natural light field within a canopy of submerged aquatic plants. Applied Optics,1986,25:1129-1136.
    [3]Antonio Ruiz-Verdu, Sampsa Koponen, Thomas Heege, et al. Developmentof MERIS lake water algorithms:validation results from Europe.2nd MERIS/AATSR workshop,2008:22-26.
    [4]Babin M, Morel A, Fell F, et al. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnology and Oceanography,2003,48(2):843-859.
    [5]Babin M, Stramski D, Ferrari G M, et al. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. Journal of Geophysical Research,2003, 108(4):1-20.
    [6]Babin M, Stramski D. Light absorption by aquatic particles in the near-infrared spectral region. Limnology and Oceanography,2002,47:911-915.
    [7]Bannister T T. Empirical equations relating scalar irradiance to a, b/a, and solar zenith angle. Limnology and Oceanography,1990,34:173-177.
    [8]Barnard A H, Pegau W S, Zaneveld J R V. Global relationships in the inherent optical properties of the oceans. Journal of Geophysical Research,1998, 103(24):955-968.
    [9]Belzile C, Vincent W F, Howard-Williams C, et al. Relationships between spectral optical properties and optically active substances in a clear oligotrophic lake. Water Resources Research,2004,40(12).
    [10]Binding C E, Bowers D G, Mitchelson-jacob E G. Estimating suspended sediment concentrations from ocean colour measurements-in moderately turbid waters; the impact of variable particle scattering properties. Remote Sensing of Environment,2005,94:373-383.
    [11]Binding C E, Jerome J H, Bukata R P, et al. Spectral absorption properties of dissolved and particulate matter in Lake Erie. Remote Sensing of Environment, 2008,112(4):1702-1711.
    [12]Binding C E, Jerome J H, Bukata R P, et al. An assessment of MERIS algal products during an intense bloom in Lake of the Woods. Journal of Plankton Research, (2011) 33 (5):793-806.
    [13]Binding C E, Jerome J H, Bukata R P, et al. Spectral absorption properties of dissolved and particulate matter in Lake Erie. Remote Sensing of Environment, 2008,112(4):1702-1711.
    [14]Binding C E, Jerome J H, Bukata R P, et al. Suspended particulate matter in Lake Erie derived from MODIS aquatic color imagery. International Journal of Remote Sensing,2010,31(19):5239-5255.
    [15]Bowers D G, Braithwaite K M, Graham G W, et al. Light scattering by particles suspended in the sea:The role of particle size and density. Continental Shelf Research,2009,29(14):1748-1755.
    [16]Bowers D G, Binding C E. The optical properties of mineral suspended particles:A review and synthesis. Estuarine, Coastal and Shelf Science,2006, 67(1-2):219-230.
    [17]Brando V E, Dekker A G Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Transactions on Geoscience and Remote Sensing,2003,41(6):1378-1387.
    [18]Bricaud A, Morel A, Babin M, et al. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters:Analysis and implications for bio-optical models. Journal of Geophysical Research 1998,103:31033-31044.
    [19]Bricaud A, Morel A, Prieur L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Journal of Geophysical Research,1981,26:43-53.
    [20]Bricaud A, Stramski D. Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter:a comparison between the peru upwelling area and the sargasso sea. Limnology and Oceanography,1990,35: 562-582.
    [21]Bukata R P, Jerome J H, Bruton J E, Jain S C, et al. Optical water quality model of Lake Ontario.1:Determination of the optical cross sections of organic and inorganic particulates in Lake Ontario. Applied Optics,1981,20: 1696-1703
    [22]Bukata R P, Jerome J H, Bruton J E, Jain S C, et al. Optical water quality model of Lake Ontario.2:Determination of chlorophyll a and suspended mineral concentration of natural waters from submersible and low altitude optical sensors. Applied Optics,1981,20:1704-1714.
    [23]Bukata R P, Jerome J H, Kondratyev K Y, et al. Optical Properties and Remote Sensing of Inland and Coastal Waters. Boca Raton, FL:CRC Press,1995.
    [24]Carder K L, Chen F, Cannizzaro J P, et al. Performance of the modis semi-analytical ocean color algorithm for chlorophyll-a. Advances in Space Research,2004,33(7):1152-1159.
    [25]Carder K L, Steward R G, Harvey G Marine Humic and FulvicAcids:Their Effects on Remote Sensing of Ocean Chlorophyll. Limnology and Oceanography.1989,34(1):68-81.
    [26]Chen C Q, Shi P, Yin K D, Pan Z L, et al. Absorption coefficient of yellow substance in the Pearl River estuary [J]. Ocean Remote Sensing and Applications,2003,4892:215-221.
    [27]Chen RF and Gardner GB. High-resolution measurements of chromophoric dissolved organic matter in the Mississippi and Atchafalaya River plume regions. Marine Chemistry,204,89(1-4):103-125.
    [28]Cui L J, Wu G F, Liu Y L. Monitoring the impact of backflow and dredging on water clarity using MODIS images of Poyang Lake, China. Hydrological Processes,2009,23(2):342-350.
    [29]D'Sa, Steward RG, Voacek A, et al. Determining optical absorption of colored dissolved organic matter in seawater with a liquid capillary waveguide. Limnology and Oceanography,1999,44:1142-1148.
    [30]Dekker A G, Vos R J and Peters S W M. Comparison of remote sensing data model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes. Total Environment,2001,268(1-3):197-214.
    [3 l]Dekker A G Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing. Ph.D. dissertation. Amsterdam:Vrije Universiteit,1993
    [32]Doerffer R, Heymann K and Schiller H. Case 2 water algorithm for the medium resolution imaging spectrometer (MERIS) on ENVISAT. ESA report ENVISAT validation workshop,2002.
    [33]Doerffer R. Atmospheric correction based on modeled radiance reflectances and artificial neural network. International Ocean Color workshop agenda, Hangzhou, China,2009.
    [34]D'Sa, Hu C M. Muller-Karger F E, et al. Estimation of Colored Dissolved Organic Matter and Salinity Fields in Case 2 Waters Using SeaWIFS: Examples from Florida Bay and Florida Shelf. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences,2002,111(3):197-207.
    [35]Fargion G S and Mueller J L. Ocean optics protocols for Satellite Ocean color sensor validation. Reversion 3.NASA/TM22002221004,2002.
    [36]Fomferra N and Brockman C, Beam-the ENVISAT MERIS and AATSR toolbox, ESA/ESRIN. Proceedings of the MERIS-(A) ATSR workshop, Frascati, Italy,2005.
    [37]Galvao L S, Filho W P, Abdon M M, et al. Spectral reflectance characterization of shallow lakes from the Brazilian Pantanal wetlands with field and airborne hyperspectral data. International Journal of Remote Sensing, 2003,24(21):4093-4110.
    [38]Garver S A and Siegel D. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation 1. Time series from the Sargasso Sea. Journal of Geophysical Research,1997,102:18607-18625.
    [39]Giardino C, Brando V E, Dekker A G, et al. Assessment of water quality in Lake Garda (Italy) using Hyperion. Remote Sensing of Environment,2007, 109(2):183-195.
    [40]Gordon H R, Brown O B and Jacobs M M. Computed relationship between the inherent and apparent optical properties of a flat homogeneous ocean. Applied Optics,1975,14:417-427.
    [41]Gordon H R and Brown O B. Influence of bottom depth and albedo on the diffuse reflectance of a flat homogeneous ocean. Applied Optics,1994,13: 2153-2159.
    [42]Gordon H R, Evans R H, Brown J W, et al. A semianalytic radiance model of ocean color. Journal of Geophysical Research,1988,93:10909-10924.
    [43]Gordon H R. Modeling and simulating radiative transfer in the ocean. Ocean Optics,1994.
    [44]Gordon H R. Ship perturbation of irradiance measurements at sea,1:Monte Carlo simulations. Applied Optics,1985,24:4172-4182.
    [45]Gordon H R and Wang M H. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with Sea WiFS:A preliminary algorithm. Applied Optics,1994,33:443-452.
    [46]Green S A and Blough N V. Optical-absorption and fluorescence properties of chromophoric dissolved organic-matter in natural-waters. Limnology and Oceanography,1994,39(8):1903-1916.
    [47]Hoge F E and Lyon P E. Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models:an analysis of model and radiance measurement errors. Journal of Geophysical Research,1996,101: 16631-16648.
    [48]Hu C M, Chen Z Q, Clayton TD, et al. Assessment of Estuarine Water-Quality Indicators Using MODIS Medium-Resolution Bands:Initial Results from Tampa Bay,Fl. Remote Sensing of Environment,2004,93:423-441.
    [49]Hu C M, Lee Z P, Ma R H, et al. Moderate Resolution Imaging Spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. Journal of Geophysical Research,2010,115
    [50]ILEC&UNEP. World lake vision:a call to action, International Lake Environment Committee Foundation and United Nations Environment Programme, Kusatsu, Japan,2003.
    [51]ILEC. Managing lakes and their basins for sustainable use:a report for lake managers and stakeholders, International Lake Environment Committee Foundation, Kusatsu, Japan,2005.
    [52]IOCCG Remote Sensing of Inherent Optical Properties:Fundamentals, Tests of Algorithms, and Applications, in International Ocean-Colour Coordinating Group. Dartmouth, Canada.2006.
    [53]IOCCG Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters, in Reports of the International Ocean-Colour Coordinating Group, No.3, S. SATHYENDRANATH, Editor, IOCCG: Dartmouth, Canada.2000.
    [54]Jerome J H, Bukata R P and Burton J E. Utilizing the components of vector irradiance to estimate the scalar irradiance in natural waters. Applied Optics, 1988,27:4012-4018.
    [55]Jin Z H and Stamnes K. Radiative transfer in nonuniformly refracting layered media:atmosphere-ocean system. Applied Optics,1994.33(3):431-442.
    [56]Johnson R A and Wichern D W. Applied Multivariate Statistical Analysis, Prentice Hall,2007.
    [57]Jouni P, Kari K. A semi-operative approach to lake water quality retrieval from remote sensing data. The Science of the Total Environment,2001, 268:79-93.
    [58]Keith DJ, Yoder JA, Freeman SA. Spatial and temporal distribution of coloured dissolved organic matter (CDOM) in narragansett bay, rhode island: implications for phytoplankton in coastal waters. Estuarine Coastal and Shelf Science,2002.55(5):705-717.
    [59]Kirk J T O. A Monte Carlo study of the nature of the underwater light field in, and the relationships between optical properties of, turbid yellow waters. Australia Journal of Marine and Freshwater Research.1981,32:517-532.
    [60]Kirk J T O. Dependence of relationship between inherent and apparent optical properties of water on solar altitude. Limnology and Oceanography,1984,29: 350-356.
    [61]Kuchinke C P, Gordon H R and Franz B A. Spectral optimization for constituent retrieval in Case 2 waters I:Implementation and performance. Remote Sensing of Environment,2009,113:571-587.
    [62]Kuchinke C P, Gordon H R, Harding L W, et al. Spectral optimization for constituent retrieval in Case 2 waters II:Validation study in the Chesapeake Bay. Remote Sensing of Environment,2009113:610-621.
    [63]Laws E A and Archie J W. Appropriate Use of Regression Analysis in Marine Biology. Marine Biology,1981,65:13-16.
    [64]Lee Z P, Carder K L, Chen R F, et al. Properties of the water column and bottom derived from AVIRIS data. Geophy. Research,2001,106: 11639-11652.
    [65]Lee Z P, Carder K L, Mobley C D, et al. Hyperspectral remote sensing for shallow waters. I. A semianalytical model. Applied Optics,1998, 37:6329-6338.
    [66]Lee Z P, Carder K L, Mobley C D, et al. Hyperspectral remote sensing for shallow waters:II. Deriving bottom depths and water properties by optimization. Applied Optics,1999,38:3831-3843. [67] Lee Z P, Carder K L, Arnone R. Deriving inherent optical properties from
    water color:A multi-band quasi-analytical algorithm for optically deep waters. Applied Optics,2002,41:5755-5772. [68] Lee Z P, Carder K L and Arnone R. The Quasi-Analytical Algorithm for IOPs.
    Report for the IOCCG,2005. [69] Lee Z P, Carder K L, Hawes S H, et al. A model for interpretation of
    hyperspectral remote-sensing reflectance. Applied Optics,1994, 33:5721-5732. [70] Lee Z P. Visible-infrared remote-sensing model and applications for ocean
    waters, Ph.D. dissertation. University of South Florida, St. Petersburg, Fla, 1994. [71] Lira J, Morales A, and Zanira F. Study of Sediment Distribution in the Area of
    the Panuco River Plume by Means of Remote Sensing. International Journal of Remote Sensing,1997,18(1):171-182.
    [72]Lodhi M A, Rundquist D C. A spectral analysis of bottom-induced variation in the colour of Sand Hills lakes, Nebraska, USA. International Journal of Remote Sensing,2001,22:1665-1682.
    [73]Loisel H, Stramski D, Mitchell BG Comparison of the ocean inherent optical properties obtained from measurements and inverse modeling. Applied Optics, 2001,40:2384-2397.
    [74]Ma R H, Duan H T, Liu Q. Approximate bottom contribution to remote sensing reflectance in Taihu Lake, China. IEEE Transactions on Geoscience and Remote Sensing,2008.
    [75]Ma R H, Tang J W, Dai J, et al. Absorption and scattering properties of water body in Taihu Lake, China I:Absorption. International Journal of Remote Sensing,2006,27(19):4277-4301.
    [76]Maritorena S, Morel A and Gentili B. Diffuse reflectance of oceanic shallow waters:influence of water depth and bottom albedo. Limnol. Oceanogr,1994, 39:1689-1703.
    [77]Maritorena S, Siegel D A and Peterson AR. Optimization of a semianalytical ocean color model for global-scale applications. Applied Optics,2000,41: 2705-2714.
    [78]Maritorena S, Morel A, Gentili B. Diffuse reflectance of oceanic shallow waters:influence of water depth and bottom albedo. Limnology and Oceanography.1994,39:1689-1703.
    [79]Maul G A. Introduction to Satellite Oceanography. Martinus Nijhoff Publishers, ordrecht, Netherlands,1985.
    [80]Mckee D and Cunningham A. Identification and characterisation of two optical water types in the Irish Sea from insitu inherent optical properties and seawater constituents. Estuarine, Coastal and Shelf Science,2006,68: 305-316.
    [81]Mertes L A K. Estimating suspended sediment concentration in surface waters of the Amazon River wetlands from landsat images. Remote Sensing of Environment.1993,43:281-301.
    [82]Miller R L and Brent A M. Using MODIS Terra 250 m imagery to map concentration of total suspended matter in coastal waters. Remote Sensing of Environment,2004,93:259-266.
    [83]Mitchell B G and Kiefer D A. Chl-a Specific Absorption and Fluorescence Excitation Spectra for Light Limited Phytoplankton. Deep-Sea Research.1988, 35:635-663.
    [84]Mitchell B G. Algorithms for Determining the Absorption Coefficient for Aquatic Particles Using the Quantitative Filter Technique. In Ocean Optics X, 1990.
    [85]Mobley CD and Sundman LK. Effects of optically shallow bottoms on upwelling radiances:Inhomogeneous and sloping bottoms. Limnology and Oceanography.2003,48:329-336.
    [86]Mobley C D. Estimation of the remote sensing reflectance from above surface measurements. Applied Optics.1999,38:7442-7455.
    [87]Mobley C D. Light and Water:Radiative transfer in natural waters. New York: Academic Press,1994.
    [88]Mobley C D, Gentili B, Gordon H R, et al. Comparison of numerical models for computing underwater light fields. Applied Optics.1993,32:7484-7504.
    [89]Moore G K. Satellite Remote Sensing of Water Turbidity. Hydrological Sciences Bulletin,1980,25:415-421.
    [90]Morel A and Gentili B. Diffuse reflectance of oceanic waters:Bi-directional aspects. Applied Optics,1993,32:6864-6879.
    [91]Morel A and Gentili B. Diffuse reflectance of oceanic waters:its dependence on sun angle as influenced by the molecular scattering contribution. Applied Optics,1991,30:4427-4438.
    [92]Morel A and Gentili B. Diffuse reflectance of oceanic waters. Implication of bidirectionality for the remote sensing problem. Applied Optics,1996, 35:4850-4862.
    [93]Morel A, Jerlov N G and Nielsen ES. Optical properties of pure water and pure sea water. Optical Aspects of Oceanography, Academic:New York.1974, 1-24.
    [94]Morel A and Prieur L, Analysis of variations in ocean color. Limnology and Oceanography.1977,22:709-722.
    [95]Mueller J F and Austin R W. Ocean optics protocols for SeaWIFS validation (V1). Maryland:Goddard Space Flight Center,1995.
    [96]Mueller J L and Fargion G S. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, NASA/TM-2002-210004,2002.
    [97]Myint S W and Walker N. Quantification of Surface Suspended Sediments Along a River Dominated Coast with NOAA AVHRR and SeaWiFS Measurements:Louisiana, USA, International Journal of Remote Sensing, 2002,23(16):3229-3249.
    [98]Nelson J R, Robertson C and Detrita Y. Spectral absorption:laboratory studies of visible light effects on phytodetritus absorption, bacterial spectral signal, and comparison to field measurements. Marine Research.1993.51:181-207.
    [99]Neukermans G, Ruddick K, Bernard E, et al. Mapping total suspended matter from geostationary satellites:a feasibility study with SEVIRI in the Southern North Sea. Optics Express,2009,17(16):14029-14052.
    [100]Ohde T and Siegel H. Correction of bottom influence in ocean colour satellite images of shallow water areas of the Baltic Sea. International Journal of Remote Sensing,2001,22:297-313.
    [101]O'Neill NT, Miller JR. On calibration of passive optical bathymetry through depth soundings analysis and treatment of errors resulting from the spatial variation of environmental parameters. International Journal of Remote Sensing,1989,10:1481-1501.
    [102]Pegau W S, Gray D and Zaneveld J R V. Absorption and attenuation of visible and near-infrared light in water:dependence on temperature and salinity. Applied Optics,1997,36(24):6035-6046.
    [103]Pegau W S and Zaneveld J R V. Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum. Limnology and Oceanography,1993,38:188-192.
    [104]PopeR, Fry E. Absorption spectrum (380-700 nm) of pure waters:II. Integrating cavity measurements. Applied Optics,1997.36:8710-8723.
    [105]Prieur L, Sathyendranath S. An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials. Limnology and Oceanography.1981,26:671-689.
    [106]Salama M S and Shen F. Simultaneous atmospheric correction and quantification of suspended particulate matters from orbital and geostationary earth observation sensors. Estuarine, Coastal and Shelf Science,2010.86(3): 499-511.
    [107]Sathyendranath S, Prieur L and Morel A. A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters. International Journal of Remote Sensing,1989,10:1373-1394.
    [108]Sathyendranath S and Platt T. Analytic model of ocean color. Applied Optics, 1997.36(12):2620-2629.
    [109]Sathyendranath S and Platt T. Ocean-color model incorporating transspectral processes. Applied Optics,1998.37(12):2216-2227.
    [110]Sathyendranath S, Stuart V, Irwin B D, et al. Seasonal variations in bio-optical properties of phytoplankton in the Arabian Sea. Deep-Sea Research 11,1999,46:633-653.
    [111]Schwarz J N, Kowalczuk P, Kaczmarek S, et al. Two Models for Absorption by Coloured Dissolved Organic Matter (CDOM). Oceanologia,2002,44(2): 209-241.
    [112]Snyder W A, Arnone R A, Davis C O, et al, Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters. Applied Optics,2008,47(5):666-677.
    [113]Song Q, Tang J W, Cui T W, et al. Retrieval of inherent optical properties of the Yellow Sea and East China Sea using a quasi-analytical algorithm. Chinese Journal of Oceanology and Limnology,2011,29(l):33-45.
    [114]Stavn R H and Richter S J. Biogeo-optics:particle optical properties and the partitioning of the spectral scattering coefficient of ocean waters. Applied Optics,200847(14):2660-2679.
    [115]Stavn R H and Weidemann A D. Shape factors, two-flow models, and the problem of irradiance inversion in estimating optical parameters. Limnology and Oceanography,1989.34(8) 1426-1441.
    [116]Stedmon CA, Markager S, Kaas H. Optical Properties and Signatures of Chromophoric Dissolved Organic Matter (CDOM) in Danish Coastal Waters. Estuarine Coastal and Shelf Science,2000.51(2):267-278.
    [117]Stelvio T, Giovanni HF, Ferrari. An alternative approach to absorption measurements ofaquatic particles retained on filters. Limnology and Oceanography.1995,40(8):1358-1368
    [118]Stramski D, Wozniak S B and Flatau P J. Optical Properties of Asian Mineral Dust Suspended in Seawater. Limnology and Oceanography,2004, 49:749-755.
    [119]Stuart V, Sathyendranath S, PLATT T, et al. Pigments and Species Composition of Natural Phytoplankton Populations:Effect on the Absorption Spectra. J. Plankton Research.,1998.20(2):187-217.
    [120]Sun D Y, Li Y M, Wang Q, et al. Partitioning particulate scattering and absorption into contributions of phytoplankton and non-algal particles in winter in Lake Taihu (China). Hydrobiologia,2010.644:337-349.
    [121]Tang J W, Tian G L, Wang X Y, et al. The methods of water spectra measurement and analysis I:Above-Water method. Journal of Remote Sensing,2004.8(1):37-45.
    [122]Tassan S. Measurement of the light absorption by aquatic particulates retained on filters:determination of the optical pathlength amplification by the "transmittance-reflectance" method. Journal of Plankton Research,1998, 20:1699-1709.
    [123]Tassan S. Local Algorithms Using Seawifs Data for the Retrieval of Phytoplankton, Pigments, Suspended Sediment, and Yellow Substances in Coastal Waters. Applied Optics,1994.33(12):2369-2378.
    [124]Trabjerg L and Hojerslev NK. Temperature influence on light absorption by fresh water and seawater in the visible and near-infrared spectrum. Applied Optics,1996,35:2653-2658.
    [125]Twardowski M S, Boss E, Sullivan J M, et al.. Modeling the spectral shape of absorption by chromophoric dissolved organic matter. Marine Chemistry,2004. 89(1-4):69-88.
    [126]Twardowski, MS, Macdonald JB, Pegau WS, et al. A Model for Estimating Bulk Refractive Index from the Optical Backscattering Ratio and the Implications for Understanding Particle Composition in Case I and Case II Waters. Journal of Geographical Research,2001,106:14129-14142.
    [127]Wang J J, Lu X X, Liew S C, et al. Retrieval of suspended sediment concentrations in large turbid rivers using Landsat ETM+:an example from the Yangtze River, China. Earth Surface Processes and Landforms,2009.34(8): 1082-1092.
    [128]Wozniak SB, Stramski D. Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms. Applied Optics,2004, 43(17):3489-3503.
    [129]Zaneveld J R V, Kitchen J C and Moore C. Scattering error correction of reflecting-tube absorption meters. Process. SPIE,1994:2258.
    [130]Zhang Y L, Zhang B, Wang X, et al. A study of absorption characteristics of chromophoric dissolved organic matter and particles in Lake Taihu, China. Hydrobiologia,2007.592:105-120.
    [131]Zhang H, Voss K J,Reid R P, et al. Bidirectionalreflectance measurements of sediments in the vicinity ofLee Stocking Island. Bahamas. Limnology and Oceanography,2003,48:3802.
    [132]Zhou X. Characterization of the specific inherent optical properties of the Poyang Lake and quantification of water turbidity using remote sensing and a semi-analytical bio-optical inversion model for shallow waters. M.Sc,2009 International Institute for Geo-Information Science and Earth Observation..
    [133]曹文熙,杨跃忠,许晓强等。珠江口悬浮颗粒物的吸收光谱及其区域模式。科学通报,2003,48(17):1876-1882.
    [134]陈晓玲,陈莉琼,于之锋等。长江中游湖泊CDOM光学特性及其空间分布对比。湖泊科学,2009,2l(2):248-254。
    [135]陈晓玲,吴忠宜,田礼乔等。水体悬浮泥沙动态监测的遥感反演模型对比分析——以鄱阳湖为例。科技导报,2007。25(6):19-23。
    [136]陈晓玲,吴忠宜等。水体悬浮泥沙动态监测的遥感反演模型对比分析—— 以鄱阳湖为例。科技导报,2007,25(6):19-23。
    [137]程华。鄱阳湖可采砂区确定的意义及原则。江西水利科技,2008,34(1):11-13。
    [138]程天文,赵楚年。我国主要河流入海经流量、输沙量及对沿岸的影响。海洋学报,1985,(4):460-471。
    [139]戴永宁,李素菊,王学军。巢湖水体固有光学特性研究。环境科学研究,2008,21(5):173-177。
    [140]樊辉,黄海军,唐军武。黄河口水体光谱特性及悬沙浓度遥感估测。武汉大学学报(信息科学版),2007,32(7):601-604。
    [141]郭鹏,陈晓玲,刘影。鄱阳湖湖口、外洲、梅港三站水沙变化及趋势分析(1955-2001年)。湖泊科学,2006,18(5):458-463。
    [142]乐成峰,基于实测光谱数据的太湖蓝藻的遥感识别定量估算研究。南京师范大学博士学位论文,2009。
    [143]乐成峰,李云梅,查勇等。太湖梅梁湾水体组分吸收特性季节差异分析。环境科学,2008,29(9):2448-2455。
    [144]李军,刘丛强,肖化云等。太湖北部夏季浮游藻类多样性与水质评价。生态环境,2006,15(3):453--456。
    [145]李铜基,陈清莲,汪小勇。剖面法测量近岸水体遥感反射率的新方法。海洋技术,2004,23(3):1-9。
    [146]李铜基,陈清莲,杨安安等。黄东海春季水体后向散射系数的经验模型研究。海洋技术,2004,23(3):10-14。
    [147]李英奎,倪晋仁,李秀霞等。泥沙灾害与泥沙灾害链的分类分级。自然灾害学报,2005,14(1):15-24。
    [148]李云梅,黄家柱,陆皖宁等。基于分析模型的太湖悬浮物浓度遥感监测。海洋与湖沼。2006,37(2):171-177。
    [149]梁志勇,李文学,吕文堂等。黄河下游泥沙灾害与减灾对策(Ⅰ)——泥沙灾害分类与侵蚀型泥沙灾害。自然灾害学报,2002,11:126-130。
    [150]廖迎娣,张玮,Deschamps PY。运用SeaWiFS遥感数据探测中国东部沿海悬浮泥沙浓度的研究。水动力学研究与进展,2005,20(5):558-564。
    [151]刘良明,张红梅,基于MODIS数据的悬浮泥沙定量遥感方法。国土资源遥感,2006,68(2):42-45。
    [152]陆建忠,遥感与数值模拟耦合的渤海悬浮泥沙输移研究,武汉大学博士论文,2010年6月。
    [153]刘茜,Rossiter DG,基于高光谱数据和MODIS影像的鄱阳湖悬浮泥沙浓度估算。遥感技术与应用,2008,23(1):7.12。
    [154]刘瑞民,王学军,郑一。湖泊水质参数空间分析中异常值的识别与处理。环境科学与技术,2003,26(5):17-18。
    [155]马荣华,段洪涛,张寿选等。太湖草型湖区底质对遥感反射比的贡献。遥感学报,2008,12(3):483-489。
    [156]马荣华,唐军武,段洪涛等。湖泊水色遥感研究进展。湖泊科学,2009,2l(2):143-158。
    [157]潘德炉,Doerffer R。海洋水色卫星的辐射模拟图像研究。海洋学报。1997,19(6):43-55。
    [158]潘德炉,马荣华。湖泊水质遥感的几个关键问题。湖泊科学。2008,20(2):139.144。
    [159]丘仲锋。东海赤潮高发区水色遥感算法及赤潮遥感监测研究。博士学位论文。青岛:中国科学院海洋研究所,1999。
    [160]施英妮,张亭禄,魏雅利等。光谱微分技术在高光谱遥感浅海海底底质中的应用初探。遥感信息,2010,3:21-25。
    [161]孙德勇,李云梅,王桥等。内陆湖泊水体固有光学特性的典型季节差异。 应用生态学报,2008,19(5):1117-1124。
    [162]唐军武,丁静,田纪伟等。黄东海二类水体三要素浓度反演的神经网络模型。高技术通讯,2005,15(3)。
    [163]唐军武,田国良,汪小勇等。水体光谱测量与分析I:水面以上测量法。遥感学报,2004,8(1):37-.44。
    [164]唐军武。海洋光学特性模拟与遥感模型。博士学位论文。北京:中国科学院遥感应用研究所,1999。
    [165]汪小勇,李铜基,唐军武等。二类水体表观光学特性的测量与分析——水面之上法方法研究。海洋技术,2004,23(2):l一6。
    [166]王繁。河口水体悬浮物固有光学性质及浓度遥感反演模式研究。博士学位论文,杭州:浙江大学,2008。
    [167]王桂芬,南海北部水体光学特性及水色反演模式。博士学位论文。广州:中国科学院南海海洋研究所,2008。
    [168]王建平,程声通,贾海峰等。用TM影像进行湖泊水色反演研究的人工神经网络模型。环境科学,2003,24(2):73—76。
    [169]王林,冬至,傅云娜等。黄色物质吸收系数ag(440)与斜率sg相关关系。大连海事大学学报,2007,33:179.183。
    [170]闻新,周露,王丹力等。MATLAB神经网络应用设计。北京:科学出版社,2000:231。
    [171]邬国锋,崔丽娟,纪伟涛。基于时间序列MODIS影像的鄱阳湖丰水期悬浮泥沙浓度反演及变化。湖泊科学。2009,21(2),288-297。
    [172]杨燕明,刘贞文,陈本清等。用偏最小二乘法反演II类水体的水色要素。2005,9(2):123—130。
    [173]尹宗贤,张俊才,鄱阳湖水文特征(I)。海洋与湖沼,1987,18(1):22-27。
    [174]詹海刚,施平,陈楚群。基于贝叶斯反演理论的海水固有光学特性准分 析算法。科学通报,2006,5l(2):204-230。
    [175]张本。鄱阳湖研究。科学技术出版社:上海,1988。
    [176]张荣峰,鄱阳湖水系泥沙特性及对环境的影响。江西水利科技,1991,17(3):237-141。
    [177]张伟,陈晓玲,田礼乔等。鄱阳湖HJ卫星CCD传感器的悬浮泥沙遥感监测。武汉大学学报(信息科学版),2010,35(12)。
    [178]张运林,秦伯强,杨龙元。太湖梅梁湾水体悬浮颗粒物和CDOM的吸收特性。生态学报,2006,26(12):3969-3080。
    [179]周冠华,柳钦火,马荣华等。基于半分析模型的波段最优化组合反演混浊太湖水体叶绿素a。湖泊科学,2008,20(2):153—159。
    [180]周冠华,田国良,陈军,李京等。水体组分光谱耦合效应研究。光谱学与光谱分析,2010,30(2):470-475.
    [181]朱建华,李铜基。黄东海非色素颗粒与黄色物质的吸收系数光谱模型研究。海洋技术,2004,23(2):7.13。