高速诱导轮离心泵抗汽蚀特性的数值计算与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速离心泵在高速下运行,离心叶轮极易发生空化,空化的发生会造成离心泵性能的下降,产生空蚀破坏,同时也会使机组的振动加剧,严重时甚至会产生灾难性的后果。目前,防止高速离心泵发生空化的最有效的途径之一是在高速离心主叶轮前加装一诱导轮,因此对离心泵和诱导轮内的空化展开研究是一项有意义并且很有必要的课题。目前,对旋转空化两相流的研究仍处于探索之中,尤其是水力机械和诱导轮内的空化流动机理尚未完全明确,揭示空化流动的机理是学术界和工程界都需要急待解决的一个问题。本文在国家自然科学基金项目(NO.51076144)、浙江省自然科学基金项目(NO. Y1100013)和浙江省公益工业类项目(NO.2012C21013)的资助下,从理论分析、数值计算、外特性性能实验和可视化实验等方面入手对该高速离心泵和诱导轮内的空化演变过程、空化流动机理等进行了较为系统的研究分析。
     论文首先开展了非汽蚀状态下的单相流动数值计算,揭示了设计工况点下和不同工况点下前置各诱导轮时高速离心泵内的流动机理。其次,开展了汽蚀状态下的旋转空化流动的数值计算,揭示了设计工况点和不同转速工况点下前置各诱导轮高速离心泵内的旋转空化现象,揭示了在不同空化系数下空化发展的过程。再次,以前置诱导轮的高速离心泵为研究对象进行了外特性性能实验,得到了多工况下,在前置各诱导轮情况下该高速离心泵的性能曲线;最后对诱导轮内的旋转空化进行了可视化研究,进一步揭示了空化的时空演化规律。综上所述,本文主要结合数值计算、外特性实验及可视化实验三种研究手段,进行了对比分析、验证,证明了本论文研究方法的可行性和结论的正确性。
     论文的主要研究工作如下:
     (1)进行了高速诱导轮离心泵在非汽蚀状态下的单相流动计算。以外特性实验结果做为边界条件,在设计工况点和各转速相似工况点下,对前置各种诱导轮的高速离心泵进行了单相流动数值计算,通过计算得到了诱导轮和离心泵内的压力分布情况,得到了叶轮内和诱导轮内的最低压力情况,揭示了在非汽蚀状态下诱导轮和高速离心泵内部流动的情况。
     (2)进行了高速诱导轮离心泵汽蚀状态下旋转空化流动的数值计算。对前置各种诱导轮的高速离心泵进行了旋转空化流动的数值计算,通过计算揭示了在汽蚀状态下,诱导轮和高速离心泵主叶轮在设计工况点和不同转速工况点下的旋转空化现象,揭示了诱导轮和主叶轮在不同空化系数下空化发展的过程。
     (3)开展了前置各种结构诱导轮高速离心泵的外特性性能实验研究。通过实验,得到了各转速相似工况(转速为2000r/min~8000r/min)下的外特性性能曲线;对各种诱导轮的抗汽蚀性能进行了分析比较,得到了抗汽蚀性能较好的诱导轮为变螺距诱导轮,得到了叶片数相对较佳的变螺距诱导轮为三叶片变螺距诱导轮;对各转速下的相似工况点进行了汽蚀实验,得到了其抗汽蚀性能随着转速的增加而降低的结论。
     (4)开展了分流叶片诱导轮内旋转空化的可视化研究。通过高速摄像图片的分析,进一步揭示了诱导轮内空化发生的位置、空化发生的程度等,进一步揭示了空化的时空演化规律。
As the centrifugal pump runs at a high speed, the centrifugal impeller is easy to cavitate.The occurrence of cavitation will destroy the centrifugal pump’s performance, cause cavitationdamage, aggragate the unit vibration, and sometimes even can cause disastrous consequences. Atpresent, one of the most effective ways to prevent the high-speed centrifugal pump cavitation isto equip an inducer before the centrifugal impeller. Thus to research the cavitation of thecentrifugal pump and inducer is important and necessary. At present, the research of rotatingcavitation flow is still in the period of exploration. Especially the cavitation flow mechanism ofhydraulic machinery and the inducer is not completely clear. In the field of the academic andengineering, to reveal the mechanism of cavitation flow is a problem needs to resolve urgently.This paper is supported by the National Natural Science Fund Project (NO.51076144), NaturalScience Foundation of Zhejiang Province (NO. Y1100013) and Public Industrial Projects ofZhejiang Province (NO.2012C21013). Based on the theoretical analysis, numerical calculation,external characteristics experiments and visualization experiments, the high-speed centrifugalpump and inducer cavitation evolution, cavitation flow mechanism are analyzed systematicallyin this paper.
     Firstly, Single-phase flow numerical calculation under non-cavitation state is carried out,and the mechanism of flow in the centrifugal pump and inducer is revealed on the design workcondition and on the different work conditions. Secondly, rotation cavitation flow numericalcalculation under cavitation state on different work conditions is done. The mechanism ofrotation cavitation flow is revealed. Thirdly, the performance experiments of high-speedcentrifugal pump with different inducers is carried out on different working conditions, and theperformance curves are got. Finally, the cavtitation visual experiment are carried out, and theevolution rules of cavitation are revealed further. In this paper, numerical calculation, externalperformance and visualization experiment are combined, tested and verified, which proved thefeasiblility of the research method and the correct of the conclusion.
     The main research work is as follows.
     (1)Single-phase flow numerical calculation under non-cavitation state on different workconditions is carried out. Taking the results of the external performance experiment as boundaryconditions, single-phase flow of the high-speed centrifugal pump with different inducers are simulated numerically, on design work condition and different work conditions. The pressuredistribution in the centrifugal pump and the inducers are got. The lowest pressure in the pumpand inducers are got. The flow mechanism in the impeller and the inducer under non-cavitationcondition is revealed.
     (2)Rotation cavitation flow numerical calculation under cavitation state on different workconditions is done. Rotation cavitation flow under cavitation state on different work conditions inthe centrifugal pump with different inducers is done. The rotating cavitation phenomenon isrevealed, with different inducers and under different work condtions. The cavitation developmentprocess in the inducer and impeller under different cavitation coefficient is revealed.
     (3)The performance experiments of high-speed centrifugal pump with different inducersare carried out. The experiments are under different working conditions. Through the experiment,the external performance curve of pump is got, which the rotational speed is from2000r/min to8000r/min. The inducer with good anti-cavitation performance is variable-pitch inducer. Thevariable-pitch inducer with three blades has better anti-cavitation performance. The experimentsof the pump on the similar conditions under different rotation speed are carried out, and theresults show that the anti-cavitation performance is reduced with the increase of the rotation.
     (4)The cavtitation visual experiments are carried out. The evolution rules of cavitation,the location of cavitation and the degree of the cavitation are revealed further. Visualization wascarried out to study the splitter inducer of rotating cavitation by analyzing the high speed videocamera pictures.
引文
[1]Salvatore F, Esposito P G. An improved boundary element analysis of cavitatingthree-dimensional hydrofoils[C]. Fourth International Symposium on Cavitation. USA,California,2001.1-8.
    [2]戚定满,鲁传敬,何友声.两空泡运动特性研究[J].力学季刊,2001,21(1):16-20.
    [3]杨斌泽.二维空化绕流的VOF方法计算[D]:[博士学位论文].北京:清华大学,2000.
    [4]胡影影,朱克勤,席葆树.翼型空化绕流数值研究[J].力学季刊,2003,24(4):572-576.
    [5]徐宇,吴玉林,刘文俊,等.用两相流模型模拟混流式水轮机内空化流动[J].水利学报,2002,8:57-62.
    [6]徐宇,吴玉林,唐学林.用动理学方法推导空化流的控制方程[J].清华大学学报(自然科学版),2003,43(10):1416-1419.
    [7] Edwards J R,Franklin R K,Liou M S.Low-diffusion flux-splitting methods for real fluidflows with phase transitions[J].AIAA Jounal.2000,38(9):1624-1633.
    [8] Diangui Huang,Yueqing Zhuang,Ruizhong Cai.A computational method for cavitationalflows based on energy conservation[J].Mechanical Engineer in Science,2007,221(11):1333-1338.
    [9]Singhal A K,Athavale M M,Li H.Mathematical basis and validation of the full cavitationmodel[J].Journal of Fluids Engineering,2002,124(3):617-624.
    [10]Saito Y,Nakamori I,Ikohagi T.Numerical analysis of unsteady vaporous cavitating flowaround hydrofoil [C].Fifth International Symposium on Cavitation.Japan,Osaka,2003.1-8.
    [11] Inanc Senocak,Wei Shyy.A Pressure-Based Method for Turbulent Cavitating FlowComputations[J].Journal of Computational Physics.2002,176(2):363-383.
    [12] Inanc Senocak,Wei Shyy.Interfacial dynamics-based modeling of turbulent cavitatingflows,part-1: model development and steady-state computations [J].International Journal forNumerical Methods in Fluids,2004,44(9):975-955.
    [13]Yuan W X,Sauer J,Schnerr G H.Modeling and computation of unsteady cavitation flowsin injection nozzles[J].Mec.Ind.,2001,2(5):383-394.
    [14]陈庆光,吴玉林,刘树红,等.轴流式水轮机全流道内非定常空化湍流的数值模拟[J].机械工程学报,2006,42(6):211-216.
    [15]王福军,张玲,黎耀军,等.轴流式水泵非定常湍流数值模拟的若干关键问题[J].机械工程学报,2008,44(8):73-77.
    [16]Moin P.Advances in large eddy simulation methodology for complex flows[J].InternationalJournal of Heat and Fluid Flow,2002,23(5):710-720.
    [17] Coutier-Delgosha O. Numerical prediction of cavitation flow on a two-dimensionsymmetrical hydrofoil and comparison to experiment[J].Journal of Fluids Engineering,2007,129(3):279-291.
    [18] Wu Jiongyang,Wang Guoyu,Wei Shyy.Time-dependent turbulent cavitating flowcomputations with interfacial transport and filter based models [J].International Journal forNumerical Methods in Fluids,2005,49(7):739-761.
    [19]黄彪,王国玉,袁海涛,等.基于密度分域的混合湍流模型的应用与评价[J].北京理工大学学报,2009,30(10):1170-1174.
    [20]李向宾,王国玉,张博,等. RNG k ε模型在超空泡流动计算中的应用评价[J].水动力学研究与进展A辑,2008,23(3):181-188.
    [21]徐朝晖.高速离心泵内全流道三维流动及其流体诱发压力脉动研究[D]:[博士学位论文].北京:清华大学,2004.
    [22]崔宝玲.高速诱导轮离心泵的理论分析与数值模拟[D]:[博士学位论文].杭州:浙江大学,2006.
    [23]孔繁余,张洪利,高翠兰,等.基于流场数值模拟的磁力驱动冷凝泵入口流动分析[J].核动力工程,2010,31(2):37-42.
    [24]崔宝玲,朱祖超,林勇刚.等螺距诱导轮内部流动的数值模拟[J].机械工程学报,2010,46(6):158-163.
    [25]郭晓梅,朱祖超,崔宝玲,等.诱导轮内流场数值计算及汽蚀特性分析[J].机械工程学报,2010,46(4):122-128.
    [26]郭晓梅,朱祖超,崔宝玲,等.变螺距高速诱导轮的汽蚀特性[J].工程热物理学报,2010,31(8):1315-1318.
    [27]郭晓梅,朱祖超,崔宝玲,等.不同结构诱导轮的汽蚀特性研究[J].工程热物理学报,2010,31增刊:40-44.
    [28]张召磊,张楠,窦唯,等.基于正交试验的诱导轮前置孔板的参数化研究[J].工程热物理学报,2011,32(8):1319-1322
    [29]牛凯斌.离心泵诱导轮入口回流空化的数值研究[D]:[硕士学位论文].西安:西安理工大学,2010.11
    [30]庄保堂,罗先武,王鑫,等.立式多级筒袋泵诱导轮及首级叶轮内的空化流动模拟[J].清华大学学报(自然科学版),2011,51(2):267-271.
    [31]庄保堂,罗先武,余伟平等.立式多级筒袋泵吸入装置的优化设计[J].排灌机械工程学报,2010,28(1):1-6.
    [32]刘厚林,庄宿国,俞志君等. JW200-100-315型离心泵诱导轮设计[J].华中科技大学学报(自然科学版),2011,39(12):14-17.
    [33]唐飞,李家文.诱导轮平面叶栅汽蚀不稳定现象的数值分析[J].火箭推进,2011,37(1):34-39.
    [34]孔繁余,张洪利,张旭锋,等.基于空化流动数值模拟的变螺距诱导轮设计[J].排灌机械工程学报,2010,28(1):12-17.
    [35]王小波,王国玉,时素果,等.诱导轮内部液氢空化流动特性.排灌机械工程学报[J],2013,31(7):558-564
    [36]唐飞,李家文,李永,等.热力学效应对低温诱导轮旋转汽蚀影响的数值研究[J].火箭推进,2013,39(2):29-45.
    [37]褚宝鑫,须村,张晓娜,等.诱导轮空化对流固耦合应力分析的影响[J].火箭推进,2012,38(2):44-48.
    [38]李仁年,陈冰,韩伟,等.变螺距螺旋离心泵叶型线参数方程的分析[J].排灌机械,2007,25(6):1-3.
    [39]C dina M. Detection of cavitation phenomenon in a centrifugal pump using audiblesound[J].Mechanical systems and Signal Processing,2003,17(6):1335-1342.
    [40]Kyoung-Hoon Lee,Joo-Hyung Yoo,Shin-Hyoung Kang. Experiments on CavitationInstability of a Two-Bladed Turbopump Inducer [J]. Journal of Mechanical Science andTechnology,2009,(23):32350-2356.
    [41] Yamanishi N, Fukao S, Qiao X Y, et al. LES simulation of backflow vortex structure atthe inlet of an inducer[J]. Journal of Fluids Engineering,2007,129(5):587-594.
    [42] Kimura T,Yoshida Y,Hashimoto T,et al. Numerical simulation for vortex structure in aturbopump inducer: close relationship with appearance of cavitation instabilities[J]. Journal ofFluids Engineering,2008,130(5):051104-1-051104-9
    [43] Dorney D,Griffin L,Marcu B,et al. Unsteady flow interactions between the LH2feed lineand SSME LPFP inducer[J]. AIAA-2006-5073,2006.
    [44]李晓俊,袁寿其,潘中永,等.诱导轮离心泵空化条件下扬程下降分析[J].农业机械学报,2011,42(9):89-93.
    [45]丁希宁,梁武科.两相流数值模拟分析等螺距诱导轮内空化问题[J].水资源与水工程学报,2009,20(5):170-172.
    [46] O. Coutier-Delgosha, P. Morel, R. Fortes-Patella, et al. Numerical simulation ofTurbopump Inducer Cavitating Behavior [J]. International Journal of Rotating Machinery,2005,2:135-142.
    [47] MAHESH M. ATHAVALE, H. Y. LI, YU JIANG, ASHOK K. SINGHAL. Applicationof the Full Cavitation Model to Pumps and Inducers [J]. International Journal of RotatingMachinery,2002,8(1):45-56.
    [48]F. Bakir,R. Rey,A. G. Gerber,et al. Numerical and experimental investigations of thecavitating behavior of an inducer [J]. International Journal of Rotating Machinery,2004,10:15–25.
    [49] F. Joussellin,Y. Courtot,O. Coutier-Delgosha,J.L. Reboud. Cavitating Inducer Instabilities:Experimental Analysis and2D Numerical Simulation of Unsteady Flow in Blade Cascade [J].CAV,2001,8(2):1-8.
    [50]R. Fortes-Patella,O. Coutier-Delgosha,J. Perrin,et al. Numerical Model to Predict UnsteadyCavitating Flow Behavior in Inducer Blade Cascades [J]. Journal of Fluids Engineering,2007,129:128-135.
    [51]Ashok K. Singhal,Mahesh M. Athavale,Huiying Li,et al. Mathematical Basis andValidation of the Full Cavitation Model [J]. Journal of Fluids Engineering,2002,124(3):617-624.
    [52]Imene Mejri,Farid Bakir,Robert Rey,et al. Comparison of Computational Results ObtainedFrom a Homogeneous Cavitation Model With Experimental Investigations of Three Inducers [J].Journal of Fluids Engineering,2006,128(6):1308-1323.
    [53]Ying-Jie Wei,Chien-Chou Tseng,Guo-Yu Wang. Turbulence and cavitation models fortime-dependent turbulent cavitating flows [J]. Acta Mechanica Sinica,2011,27(4):473-487.
    [54]Naoki Tani,Nobuhiro Yamanishi,Yoshinobu Tsujimoto et al. Influence of Flow Coefficientand Flow Structure on Rotational Cavitation in Inducer[J]. Journal of Fluids Engineering,2012,134(2):021302-1-021302-13.
    [54]Yoshiki Yoshida, Hideaki Nanri, Kengo Kikuta et al. Thermodynamic Effect onSubsynchronous Rotating Cavitation and Surge Mode Oscillation in a Space Inducer[J]. Journalof Fluids Engineering,2011,133(6):061301-1-061301-7.
    [56] O. Coutier-Delgosha,G. Caignaert,G,Bois et al. Influence of the Blade Number on InducerCavitating Behavior[J].Journal of Fluids Engineering,2012,134(8):081304-1-081304-11.
    [57]关醒凡编著.《现代泵技术手册》[M],北京:宇航出版社,1995.45-46.
    [58]崔宝玲,万忠,朱祖超,等.具有诱导轮的高速离心泵汽蚀特性试验[J].农业机械学报,2010,41(3):96-99.
    [59]裴毅,田莉,杨晓珍.转速变化对离心泵性能的影响[J].排灌机械,2007,25(4):9-13.
    [60]杨晓珍.不同转速对离心泵性能影响的试验研究[D].长沙:湖南农业大学,2004.
    [61] Impeller inlet geometry effect on performance improvement for centrifugal pumps[J]. Journal of MechanicalScience and Technology,2008,2210:.
    [62]赵瑞.高速诱导轮离心泵的数值模拟与试验研究[D]:[硕士学位论文].杭州:浙江理工大学,2009.
    [63] Jean-Pierre Franc,Claude Rebattet,Alain Coulon. An Experimental Investigation ofThermal Effects in a Cavitating Inducer [J]. Journal of Fluids Engineering,2004,126:716-723.
    [64] Hong,Soon-Sam,Kim,et al. Study on inducer and impeller of a centrifugal pump for arocket engine turbopump[J]. Proceedings of the Institution of Mechanical Engineers,2013,2272.
    [65]Semenov Y A,FujiiA,TsujimotoY. Rotating choke in cavitating turbopump inducer [J].Journal of Fluids Engineering,2004,126:87-93.
    [66]孔繁余,黄建军,吕毅,等.离心泵变螺距诱导轮的开发[J].排灌机械,2008,26(3):10-14.
    [67]孙建,孔繁余,季建刚,等.变螺距诱导轮的设计计算[J].农业机械学报,2007,38(2):102-105,110.
    [68]陈晖,张恩昭,谭永华,等.高速平板诱导轮的结构设计与分析[J].火箭推进,2009,
    [69]潘中永,关醒凡.泵诱导轮理论与设计[J].农业机械学报,2000,31(5):45-47.
    [70]HONG Soon-Sam, KIM Jin-Sun, CHOI Chang-Ho, et al. Effect of tip clearance on thecavitation performance of a turbopump inducer [J]. Journal of propulsion and power,2006,22(1):174-179.
    [71]Dular M,Bachert R,Stoffel B,et al. Experimental evaluation of numerical simulationof cavitating flow around hydrofoil[J].European Journal of Mechanics-B/Fluids,2005,24(4):522-538.
    [72]时素果,王国玉,王复峰,等.绕三维水翼云状空化现象的试验研究[J].应用力学学报,2011,28(2):105-110.
    [73]王勇,刘厚林,袁寿其,等.离心泵非设计工况空化振动噪声的试验测试[J].农业工程学报,2012,28(2):35-38.
    [74]李忠.轴流泵内部空化流动的研究[D]:[博士学位论文].镇江:江苏大学,2011.
    [75]马皓晨,代翠,董亮,等.低比转数离心泵内流场的PIV试验研究[J].华中科技大学学报(自然科学版),2013,41(3):82-86.
    [76]代翠,董亮,刘厚林,等.离心泵叶轮全流道非定常数值计算及粒子图像测速试验[J].农业工程学报,2013,29(2):66-72
    [77]王勇,刘厚林,王健,等.离心泵叶轮进口空化形态的试验测量[J].农业机械学报.2013,44(7):45-49.
    [78]陈本森.火箭推进剂泵诱导轮回流和予旋观测[J].火箭推进,2001,(5):42-46.
    [79]Chang-Yeul, Shin-Hyoung Kang, Shillim-dong. Numerical Evaluation of Flow andPerformance of Turbo Pump Inducers [J]. KSME International Journal,2004,18(3):481-490
    [80]Zhu Zuchao,XIE Peng,OU Guofu. Design and Experimental Analyses of Small-flowHigh-head Centrifugal-vortex Pump for Gas-Liquid Two-phase Mixture [J]. Chinese Journal ofChemical Engineering,2008,16(4):528-534.
    [81]王勇.离心泵空化及其诱导振动噪声研究[D]:[博士学位论文],镇江:江苏大学,2011.
    [82]施卫东,李通通,张德胜,等.不同叶顶间隙对轴流泵空化性能及流场的影响[J].华中科技大学学报(自然科学版),2013,41(4):21-25.
    [83]王勇,刘厚林,袁寿其,等.离心泵内部空化特性的CFD模拟[J].排灌机械工程学报,2011,29(2):99-103.
    [84]潘中永,袁寿其编著.《泵空化基础》[M],镇江:江苏大学出版社,2013.106-107.
    [85]张三喜,姚敏,孙卫平.高速摄像及其应用技术[M].北京:国防工业出版社,2006.54-57.