重力坝系统动力性态的随机数学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不确定性是水工结构设计、施工、使用乃至维修报废的全生命周期中存在的客观现象,但国内真正用理论的方法加以研究,并付诸于实践起步较晚。作为解决不确定性问题的重要途径,引入随机数学的理论,用概率的观点研究重力坝结构系统在复杂环境下的结构安全性问题,成为近年来水工结构安全研究的一个重要趋势,也是多学科交叉的高坝工程设计领域的前沿课题。论文主要针对不确定环境下重力坝性态随机力学分析中的关键技术问题和体系可靠性的评估方法进行研究。主要研究内容和成果如下:
     (1)研究了高坝结构性态分析的随机建模方法,建立了坝基不良地质体的材料参数完全随机场模型和约束随机场模型,解决了参数随机条件下高坝性态的合理分析和评价问题。
     考虑重力坝材料参数和数值分析模型的内在随机性,以溶蚀地质条件下的典型工程问题为研究对象,阐述了基于随机场理论建立区域随机单元的方法步骤;进一步,通过Bayes信息更新原理,改进了结构参数的随机场模型,建立了区域结构的约束随机有限元力学模型,分析了区域地质体材料参数随机特性对工程结构性态的影响,解决了结构参数随机条件下高坝性态的合理分析和评价问题。
     (2)研究了高坝系统地震动力灾变环境的随机描述方法及概率地震反应统计特征,建立了三层次的重力坝概率地震反应分析方法体系,提出了重力坝随机地震反应的概率特征分析方法。
     针对高坝系统外部动力灾变环境的高变异随机特征,在水电工程场区地震危险性分析的基础上进行了三层次的概率地震反应参数分析,得到了重力坝典型动响应量在不同地震水准下的概率特征;同时针对地震发生时间的随机性,建立了随机地震描述的跳变概率模型,分析了动力环境下结构性能的退化规律。
     (3)研究了基于Copula函数的重力坝多失效模式相关体系的联合分布模型及可靠性分析方法,推导了基于Copula函数求解相关性体系可靠度的计算式,验证了该分析模型的合理性。
     不确定性范畴内的重力坝体系可靠性实质上是一个多失效模式相关的串联体系可靠度计算的问题。针对重力坝多模式相关下体系可靠度求解算法的问题,对比了区间估计法和多维数值积分解法,借鉴金融学分析中的多元联合Copula函数,推导了具有力学联系的重力坝体系不同失效模式间的概率计算式。以重力坝结构三元失效模式体系可靠性分析为例,验证了该模型在应用中的合理性。
     基于Copula函数的相关性可靠度计算模型,是由多模式联合分布多重积分求解到多重差分估算一次思路上的转变。
     (4)分析了坝体系统动力失稳的薄弱层面失效模式,得出了碾压混凝土重力坝坝身不同高程薄弱面的动力抗滑可靠度的变化规律;在假定条件下,推导了工程上传统的安全系数和可靠度之间的数学关系。
     研究重力坝系统随机性对结构性态影响的最终目的是要评价不确定性因素对其安全(风险)的影响,即进行可靠度评价。针对重力坝动力系统随机结构体系的特点,采用刚体极限平衡方程为功能函数,以系统动力失稳的薄弱层面为失效模式,分析了重力坝动力失稳体系的可靠度,并与传统安全系数法进行了对比研究。
     (5)基于极限状态方法提出了识别重力坝动力潜在失效模式的数值搜索方法,完善了复合失效模式下的碾压混凝土重力坝动力体系可靠性的分析方法体系。
     针对混凝土重力坝坝身块体结构动力破损具有明显的渐进性、复杂性和复合随机性特征,人为拟定失效模式可能并不真实。从极限状态体系的力学观点出发,提出了识别重力坝动力体系潜在失效模式的数值搜索方法,并在此基础上完善了复合失效模式下的大型碾压混凝土重力坝动力体系可靠性的分析方法体系。
Uncertainty is the objective phenomenon during the whole life cycle of hydraulicstructures, including the design phase, construction phase, operation phase as well asthe scrap processing phase, but the theoretical research and practical application on itdo not have an early start. As an important way to deal with uncertainty problems,random mathematics theory is introduced, the idea of probability theory is employedto research on the safety problems of gravity dam structure system in complex anduncertain environment, which becomes an important trend of the safety of hydraulicstructures in recent years, also a front cross-discipline problem of the engineeringdesign field. The key technical problems of numerical methods for random simulationand its reliability evaluation method are studied under the new complex environmentin this paper. The behavior and the structure safety are evaluated based on the randomnumerical simulation technology and reliability analysis theory of the gravity dam, sothat the system effects of actions can be transformed from the statistical inference tothe theoretical prediction combined with statistical inference. Main contents andresults are as follows:
     (1) The method of stochastic modeling is researched. Both the intervalrandom field model and constraint random field model are built to analyze thebehavior of the gravity dam under random geological material parameters.
     For the randomness of the material parameter and numerical analysis model ofthe hydraulic gravity dam, take the typical engineering problems of the dissolutionfoundation for example, methods and procedures are illustrated to establish randomelements based on the random field theory, which is applicable to all of the stochasticstructure systems. Then stochastic mechanics analysis is proposed by using the SFEM.On the other hand, according to information updating theory of bayes formula, theInterval random field model is improved to be the constrained one, so that theinfluence of the randomness of the material parameters on the behavior of the dam isanalyzed and the evaluation problem is also solved.
     (2) Stochastic description method and probability seismic responsecharacteristics are researched. Three levels of procedure are presented for seismic response and its probability characteristic analysis, and then the methodof probability seismic response characteristics is put forward.
     For the high variability of the dynamic loads, the probability seismic demandsanalysis (PSDA) is made based on seismic risk analysis of the engineering sites to getthe probability distribution characteristics of the dynamic response. On the otherhands, jumping degradation probability model of the structure performance underrandom seismic loads is built and the structure performance is described.
     (3) System reliability analysis method for multiple failure patterns of gravitydam is put forward based on the Copula function. The joint distribution model isestablished using Copula function of stability between layers of gravity dam, thecomputational formula of this system reliability analysis method is deducedtheoretically,and the new analysis model is verified.
     System reliability of the gravity dam is essentially system reliability calculationconsidering multiple correlated failure modes. Comparative study is made betweeninterval estimation method and the numerical integration method and thecomputational formula of this system reliability analysis method is deducedtheoretically based on the Copula function, which is also an ideas change from themeans of integrates to the difference method. At last, the rationality of the applicationis proved through an engineering example.
     (4) Failure modes between layers for the dynamic system of the gravity damare analyzed and the law of stability reliability against sliding of different layerswith the elevation. And the mathematical relationship is deduced between thetraditional safety coefficient and the reliability index under the assumedconditions.
     Reliability analysis is the ultimate purpose to evaluate the influence ofuncertainty factors to the dam safety. Failure modes between layers for the dynamicsystem of the gravity dam are assumed based on the engineering experience accordingto the characters of the dynamic dam system. The limit equilibrium equation is choseto establish the limit state equation then the stability reliability against sliding of thedam is analyzed and compared with the traditional safety coefficient.
     (5) Numerical search method to recognize the potential failure modes of thedynamical dam system based on the limit state system is put forward. Reliabilityanalysis method of the dynamical dam system is established under the compositefailure modes.
     For failure mode identification, considering the material heterogeneity, seismicvariation as well as the uncertainty of the fracture model and the constitutive modal ofthe concrete for numerical simulation is established based on the dynamical limit statesystem, on the other hand, for the quantification of the failure probability,mathematical model for system reliability analysis is established according to thecharacteristics of gravity dam, then the calculation formulas of failure probability,which consist of three levels(the element failure-path failure-system failure), arederived.
引文
[1]贡金鑫,仲伟秋,赵国藩工程结构可靠性基本理论的发展与应用(1),建筑结构学报,2002,23(4):2~9
    [2]贡金鑫,仲伟秋,赵国藩工程结构可靠性基本理论的发展与应用(2),建筑结构学报,2002,23(5):2~10
    [3]贡金鑫,仲伟秋,赵国藩工程结构可靠性基本理论的发展与应用(3),建筑结构学报,2002,23(6):2~9
    [4]刘宁,郑建青工程随机力学与工程可靠性中的若干问题(上),河海大学学报,1999,27(5):1-9
    [5]刘宁工程随机力学与工程可靠性中的若干问题(下),河海大学学报,2000,28(1):1-9
    [6]夏梦芬,韩闻生,柯孚龙,等统计细观损伤力学和损伤演化诱致突变(I),力学进展,1995,25(1):1-40
    [7]黄克智,徐秉业.固体力学发展趋势,北京:北京理工大学出版社,1995
    [8]吴世伟,张思俊,余强坝上游水位变化规律及统计量,结构安全度与可靠度分析论文集,南京:河海大学出版社,1988,51-59
    [9]刘浩吾,何发祥拱坝行波输入的动力分析和抗震设计,水利学报,1990(09):26-35
    [10]林育梁岩土与结构工程中不确定性问题及其分析方法,北京:科学出版社,2009
    [11]ICOLD–International Commission on Large Dams. Guidelines for use of numericalmodels in dam engineering. Proposal for new bulletin. Ad-Hoc Committee onComputational Aspects;2004
    [12]Luis Altarejos-García, Ignacio Escuder-Bueno Methodology for estimating theprobability of failure by sliding in concrete gravity dams in the context of riskanalysis Structural Safety,2012(36–37):1–13
    [13]钟登华水利工程仿真与安全,科技导报,2011,29(28):1
    [14]彭大鹏土压力系数的概率分析,岩土工程学报,1994,16(6):117-122
    [15]苏永华,何满潮,孙晓明大子样岩土随机参数统计方法,岩土工程学报,2001,23(1):117-119
    [16]仇圣华,杨林德岩土不确定性参数求解方法研究,地下空间,2001,2(13):192-197
    [17]郭怀志,彭大鹏材料性能的随机场特性参数的检定方法,岩土工程学报,1994,16(3):79-83
    [18]彭大鹏齐次随机场在分析土性指标中的应用,天津大学学报,1992(2):118-124
    [19]张社荣,贾世军,郭怀志岩石边坡稳定的可靠度分析,岩土力学,1999,20(02):57-61
    [20]徐卫亚,刘世君岩石力学参数的非线性随机反分析,岩土力学,2001,22(4):432-435
    [21]梁正召,唐春安,张永彬,等准脆性材料的物理力学参数随机概率模型及破坏力学行为特征,岩石力学与工程学报,2008,27(4):718-727
    [22]马怀发,陈厚群全级配大坝混凝土动态损伤破坏机理研究及其细观力学分析方法,北京:中国水利水电出版社,2008,1-10
    [23]唐欣薇,基于宏细观力学的混凝土破损行为研究:[博士学位论文],北京;清华大学,2009
    [24]LIU Zhi guang, CHEN Jianyun, BAI Wei feng, et al.Improved Parameter SelectionMethod for Macroscopic Numerical Simulation Test of Direct Tensile Failure of Rockand Concrete, Journal of Central South University of Technology,2010,17(5):1079-1086
    [25]贾洪彪,唐明辉,刘佑荣,等,岩体结构面三维网络模拟理论与工程应用,北京:科学出版社,2008:2-7
    [26]刘宁,吕泰仁,随机有限元及其工程应用,力学进展,1995,25(1):114-126
    [27]韩大建,陈太聪,苏成随机结构数值模拟分析的神经网络法,工程力学,2004(03):49-56
    [28]Cornell C A First order uncertainty analysis in soil deformation and stability//Proceeding of the1st international conference on application of probability andstatistics in soil and Structure engineering London:Oxford University Press,1971:32-40
    [29]Hisada T, Nakagiri S Stochastic finite element analysis of uncertain structure system//proceedings of the4th international conference on FEM, Australia,1982:133-138
    [30]Yamazaki F, Shinozuka M, Dasgupta G Neumann expansion for stochastic finiteelement analysis Journal of Engineering Mechanics,ASCE,1988,114(8):1335-1354
    [31]Ghanem R G, Spanos P D. stochastic Finite Element-a Spectral Approach. New York:Springer-Verlag,1991
    [32]朱银,非线性随机有限元:[硕士学位论文],西安;西北工业大学,2003
    [33]郭书祥,冯元生,吕震宙,随机有限元方法与结构可靠性,力学进展,2002,30(3):343~350
    [34]杨杰,陈虬,一种新型随机有限元法,力学季刊,2004,25(04):518-522
    [35]杨杰,陈虬,Legendre积分法在随机有限元法中的应用,计算力学学报,2005,22(02):214-216
    [36]蒋中明,张新敏,徐卫亚岩土边坡稳定性分析的模糊有限元方法研究,岩土工程学报,2005,27(08):922-928
    [37]王亚军,王艳军一次逼近理论下边坡稳定的模糊随机数值分析,岩土工程技术,2005,19(05):220-224
    [38]秦权,林锦道,梅刚结构可靠度随机有限元—理论及工程应用,北京:清华大学出版社,2006,7-15
    [39]王亚军,张我华,金伟良一次逼近随机有限元对堤坝模糊失效概率的分析,浙江大学学报(工学报),2007,41(01):52-56
    [40]王东,陈建康,王启智,等Monte-Carlo随机有限元结构可靠度分析新方法,四川大学学报(工程科学版),2008,40(03):20-26
    [41]王东,陈建康,王启智,等基于条件与对偶抽样的Monte-Carlo结构可靠度分析,中国农村水利水电,2008,(05):66-68
    [42]吴振君,王水林,葛修润约束随机场下的边坡可靠度随机有限元分析方法,岩土力学,2009,30(10),3086-3092
    [43]李典庆,蒋水华,周创兵基于非侵入式随机有限元法的地下洞室可靠度分析,岩土工程学报,2012,34(01):123-129
    [44]张社荣,严磊,王超,等基于随机有限元法的溶蚀坝基系统建坝适应性评价,岩土力学,2012,33(02):597-603
    [45]Bazzurro P. Probabistic seismic demand analysis [D].California: Stanford University,1998.
    [46]Porter KA. An overview of PEER’s performance-based earthquake engineeringmethodology. In:9th International conference on application of statistics andprobability in civil engineering (ICASP9). San Francisco, California;2003.973-980.
    [47]Cornell C A, Krawinkler H. Progress and challenges in seismic performanceassessment. PEER Center News,2000,3(2)
    [48]Cornell C A. Hazard, ground motions and probabilistic assessment for PBSD. In:Proceeding of the international workshop on performance based seismic designconcept sand implementation, Bled, Slovenia,2004.
    [49]Deierlein G G. Overview of a comprehensive framework for earthquake performanceassessment. In: Proceeding of the international workshop on performance basedseismic design concepts and implementation, Bled, Slovenia,2004.
    [50]Moehle J P, Deierlein G G. A framework methodology for performance-basedearthquake engineering. In: Proceeding of the13thWorld Conference on EarthquakeEngineering, Vancouver, B.C., Canada, August,2004.
    [51]陈厚群,大坝的抗震设防水准及相应性能目标工程抗震与加固改造,2005,27(增刊):1-6.
    [52]林皋,混凝土大坝抗震安全评价的发展趋向,防灾减灾工程学报,,2006,26(01):1-12
    [53]陈厚群,侯顺载,梁爱虎水电工程抗震设防概率水准和地震作用概率模型,自然灾害学报,1993,2(02):91-98
    [54]张楚汉,金峰,沈怀至,等基于功能的高坝抗震安全与风险评价,新世纪水利工程科技前沿(院士)论坛,天津,2004
    [55]金峰,贾超,王品江,等基于功能的高坝建设方案的风险决策研究,岩土力学,2006,27(08):1421-1424
    [56]涂劲,陈厚群,张伯艳小湾拱坝在不同概率水平地震作用下的抗震安全性研究,水利学报,2006,37(03):278-285.
    [57]沈怀至,基于性能的混凝土坝-地基系统地震破损分析与风险评价:[博士学位论文],北京;清华大学,2007
    [58]沈怀至,金峰,张楚汉基于功能的混凝土重力坝抗震风险模型研究,岩土力学,2008,29(12):3323-3328
    [59]寇立夯,金峰,王进廷基于概率的混凝土重力坝地震反应分析,水力发电学报,2009,28(05):23-28
    [60]寇立夯,基于性能的高坝抗震设计若干关键问题研究:[博士学位论文],北京;清华大学,2009
    [61]吴健,考虑无限地基辐射阻尼的拱坝随机振动分析:[博士学位论文],北京:清华大学,2005
    [62]Ellingwood B, Tekie P B. Fragility analysis of concrete gravity dams. Journal ofInfrastructure Systems,2001,7(2):41-48
    [63]Tekie P B, Ellingwood B R. Seismic fragility assessment of concrete gravity dams.Earthquake Engineering and Structural Dynamics,2003,32(14):2221-2240
    [64]Nielson B G, Desroches R. Seismic fragility methodology for highway bridges usinga component level approach. Earthquake Engineering and Structural Dynamics,2007,36(6):823-839
    [65]Freudenthal A M, The safety of structures, Transaction, ASCE,1947(112):125-180
    [66]Hasofer A.M. Lind N.C. Exact and invariant second moment code format. Journal ofEngineering Mechanics,1974(100):111-121
    [67]Cornell CA. Structural safety: some historical evidence that it is a healthy adolescent.In: Proc. ICOSSAR’81, Trondheim, Norway;1981.19–31
    [68]Rackwitz R Reliability analysis—a review and some perspectives, Structural Safety2001(23)365–395
    [69]Rackwitz R, Fiessler B. Structural reliability under combined random load sequencescomputers and structures. Computers and Structures,1978,9:489-494
    [70]林道锦,梅刚,秦权非正态概率分布对一次可靠度方法精度影响,计算力学学报,2005(03):292-294
    [71]Schoutens W. Stochastic processes and orthogonal polynomials. New York: Springer,2000
    [72]Winterstein S R. Nonlinear vibration models for extremes and fatigue. Journal ofEngineering Mechanics,1988,114(10):1772-1790
    [73]Rackwitz R, Fiessler B. Structural reliability under combined load sequence.Computer and Structures,1978,114(12):2195-2199
    [74]Der Kiureghian A, Liu P L. Structural reliability under incomplete probabilityinformation. Journal of Engineering Mechanics,1986,112(1):85-104
    [75]Pellissetti M F, Schueller G I. On general purpose software in structural reliability-An overview. Structural Safety,2006,28(1-2):3-16
    [76]Gollwitzer S, Kirchgαβner B, Fischer R, et, al. PERMAS-RA/STRUREL system ofprograms for probabilistic reliability analysis. Structural Safety,2006,28(1-2):108-129
    [77]DITLEVSEN O. Narrow reliability bounds for structural system. StructuralMechanics,1979,7(4):453-472
    [78]Hohenbichler M, Rackwitz R. First-order concepts in system reliability. StructuralSafety1983;1(3):177-188
    [79]郭怀志,张社荣,黄东军可靠度分析的数值解法,水利学报,1990(07):60-67
    [80]Ramachandran K, Baker M. New reliability bound for series systems. In: Konishi I,Ang AH-S, Shinozuka M, editors. Proc. ICOSSAR’85, Kobe;1985.157–169
    [81]Breitung K. Asymptotic approximations for multinomial integrals. Engrg Mech,ASCE,1984,110(3):357~366
    [82]Tvedt L. Two second order approximations to the failure probability. Section onStructural Reliability, APS vertas Research, Hovik, Norway,1984
    [83]Hohenbichler M, Rackwitz R. Improvement of second order reliability estimations byimportance sampling. Engrg Mech, ASCE,1990,116:1183~1197
    [84]Koyluoglu H U, Nielsen S R K. New approximations for SORM integrals.Structural Safety,1994,13(4):235~246
    [85]Cai GQ, Elishakoff I. Refined second-order reliability analysis. Structural Safety,1994,14(4):267~276
    [86]Tvedt L. Distribution of quadratic forms in normal space-Application to structuralreliability. Engrg Mech, ASCE,1990,116:1183~1197
    [87]Breitung K. Asymptotic approximations for multinomial integrals. Engrg Mech,ASCE,1984,110(3):357~366
    [88]Tiehy M. First order third moment reliability method. Structural Safety,1994,16(3):189-200
    [89]Zhao Y G, Ono T. Moment methods for structural reliability. Structural Safety,2001,23(l):47-75
    [90]李云贵,赵国藩结构可靠度的四阶矩分析法,大连理工大学学报,1992,32(04):455-459
    [91]Shinozuka M. Basic analysis of structural safety. Struct Eng ASCE1983,109(3):721–740.
    [92]程耿东,蔡文学结构可靠度计算的近似重要性抽样方法及其应用,工程力学1997,14(2):1-8
    [93]Engelund, S, Rackwitz, R. An benchmark study on importance sampling techniquesin structural reliability. Structural Safety,1993;12(4):255-276
    [94]Melchers RE. Structural reliability: analysis and prediction. Chichester: EllisHorwod/Wiley,1987.
    [95]Kameda H, Koike T. Reliability analysis of deteriorating structures. ReliabilityApproach in Structure, Maruzen Co, Tokyo Japan:5-14
    [96]Mori Y and Ellingwood BR. Reliability-based service-life assessment of agingconcrete structures. Journal of Structural Engineering,1993,119(5):1600-1621
    [97]Mori Y, Ellingwood BR. Maintaining reliability of concrete structures. II:Optimuminspection/repair. Journal of Structural Engineering,1994,120(3):846-862
    [98]Mori Y, Ellingwood BR. Reliability-based life prediction of structures degrading dueto environment and repeated loading. In: Proc.,7t" Int. conf. on Applications ofstatistics and probability Balkema.Rotterdam, The Netherlands,1995:971-976
    [99]Ellingwood BR. Reliability-based condition assessment and LRFD for existingstructures. Structural Safety,1996,18(1):67-80
    [100]Estes A C, Frangopol D M. Load rating versus reliability analysis. Journal ofStructural Engineering,2005,131(5):843847.
    [101]Akgül F, Frangopol D M. Lifetime performance analysis of existing prestressedconcrete bridge super structures. Journal of Structural Engineering,2004,130(12):1889-1903.
    [102]Y.K wen and H C Chen, On fast integration for time variant structural reliabilityProbabilistic Engineering Mechanics,1987,02(03)156-162
    [103]H Madsen and L Tvedt Methods for time-dependent reliability and sensitivity analysisJournal of Engineering Mechanics1990,116(10)132-153
    [104]C. Andrieu-Renauda, B. Sudretb, M. Lemaire The PHI2method: a way to computetime-variant reliability Reliability Engineering and System Safety2004(84):75–86
    [105]杨跃新,混凝土连续梁桥的时变可靠度评定与寿命预测:[硕士学位论文],哈尔滨;哈尔滨工业大学,2007
    [106]赵国藩,金伟良,贡金鑫结构可靠度理论,北京:中国建筑工业出版社,2000
    [107]范书立,陈健云,范武强,等地震作用下碾压混凝土重力坝的可靠度分析,岩石力学与工程学报,2008,27(03):564-571
    [108]范书立,混凝土重力坝的动力模型破坏试验及可靠性研究:[博士学位论文],辽宁:大连理工大学,2007
    [109]徐强,陈健云,李静,等基于贝叶斯理论的大坝体系可靠度计算方法,大连理工大学学报,2011,51(01):84-89
    [110]Hong Zhong, Gao Lin, Xiaoyan Li, et, al Seismic failure modeling of concrete damsconsidering heterogeneity of concrete Soil Dynamics and Earthquake Engineering31(2011):1678–1689
    [111]张社荣,王超,孙博重力坝层面抗滑稳定体系的动力可靠度分析方法,岩土力学,2012,33(10):3139-3144
    [112]李国强,基于概率可靠度进行结构抗震设计的若干理论问题,建筑结构学报,2000,21(01):12-16
    [113]武清玺,卓家寿二次序列响应面法分析重力坝的动力可靠度,振动工程学报,2001,14(02):224-227
    [114]封伯昊,张立翔,金峰基于损伤的混凝土大坝可靠度分析,工程力学,2005,22(03):46-51
    [115]熊铁华,常晓林响应面法在结构体系可靠度分析中的应用,工程力学,2006,23(04):58-61
    [116]贾超,张启海,水平薄弱面对混凝土重力坝安全性影响的研究,水力发电,2009,33(09):23-25
    [117]徐强,陈健云,李静基于拉格朗日乘数法计算大坝结构可靠度,工程力学,2009,26(11):108-113
    [118]徐强,李静,陈健云,等非平稳地震动过程中混凝土重力坝受拉失效路径可靠度分析,工程力学,2011,28(03):123-128
    [119]徐强,混凝土重力坝动力系统的可靠性方法研究:[博士学位论文],辽宁:大连理工大学,2010
    [120]包成刚,高大钊,张庆华地基工程可靠度分析方法研究,武汉:武汉测绘大学出版社1997:1-18
    [121]于跃,基于三维地质分析模型的水电工程复杂坝基处理分析研究:[博士学位论文],天津:天津大学,2010
    [122]胡小荣,唐春安岩土力学参数随机场的空间变异性分析及单元体力学参数赋值研究,岩石力学与工程学报,2000,19(01):59-63
    [123]昆明勘测设计研究院,观音岩水电站可行性研究报告(综合说明),中国水电工程顾问集团昆明勘测设计研究院,2009
    [124]VANMARCKE E H. Random fields: analysis and synthesis,Cambridge: MITPress,1983.
    [125]吴振君,王水林,葛修润约束随机场下的边坡可靠度随机有限元分析方法,岩土力学,2009,30(10):3086-3092
    [126]刘宁,三维可分向量随机场局部平均的三维随机有限元及可靠度计算,水利学报,1995,26(06):75-82
    [127]Olsson A, Sandberg G and Dahlblom O, On latin hypercube sampling for structuralreliability analysis, Structural safety,2003,25,47-68
    [128]丁浩,蒋树屏,杨林德外水压下隧道围岩与衬砌的随机有限元分析,岩土工程学报,2009,31(4):643-647
    [129]钟文华,岩土参数随机场特性及最优估计研究[硕士学位论文],天津:河北工业大学,2002
    [130]傅旭东,邓建刚土性参数随机场的模拟和随机场的离散,工业建筑,2002,32(1):32-36
    [131]张社荣,贾世军,郭怀志岩石边坡稳定的可靠度分析,岩土力学,1999,20(2):57-61
    [132]小飒工作室,最新经典ANSYS及Workbench教程,北京:电子工业出版社,2004
    [133]韩大建,陈太聪,苏成随机结构数值模拟分析的神经网络法,工程力学,2004,21(3):49-54
    [134]BUCHER C G,BOURGUND U. A fast and efficient response surface approach forstructural reliability problems, Structural Safety,1990,7(1):57-66
    [135]佟晓利,赵国藩一种与结构可靠度分析几何法相结合的响应面方法,土木工程学报,1997,30(4):51-57
    [136]李德玉,陈厚群高拱坝抗震动力分析和安全评价,水利水电技术,2004,35(01):45-48
    [137]陈生水,霍家平,章为民“5.12”汶川地震对紫坪铺混凝土面板坝的影响及原因分析,岩土工程学报,2008,30(6):795-801
    [138]E. Tubaldi, M. Barbato, S. Ghazizadeh A probabilistic performance-based riskassessment approach for seismic pounding with efficient application to linear systems.Structural safety36-37(2012):14-22
    [139]Luco N, Cornell CA. Structure-specific scalar intensity measures for near source andordinary earthquake ground motions. Earthquake Spectra2007(23):357–392
    [140]Miranda E, Aslani H. Probabilistic response assessment for building-specific lossestimation. PEER2003/03. Pacific Earthquake Engineering Research Center,2003
    [141]李晓燕,混凝土重力坝的地震风险分析[硕士学位论文],辽宁:大连理工大学,2011
    [142]李振富,张社荣,郭怀志水平地震系数的概率特性估计及应用,天津大学学报1993(1):105-109
    [143]Cornell CA, Jalayer F, Hamburger R, Foutch D. Probabilistic basis for2000SACfederal emergency management agency steel moment frame guidelines. ASCEStruct Eng2002;128:526–532
    [144]Tothong P, Cornell C A. Probabilistic seismic demand analysis using advanced groundmotion intensity measure, attenuation relationships, and near-fault effects.University of California, Berkeley, USA: Pacific Earthquake Engineering ResearchCenter (PEER) Report,2006/11.
    [145]Luco N, Cornell C A. Effects of connection fractures on SMRF seismic drift demands.Journal of Structural Engineering,2000,126(1):127-136.
    [146]Luco N, Cornell C A. Effects of random connection fractures on the demands andreliability for a3-story pre-Northridge SMRF structure. In: Proceedings of the6thU.S.National Conference on Earthquake Engineering, Seattle, Washington,1998
    [147]Lubliner J, Oliver J, Oller S, et al. A Plastic-Damage Model for ConcreteInternational Journal of Solids and Structures,1989,25(3):229-326
    [148]Lee J, Fenves L G. Plastic-damage model for cyclic loading of concrete structures.Journal of Engineering Mechanics,1998,124(3):892–900
    [149]Hibbitt, Karlson, Sorrenson.ABAQUS user’s manual (Version6.3). Rhode Island:Pawtucket R I,2002
    [150]范书立,陈明阳,陈健云,等基于能量耗散碾压混凝土重力坝地震损伤分析,振动与冲击,2011,30(04):271-275
    [151]Bhattacharjee S S,Leger P.Seismic cracking and energy dissipation in concretegravity dams. Earthquake Engineering and Structural Dynamics,1993,22(11):991-1007
    [152]Shome N, Cornell C A, Bazzurro P. Earthquakes, records, and nonlinear responses.Earthquake Spectra,1998,14(3):467-500
    [153]Denis Kelliher, Kenneth Sutton-Swaby, Stochastic representation of blast loaddamage in a reinforced concrete building. Structure Safety2012,34(1):407-417
    [154]Aven TJ, Jensen U. Stochastic models in reliability. Applications of mathematics:stochastic modeling and applied probability series, vol.41. New York: Springer;1999
    [155]Mauricio Sanchez-Silva, Georgia-Ann Klutke, David V. Rosowsky Life-cycleperformance of structures subject to multiple deterioration mechanisms. StructuralSafety,2011,33:206-217
    [156]李振富,王日宣重力坝抗震动力可靠度分析,天津大学学报,1995,28(05):668-672
    [157]王阜,地震发生的更新过程模型及其在地震危险性分析中的应用,地震工程与工程振动,1986,6(02):17-25
    [158]刘宁,可靠度随机有限元法及其工程应用,北京:中国水利水电出版社,2001
    [159]唐家银,何平,宋东利基于Copula函数的失效相关构件可靠度计算,机械强度,2010,32(5):740-744
    [160]唐小松,李典庆,周创兵,等基于Copula函数的基桩荷载-位移双曲线概率分析,岩土力学,2012,33(1):171-178
    [161]陈进,黄薇重力坝系统可靠度研究方法探讨,长江科学院院报,1997,14(01):21-24
    [162]吴帅兵,李典庆,周创兵结构可靠度分析中变量相关时三种变换方法的比较,工程力学,2007,24(5):79-86
    [163]Phoon K K. Reliability-based Design in Geotechnical Engineering: Computations andApplications, Taylor and Francis, UK;2008.
    [164]吕大刚,基于线性化Nataf变换的一次可靠度方法,工程力学,2007,24(5):79-86
    [165]Noh Y, Choi K K, Du L. Reliability-based design optimization of problems withcorrelated input variables using a Gaussian Copula. Structural and MultidisciplinaryOptimization,2009,38(2):1-16
    [166]Dolinsky K. First order second moment approximation in reliability of structuralsystems: critical review and alternative approach. Structural Safety,1983,1(3):211-231
    [167]Segal F, Levy R, Rutenberg A. Design of imperfect cross-bracing. Journal ofEngineering Mechanics ASCE,1994,120(5):1057-1075
    [168]Li Hongshuang, Lu Zhenzhou, Yuan Xiukai. Nataf transformation based pointestimate method. Chinese Science Bulletin,2008,53(17):2586-2592.
    [169]Chang C H, Tung Y K, Yang J C. Monte Carlo simulation for correlated variables withmarginal distributions. Journal of Hydraulic Engineering,1994,120(3):313-331
    [170]严磊大坝运行安全风险分析方法研究:[博士学位论文],天津,天津大学,2011
    [171]郭怀志,张社荣,黄东军可靠度分析的数值解法,水利学报,1990(07):60-67
    [172]张晶,结构体系失效概率计算方法研究:[博士学位论文],辽宁,大连理工大学,2010
    [173]Zhang Y C. Derivative fitting procedure for computing bivariate normal distributionand some applications. Structural Safety,1994,14(3):173-183
    [174]牛军宜,供水枢纽工程水环境系统安全管理问题的研究:[博士学位论文],天津,天津大学,2010
    [175]Nelson R. B. An introduction to Copulas. Springer: New York,2006
    [176]赵国藩,工程结构可靠性理论与应用,大连:大连理工大学出版社,1996
    [177]李云贵,赵国藩结构体系可靠度的近似计算方法,土木工程学报,1993,26(5):70-76
    [178]张小庆,康海贵,王复明一种新的体系可靠度的近似计算方法,工程力学2004,21(1):93-97
    [179]周建平,钮新强,贾金生重力坝设计二十年,北京:中国水利水电出版社,2008
    [180]张楚汉,王光纶水利水电工程科学前沿,北京:清华大学出版社,2002.357-397.
    [181]贾超,刘宁,陈进地震作用下土坡可靠度风险分析,岩石力学与工程学报,2005(04):703-707
    [182]Earth Scientific Consultants Mecann W Associates. Seismic hazard map for PuertoRico1994. Puerto Rico Report Prepared for Seismic Safety Commission PuertoRico1994
    [183]Bernstone C, Westberg M, Jeppsson J. Structural assessment of a concrete dam basedon uplift pressure monitoring. Journal of Geotechnical andGeoenvironmentalEngineering, ASCE2009;135(1):133–142.
    [184]Griffiths DV, Fenton GA. Influence of soil strength spatial variability on the stabilityof an undrained clay slope by finite elements. In: Slope stability2000, proceedings ofGeoDenver2000. ASCE;2000.184–193.
    [185]Husein AI, Hassan WF, Abdulla FA. Uncertainty and reliability analysis applied toslope stability. Struct Saf2000;22:161–187.
    [186]Griffiths DV, Fenton GA, Manoharan N. Bearing capacity of rough rigid strip footingon cohesive soil: probabilistic study. J Geotech Geoenviron Eng2002;128(9):743–755.
    [187]Fenton GA, Griffiths DV, Williams MB. Reliability of traditional retaining walldesign.Geotechnique2005;55(1):55–62.
    [188]Au SK, Beck JL. Estimation of small failure probability in high dimensions bysubsetsimulation. Probabilistic Engineering Mechanics2001;16:263–277
    [189]J. Michael Duncan, Honorary Member Factors of safety and reliability in geotechnicalengineering. Jounal of geotechnical and geoenvironmental engineering,2000;(4):307-316
    [190]Jianye Ching Equivalence between reliability and factor of safety, ProbabilisticEngineering Mechanics2009(24)159–171
    [191]Wolff T F. Probability slope stability in theory and practice uncertainty in the geologicenvironment. Geotech. ASCE199658(1)419–433
    [192]张社荣,李振富,郭怀志重力坝抗震可靠度分析,天津大学学报,1991(S2):137-141
    [193]Mirzabozorg H, Ghaemian M Non-linear behavior of mass concrete inthree-dimensional problems using smeared crack approach. Earthquake Engineeringand Structural Dynamics,2004,34(3):247-269
    [194]李晓燕,钟红,林皋地震作用下混凝土重力坝破坏过程与破坏形态数值仿真,水利学报,2011,43(10):1209-1217
    [195]范书立,陈健云碾压混凝土重力坝动力模型破坏试验研究,水力发电,2009,35(5):33-35
    [196]张战廷,刘宇锋ABAQUS中的混凝土塑性损伤模型,建筑结构,2011,41(S2):229-231
    [197]潘坚文,高混凝土坝静动力非线性断裂与地基辐射阻尼模拟研究:[博士学位论文],北京,清华大学,2010
    [198]WILLAM K J, WARNKE E D. Constitutive model for the triaxial behavior ofcncrete//Proceedings of International Association for Bridge and StructuralEngineering. Bergamo: ISMES,1975
    [199]沈怀至,周元德,王进廷基于弥散裂缝模型的重力坝简化地震分析,水利学报,2007,39(10):1221-1227
    [200]de Borst R. Fracuter in quasi-brittle materials:a review of continuum damage-basedapproaches. Engineering Fracture Mechanics,2002,69(2):95-112
    [201]Belytschko T, Black T. Elastic crack growth in finite elements with minimalremeshing. International Journal for Numerical Methods in Engineering,1999,45(5):601–620
    [202]范书立,陈健云碾压混凝土重力坝动力模型破坏试验研究,水力发电,2009,35(5):33-35
    [203]Nicolas Mo s, Ted Belytschko Extended finite element method for cohesive crackgrowth. Engineering Fracture Mechanics2002(69):813–833
    [204]J F Hall.The dynamic and earthquake behavior of concrete dams: review ofexperimental behavior and observational evidence. Soil Dyn. Earthquake Eng.1988,7:58-121
    [205]张国新,金峰,王光伦用基于流行元的子域奇异边界元法模拟重力坝的地震破坏,工程力学,2001,18(4):18-27
    [206]杨令强,练继建,张社荣等,拱坝的破坏分析及超载问题探讨,水利学报,2003(03):55-62
    [207]Bucher C G,Bourgund U. A fast and efficient response surface approach forstructural reliability problem. Structural Safety,1990,7(1):57-66
    [208]Rajashekhar M R,Ellingwood B R. A new look at the response surface approach forreliability. Structural Safety,1993,12(3):205-220.
    [209]宋珊珊,考虑配筋作用的高耸进水塔结构连系梁破坏过程及改进设计研究:[硕士学位论文],天津;天津大学,2009
    [210]Jiachao, Liuning, Chenjin, SLOPE RISK ANALYSIS UNDER THE EARTHQUAKEEFFECT. Chinese Journal of Rock Mechanics and Engineering,2005, V24(04):703-707