独立控制式油气两用燃料发动机匹配设计及切换技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
替代燃料LPG以其良好的经济性、排放性能和行驶里程综合优势,在当前倡导节能环保的整体大环境下,具有良好的市场前景。针对当前单ECU燃料控制方式存在重复性开发与应用风险,随动式燃料控制方法控制效果不能适应严格的动力性和排放性能指标要求。本文开展了独立控制式油气两用燃料发动机匹配设计及切换控制方法研究。
     通过分析现有两用燃料发动机控制方法,设计了独立控制式汽油/LPG两用燃料发动机控制方法。提出了双ECU传感器信号分配方法,采用点火开关信号控制简化了执行器控制权切换,研究了汽油至LPG以及LPG向汽油的状态转换过程、发动机燃料状态选择方法、ECU电源控制和以及工作状态控制。在整车上进行了燃料切换试验,验证出论文所提出的独立式两用燃料控制方法的有效性。
     对LPG供气部件进行匹配研究。针对LPG喷嘴的匹配要求,提出了容器排水称重式喷嘴动态喷气量测量方法,通过建立数学模型分析了影响喷射过程气室压力的相关影响因素。阐述了喷气体积的测量与计算方法。建立了喷嘴动态喷射体积测量装置,分析了测量系统结构及工作过程。通过喷嘴重复性测试试验验证论文提出的动态喷气体积测量方法的可行性。此外对喷嘴进行了特性试验。结果表明,论文所提出的动态喷气体积测量方法可较好地辅助喷嘴的匹配。
     根据燃料切换需求设计了LPG状态发动机控制模块电源、微处理器、传感器信号处理和执行器驱动的相关硬件,完成了发动机功能控制软件与喷气阀、点火线圈、曲轴位置信号传感器、凸轮轴位置信号传感器和爆震传感器接口的时序控制驱动软件设计。分析影响时序控制驱动实时性的相关影响因素,提出了改善时序控制驱动实时性的方法,通过试验检验时序控制驱动的实时性。
     通过发动机台架试验对比分析了所开发的汽油/LPG两用燃料发动机在使用不同燃料时的动力性差异,试验结果表明:发动机LPG状态下的最大转矩下降4.8%,最大功率下降6%,满足目标对动力性下降的要求。对整车进行了高寒、高原和高温标定试验,试验表明:两用燃料发动机燃料切换系统和LPG状态发动机控制系统在三高环境下的工作正常,两用燃料车在三高环境下的驾驶性性能良好,验证了所设计的系统对环境的适应性。
Alternative fuel LPG, with the good economy, emission performance and mileage comprehensive advantages, takes a good market prospect under the whole circumstances of advocating energy-saving and environment-protecting at the current. The paper does research on the development method of independent controlling Bi-Fuel engine match design and fuel switch technology
     According to analyzing the existed bi-fuel energy control method, the paper comes up with the independent control gasoline/LPG bi-fuel engine control method and dual ECU sensor signal distribution method, simplifies the actuator control switch by using the igniting switch signal control, studies the state converting process of gasoline to LPG and LPG to gasoline, the selecting method of engine fuel state, ECU power control and working state control. Through the fuel switch experiment on the vehicle, it validates the effectiveness of proposed independent bi-fuel control method.
     According to the way of fuel injection, engine and vehicle demands, it performs the type-selecting, matching and arranging on the LPG fuel-supplying components. It analyzes the feasibility of weighing type injector measurement method based on flow meter and gas tank targeting the matching requirement of LPG injector. It comes up with measuring method of the container drainage weighing injector dynamic fuel measure, and analyzes the related factors which influence the chamber pressure in the injection process by establishing mathematical model. It put forward the improvement direction of the gas collecting container, explains the measuring and calculating method of injection volume, establishes dynamic injection volume measuring device of the injector, introduces the structure and working process of the measurement system. It verifies the feasibility of dynamic jet volume measurement methods proposed in this paper through the injector repeated measuring experiments. It performs the flow characteristic test, the voltage characteristic test, the pressure characteristic test and injector group consistency test on the injector. The experimental results show that dynamic jet volume measuring method proposed in the paper can assist the match of injector better.
     It designs the engine control module power source of LPG state, the microprocessor, sensor signal processing and the related hardware design of actuator drive, and finishes the designs of engine function control software and the timing-sequence control drive software among the interface of the jet valve, igniting coil, crankshaft position signal sensor, camshaft position signal sensor and knock sensor. It analyzes the related factors which influence the timing-sequence control drive real-time, puts forward the method of promoting timing-sequence control drive real-time, and examines the real-time of timing-sequence control drive.
     It contrastively analyzes the dynamic difference between the gasoline/LPG bi-fuel engine developed when using the different fuels, the experimental results show that the maximum torque decreased by4.8%under the condition of the engine LPG, the maximum power is down6%. The arctic calibration experiment on the whole car shows that the bi-fuel engine fuel switch system and LPG engine control system work normally in the arctic environment; the driving performance of bi-fuel vehicle is excellent in the arctic environment, which achieves the expected development objective and requirement.
引文
[1]中华人民共和国国家统计局.中国统计年鉴2012[M].中国统计出版社.2012
    [2]2012年1-11月中国石油和化工主要产品产销总量平衡表[J].中国石油和化工经济分析,2013,(01):75.
    [3]中华人民共和国工业和信息化部.乘用车企业平均燃料消耗量核算办法.2012-03.
    [4]中华人民共和国国务院公告.节能与新能源汽车产业发展规划(2012-2020年).2012.
    [5]孟欣.新时代汽车节能技术探析[J].应用能源技术,2010,(05):4-7.
    [6]Oskley Aaron,Zhao Hua,Ladomatos Nicos et al.Dilution effects on the control auto-ignition combustion of hydrocarbon and alcohol fuels. SA E Paper 200120123606. 2001.
    [7]王旭辉.LNG车用燃料及在北京公交车的应用[J].天然气工业,2005,(03):153-156+210.
    [8]Stanislav Beroun,Jorge Martins.The development of gas (CNG, LPG and H2)engines for buses and trucks and their emission and cycle variability characteristics. SAE Journal.2001
    [9]Timothy J Callahan.Survey of Gas Engine Performance and Future Trends..2007
    [10]张文,刘春恰,李明等.两用燃料汽车开发进展[J].科技传播,2012,(03):114-115.
    [11]邢志敏.复合材料CNG气瓶的力学性能研究[D].北方工业大学,2005.
    [12]夏立荣.车用CNG全复合材料气瓶的失效模式分析及预防[J].压力容器,2009,(12):51-53.
    [13]梁瑞,邵松伟,颜鹏飞.CNG气瓶泄漏爆炸后果评价模型对比分析[J].压力容器,2009,(01):29-31.
    [14]Chamberlain S,Modarres M.Compressed natural gas bus safety:A quantitative risk assessment. Risk Analysis.2005
    [15]N. G. Kirillov. Analysis of Modern Natural Gas Liquefaction Technologies[J],2004
    [16]蒋黎明.LNG客车供气系统安装技术研究[J].客车技术与研究,2011,(05):26-28+48.
    [17]文代志,陆军.液化天然气(LNG)汽车综述[J].装备制造技术,2012,(07):120-123.
    [18]陈叔平,刘志东,刘振全.车用燃料LNG、CNG及汽油的性能比较[J].真空与低温,2002,(04):47-49.
    [19]TAMLRA M,NAKAMURA Y,IWAMOTO H.Prevention of LNG rollover in a LNG tank. Proceedings of 12th LNG Conference.1998.
    [20]李娟,魏蔚,汪荣顺.车用小型液化天然气燃料罐及其关键技术研究[J].低温与超导,2005,(04):15-18.
    [21]周满,厉彦忠,谭宏博.车载LNG储罐蒸发率的理论与试验[J].低温工程,2009,(04):1-5.
    [22]国家环境保护总局GB18352.3-2005轻型汽车污染物排放限值及测方法(中国Ⅲ,Ⅳ阶段)[S].北京:中国标准出版社,2005.4.
    [23]李西秦,刘冰,黎苏.CNG/LNG和LPG汽车动力性研究状况[J].小型内燃机与摩托车,2009,(03):54-57.
    [24]万涛,孙儒,李平.长城LPG/CNG轿车燃气发动机油在武汉出租车上的应用[J].石油商技,2010,(05):44-47.
    [25]李波.LPG液态喷射发动机工作过程研究[D].浙江大学,2002.
    [26]邵千钧.电控LPG发动机及其缸内直接喷射技术的研究[D].浙江大学,2003.
    [27]Sierens,R.Experimental and theoretical study of liquid LPG injection.
    [28]邓宝清,李理光,韩永强等.混合器式液化石油气小型发动机性能研究[J].农业机械学报,2002,(03):14-16.
    [29]阿比旦,张武高,欧阳明高.液化石油气汽车技术的发展与应用[J].汽车技术,2001,(11):5-8.
    [30]邵千钧,何文华,周文华等.LPG进气道液态喷射的实验研究[J].内燃机学报,2003,(01):65-68.
    [31]刘宏伟.电控LPG缸内直接喷射系统的研究[D].浙江大学,2003.
    [32]吴培周.新型电控缸内直喷LPG发动机喷射系统的研究[D].浙江大学,2006.
    [33]李君,朱昌吉,王立君等.电控LPG液态喷射发动机的改装与性能试验[J].吉林工业大学自然科学学报,2001,(04):1-5.
    [34]张凯.电控柴油/LPG双燃料发动机改造关键技术及其应用研究[D].武汉理工大学,2012.
    [35]Combustion of LPG in a spark-ignition engine. SAE 2004 World Congress and Exhibition. Detroit, Michigan, USA.2004-03
    [36]Radu Chiriac, Nicolae Apostolescu, Dan Niculescu. An experimental study of knock in a spark ignition engine fueled with LPG. SAE 2004 World Congress and Exhibition, Detroit, Michigan, USA.03-08-2004
    [37]Chris Manzie, Harry C. Watson, Modelling combustion variability in LPG-injected engines for improved engine performance at idle. SAE 2004 World Congress and Exhibition. Detroit, Michigan, USA.2004-03
    [38]Liguang Li, Zhensuo Wang,Baoqing Deng et al.Characteristics of Particulate Emissions Fueled With LPG and Gasoline in a Small SI Engine. Powertrain and Fluid Systems Conference and Exhibition. Tampa, Florida, USA.2004
    [39]Roberto Cipollone,Carlo Villante. Model-Based A/F Control for LPG Liquid Phase-Injected SI ICEs. Powertrain and Fluid Systems Conference and Exhibition. Tampa, Florida, USA. SAE.2004
    [40]Injector durability and emissions from liquid LPG port-injected spark ignition engine.
    [41]Gong Li,Liguang Li,Zhimin Liu,Zhilong Li,Dongping Qiu.Real Time NO Emissions Measurement During Cold Start in LPG SI Engine. Energy Conversion.2007
    [42]李春彦.国产高烯烃液化石油气作为车用燃料的试验研究[D].吉林大学,2007.
    [43]钟祥麟,于秀敏,王惠萍等.点火能量对LPG小型点燃式发动机排放的影响[J].吉林大学学报(工学版),2005,(05):473-476.
    [44]周立元,贾元华,吴贵福.点火提前角对LPG电喷发动机排放影响的试验研究[J].柴油机设计与制造,2006,(01):37-41.
    [45]薛云,朱愿,曹亚娟等.液态喷射LPG发动机掺氢燃烧的研究[J].小型内燃机与摩托车,2008,(05):58-61.
    [46]耿德强,贾咸昆,许伯彦.液态LPG喷射发动机混合气分层构造的数值模拟[J].山东建筑大学学报,2008,(01):20-26.
    [47]齐运亮.多点电控液态LPG喷射发动机燃料喷雾的可视化试验研究[D].山东建筑大学,2006.
    [48]Qu Dawei,Li Jun,Gao Ying et al. Optimal matching of the turbocharging lean burn LPG engine. LEITS-2010 proceedings.2010
    [49]Hu Chunming,Liu Na,Li Wei et al. Investigation on rapid lean-burning of spark ignition LPG engines. SAE Paper.2006-32-0079.
    [50]葛晓成,彭忆强,李静波.单ECU两用燃料发动机试验研究[J].车用发动机,2012, (01):56-59.
    [51]吴喜庆.电控喷射单一燃料CNG轿车发动机燃烧过程的试验研究[D].天津大学,2009.
    [52]梁翠玲,李强.单一ECM汽油/CNG两用燃料汽车开发[J].装备制造技术,2009,(10):12-14.
    [53]邱秀君,姚加飞.天然气/汽油两用燃料发动机燃料切换的优化模型[J].重庆工学院学报(自然科学版),2009,(03):19-22.
    [54]韩光明.汽油/LPG两用燃料发动机油气切换过程试验研究[D].吉林大学,2005.
    [55]第五代双燃料技术:2010款新爱丽舍CNG领先上市http://www.tianshannet.com.cn /special/09ailishe/2009-10/29/content_4542320.htm
    [56]隗海林.LPG/汽油两用燃料发动机燃料转换过程控制策略研究[D].吉林大学,2007.
    [57]Myoungho Sunwoo,Hansub Sim,Kangyune Lee.Design and development of an ECU anti its air-fuel ratio control scheme for an LPG engine with a bypass injector. Proceedings of the 1999 IEEE International Conference on Vehicle Electronics.1999
    [58]程飞.对CNG汽车仿真器线束的连接分析[J].科学时代,2008,(06):21-22.
    [59]A.E.Catania,D.Misul,E.Spessa et al. Conversion of a multivalve gasoline engine to run on CNG. SAE 2000 World Congress.2000-01-0673
    [60]Harry Kekedjian,Tadeusz Krepec. Further development of solenoid operated gas injectors with fast opening and closing. SAE International Congress and Exposition. Detroit, Michigan, USA.1994[C]
    [61]Pneumatic fluid power-components using compressible fluids-deter- mination of flow-rate characteristics. ISO/TC[3].ISO/TC 131 ISO 6358-1989.1989
    [62]Measurement of Flow-rate Characteristics of Pneumatic Equipments, (. GB/T14513-93. 1993)
    [63]Viktor Szente.Computational and Experimental Investigation on Solenoid Valve Dynamics.2001 IEEE/ASME International Conference on Advanced Intelligent mechatronics Proceedings.2001
    [64]Kawashima K,Kagawa T,Fujita T.Instantaneous flow rate measurement of ideal gases. T ran saction s of the A SM E.2000
    [65]Pneumatic fluid power-Components using compressible fluids-Determination of flow-rate characteristics,( ISO6358.1989
    [66]ONEYAMA Naotake,ZHANG Huping,SENOO Mitsuru,et al.Study and suggestions on flow-rate characteristics of pneumatic components. ISFP'2003Proceedings of the Fourth International Symposium on Power Transmission and Control,Apri18-10,2003.2003
    [67]张冬生,孙柏刚,刘福水等.氢燃料内燃机喷嘴流量特性仿真与试验研究[A].全国智能交通系统协调指导小组、全国清洁汽车行动协调领导小组、中国智能交通协会、深圳市人民政府.第五届中国智能交通年会暨第六届国际节能与新能源汽车创新发展论坛优秀论文集(下册)——新能源汽车[C].全国智能交通系统协调指导小组、全国清洁汽车行动协调领导小组、中国智能交通协会、深圳市人民政府:,2009:7.
    [68]Kinghorn F C.Industrial needs for cost-effective flow measurement. The 8th International Conference on flow Measurement.1996
    [69]Colin J. Bates,Roger B. Turner.Fluid flow studies associated with a new electromagnetic flowmeter. Measurement.2003
    [70]Kenyon RL."Calculating Flow through Orifice Flowmeter,". internal report.1991
    [71]叶奇防,马善伟,陈江平等.电子膨胀阀R407C流量特性的实验研究[J].上海交通大学学报,2006,(08):1403-1406.
    [72]张玺.电子膨胀阀流量特性测试台的设计与开发[D].中国计量学院,2012.
    [73]刘永胜,徐志亮.电子膨胀阀变工况流量特性的试验研究[J].家电科技,2011,(03):76-77.
    [74]张玺,蒋庆,邵建文等.电子膨胀阀流量特性测试装置的研制[J].中国计量学院学报,2011,(04):313-316+331.
    [75]张川,马善伟,陈江平等.电子膨胀阀节流机构流量特性的实验研究[J].上海交通大学学报,2006,(02):291-296+300.
    [76]FESTO Products 2000 Valves/Control Technology.
    [77]William J.Simth,David J.Tomoney and Dermot P.Lynch. Emissions and Efficiency Comparision of Gasoline and LPG Fuels in a 1.4Litre Passenger Car Engine. SAE International Fall Fuels and Lubricants Meeting and Exhibition. Tulsa, Oklahoma, USA. SAE.1997-10-13.
    [78]罗齐江,董健,李格升等.LPG发动机台架试验中实际消耗量的测量[J].交通科技,2000,(04):45-47.
    [79]孙济美.天然气和液化石油气汽车[M].北京:北京理工大学出版社,1999,5
    [80]王继先,潘忠杰,冯能莲等.车用液化石油气(LPG)特性与改装部件功能(综述)[J].安徽农业大学学报,2000,(04):404-406.
    [81]国家质量技术监督局.GB 19159-2003车用液化石油气[S].北京:中国标准出版社,2003-05-23.
    [82]中华人民共和国国家质量监督检验检疫总局.GB20912-2007汽车用液化石油气蒸发调压器[S].北京:中国标准出版社,2007-04-13.
    [83]中华人民共和国国家质量监督检验检疫总局.GB/T17895-1999天然气汽车和液化石油气汽车词汇[S].北京:中国标准出版社,1999-11-01.
    [84]国家发展和改革委员会.QC/T745-2006液化石油气汽车橡胶管路[S].北京:中国标准出版社,2006-03-07.
    [85]中华人民共和国国家质量监督检验检疫总局.GB/T19239-2003液化石油气汽车专用装置的安装要求[S].北京:中国标准出版社,2003.
    [86]中华人民共和国国家质量监督检验检疫总局.GB/T18437.2-2009燃气汽车改装技术要求第2部分:液化石油气汽车[S].北京:中国标准出版社,2009-03-09.
    [87]国家发展和改革委员会.QC-T 697-2002液化石油气乘用车技术条件[S].北京:中国标准出版社,2002.
    [88]中华人民共和国国家质量监督检验检疫总局.GB18299-2001机动车用液化石油气气瓶集成阀[S].北京:中国标准出版社,2001-01-10.
    [89]中华人民共和国国家质量监督检验检疫总局.GB/T 18364.1-2001汽车用液化石油气加气口(螺旋式)[S].北京:中国标准出版社,2001-05-01.
    [90]中华人民共和国国家质量监督检验检疫总局.GB/T 18364.2-2005汽车用液化石油气加气口_第2部分:快插式[S].北京:中国标准出版社,2005-03-21.
    [91]钱人一.现代汽车发动机电子控制.上海交通大学出版社.1999
    [92]中华人民共和国工业和信息化部.QC/T809-2009车用燃气喷嘴[S].北京:中国标准出版社,2009-11-17.
    [93]中华人民共和国国家质量监督检验检疫总局.GB 25363-2010-T汽油机电磁阀式喷油器总成试验方法[S].北京:中国标准出版社,2010-11-10.
    [94]中华人民共和国国家质量监督检验检疫总局.GB 25362-2010-T汽油机电磁阀式喷油器总成技术条件[S].北京:中国标准出版社,2010-11-10.
    [95]ISO 15500-7 Road vehicles - Compressed natural gas(CNG) fuel system components-part 7:Gas injector. International Organization for Standardization, First edition[S].2002-09-01.
    [96]SAE Fuel Injector Study Group. SAEJ1827 Surface Vehicle Recommended Practice-Gasoline Fuel Injector[S]. SAE.1989-11.
    [97]张付军,黄英,葛蕴珊等.氧传感器参考电平自适应空燃比闭环控制方法研究[J].内燃机工程,2002,(05):68-71+75.
    [98]孟武强,甘海云,唐岚.基于UEGO传感器的空燃比自学习控制策略研究[J].车用发动机,2010,(06):33-36+41.
    [99]肖斌.降低继电器接触电阻的清洗工艺研究[J].低压电器,2010,(01):8-11.
    [100]曹锁胜,李金海,方立德.高输入阻抗的测试方法[J].实验技术与管理,2010,(01):37-39.
    [101]罗红娥,田小建,高博等.压电陶瓷驱动电源对不规则信号动态响应研究[J].压电与声光,2007,(02):185-186+189.
    [102]School C,etal.Modem integrated silicon Hall sensors. Sensor Review.1998
    [103]林绍华.霍尔传感器原理及在车速传感器中的应用[J].轻型汽车技术.2003(12)
    [104]陈超.汽车爆震传感器的性能测试及设计研究[D].武汉理工大学,2011.
    [105]彭生辉.内燃机爆震与爆震传感器的性能研究[D].合肥工业大学,2005.
    [106]简家文.钇稳定ZrO_2固体电解质氧传感器的研究[D].电子科技大学,2004.
    [107]周志宾,王季峰,辛明华.汽车氧传感器电压输出特性研究[J].传感器与微系统,2007,(05):30-32.
    [108]薛蕾,范翔,陶国良.比例电磁铁性能测试系统的研制[J].机电工程,2009,(02):67-69.
    [109]袁显举,姚立影,杜峰.比例电磁铁驱动的EGR阀设计及仿真[A].中国自动化学会系统仿真专业委员会、中国系统仿真学会仿真技术应用专业委员会、中国系统仿真学会离散系统仿真专业委员会Proceedings of 14th Chinese Conference on System Simulation Technology & Application(CCSSTA'2012)[C].中国自动化学会系统仿真专业委员会、中国系统仿真学会仿真技术应用专业委员会、中国系统仿真学会离散系统仿真专业委员会:,2012:6.
    [110]朱西成,林辉.无刷直流电动机功率驱动电路设计[J].现代电子技术.2009(14)
    [111]陈远,肖兵.基于DSP的喷油器电磁阀驱动电路设计[J].计算机测量与控制,2012,(04):1054-1057.
    [112]郭忠明.液化石油气气相对罐内液相计量的影响[J].油气储运,2004,(02):43-45+61-65.
    [113]Labrosse J J. MicroC/OS-Ⅱ——The Real-tim-Kernel(Second Edition)[M]. USA: CMP Book,2002.
    [114]刘淼,王田苗,魏洪兴等.基于uCOS-II的嵌入式数控系统实时性分析[J].计算机工程,2006,(22):222-224+226.
    [115]戴琪华,戴曙光,穆平安.uCOS实时响应问题的解决方法[J].上海理工大学学报,2002,(01):73-75.
    [116]FRESCALE.MC9S12DP512 Data Sheet Rev2.20. FRESCALE.2009-10.
    [117]FRESCALE.S12XCPUV1 Reference Manual FRESCALE 2005-03.
    [118]孙同景,陈桂友.Freescale 9S12 16位单片机原理及嵌入式开发技术[M].北京:机械工业出版社,2008.
    [119]Infineon. TLE4291E Data Sheet V1.1 Infineon.2012-12-19.
    [120]Infineon. TLE7263E Integrated HS-CAN, LIN, LDO and HS Switch. Infineon. 2007-06.
    [121]Texas Instruments.TPIC8101 Knock sensor interface. Texas Instruments Incorporated.2003-04.