用户名: 密码: 验证码:
全局耦合网络的特性及其混沌控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全局耦合映射(Globally Coupled Map, GCM)网络是一种特殊的混沌神经网络,网络的每个神经元的运动由混沌映射决定。网络有一类特殊的吸引子被称为“聚类冻结吸引子”(Cluster Frozen Attractors, CFA),可有效的用于信息处理和联想记忆等。本文通过对不同的GCM网络的研究,揭示了这一类型网络的整体性质;通过对网络的控制使得GCM网络可以用于动态联想记忆的应用。论文的主要工作有
     1.研究了几个混沌映射的性质。首先提出了新的混沌映射——三次Logistic映射,并对三次Logistic映射、正(余)弦映射和一种特殊非线性映射所构成的离散混沌迭代系统进行了研究,通过Lyapunov指数和分岔图刻画了系统的混沌行为,给出了混沌系统的参数域。其次从映射密度的角度揭示了它们的性质,指出不同的分岔参数导致分布密度的遍历性产生变化,并且影响密度函数的形状。最后从相关性分析、功率谱和均匀分布的卡方检验等方而研究了混沌映射的性质,说明了不同的混沌映射具有不同的混沌特性,为后文分析出它们构成的GCM网络打下基础。
     2.分析了网络的宏观和微观特性。首先针对不同GCM网络分析了网络的特性,指出聚类冻结吸引子是GCM网络的共性特征,不会随信息传递函数而改变。其次提出了两种延时耦合方法,分析了延时耦合方式下不同GCM网络的宏观特性,指出延时的引入不改变网络的聚类冻结吸引子,并且能够使得网络具有更多的动力学性质。最后研究了网络微观特性,从神经元的迭代方程出发,分析了不同耦合项对神经元运动产生的影响,结论指出GCM网络的混沌特性主要由每个神经元产生,而聚类特性主要受耦合项的影响。
     3.分析了网络的动力学特性。首先从数学角度说明了GCM网络平衡点的存在性,这一结论与网络的信息传递函数无关,适用于所有的GCM网络。其次给出了S-GCM网络和CL-GCM网络零平衡点渐近稳定的一个充分条件;并针对一维和二维情形分析了两个网络平衡点的稳定性和分岔行为,仿真结果说明了理论分析的正确性。
     4.研究了GCM网络的两种控制方法和网络的应用。提出的第一种方法为反馈控制方法,这种方法不需利用外部信息,而是将系统两次运行的状态之差反馈回系统,通过调节动态参数的值实现了网络的不动点和周期控制,说明了这种方法适用于绝大部分的GCM模型。第二种控制方法是对Ishii方法的一个改进,通过调整参数阈值实现GCM网络的控制,但这种方法不适用于所有的GCM网络。在两种控制模式中都说明了延时耦合GCM网络具有比常规耦合GCM网络更好的性质。最后利用改进的参数调制控制方法研究了网络的联想记忆,指出了CL-GCM网络和SI-GCM实现了混沌神经网络的动态联想记忆,网络既可以输出固定模式,也可以输出包含正确模式的周期模式。
A neural network called globally coupled map (GCM) model is a special kind of chaotic neural network composed of chaotic neurons, whose dynamical behavior depend on the chaotic map. It has cluster frozen attractors (CFA) which can be taken to represent information, therefore it can be used to information processing and associative memory and so on. Motivated by creating and developing GCM model to be effectively applied to information processing, we investigate the dynamic behaviors of several different GCM models and apply the networks under certain control methods to implement dynamic associative memory.
     The contributions can be concluded as four main points listed as follows:
     1. The characteristics of several chaotic map models are investigated. First, discrete chaotic systems iterated by a newly presented cubic Logistic map, sinusoidal (cosine) map and a special nonlinear map are considered. Their chaotic dynamic behaviors are demonstrated by calculating Lyapunov exponents and showing bifurcation diagrams, and their parameter regions are also given. Second, their features are illustrated from the point view of distribution of probability density. It is observed that both ergodicity of distribution and the shape of probability density function vary according to different bifurcation parameters. At last, different characteristics of different chaotic maps are developed from the view of relativity, power spectrum and chi-square test of mean distribution and so on. All the analyses lay the foundations for the improved GCM models iterated by the chaotic maps above.
     2. The macro and micro characteristics of the networks are analyzed. First, it indicates that cluster frozen attractor is a common feature of different GCM and it doesn't change according to the variance of information transfer function. Second, the macro features of different GCM with two newly presented ways of time-delay coupling are illustrated. It can be seen that the cluster frozen attractor doesn't change with the introduction of time delay and the networks exhibit richer running behaviors. Finally, the micro features of the networks and the influence on the neurons' behaviors by coupling are investigated from the view of iteration of neurons. It can be concluded that the chaotic dynamics of GCM networks originate from every neuron's chaotic running behavior and the ways of coupling mainly influence clusters.
     3. The dynamics of GCM networks are demonstrated. First, the existence of equilibrium points is proved, which has nothing to do with the information transfer functions and is fit for all GCM models. Second, sufficient conditions on the asymptotical stability of zero equilibrium point for S-GCM and CL-GCM are given respectively. Furthermore, the stability of equilibrium points and bifurcation for one and two dimensional systems are analyzed. Numerical simulation results demonstrate the correctness and effectiveness of the analysis above.
     4. Two control methods and the applications of the GCM model are given. On the one hand, GCM models are controlled by a kind of feedback control method which sends deviations of the states back instead of introducing outer information to realize the control of fixed points and periods by adjusting parameters. It is indicated that the control method is fit for most of GCM models. On the other hand, a control method presented as an improvement of Ishii's parameter modulated control method is given to control GCM models by adjusting parameter threshold. Unfortunately, it isn't suitable for all GCM models. However, it is delighted to find that more excellent characteristics are exhibited by time-delay GCM model than by common GCM model. Finally, the systems' associative memory is illustrated by the improved parameter modulated control method. It suggests that CL-GCM and SI-GCM can not only output fixed patterns but also output periodical patterns which contain correct pattern. So the associative memory is successful.
引文
[1]丁世飞.人工智能.北京:清华大学出版社,2011
    [2]Aihara K, Matsumoto G, Chaotic oscillations and bifurcation in squid giant axons, In A. V. Holden (Ed.), Chaos, Princeton University Press, Princeton,1986
    [3]Matsumoto G, Aihara K, Hanyu Y, Takahashi N, Yoshizawa S, Nagumo J. Chaos and phase locking in normal squid axons. Physics Letters A,1987, 123:162-166P
    [4]Degn H, Holden A V,Olsen L F (Eds.), Chaos in Biological Systems. Plenum Press, New York,1987
    [5]Inoue M, Nagayoshi A. A chaos neuro-computer. Physics Letters A,1991,158:373-376P
    [6]Kaneko K, Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements. Physica D,1990,41:137-172P
    [7]Kuramoto Y. Collective synchronization of pulse-coupled oscillators and excitable units. Physica D,1991,50:15-30P
    [8]Lumer E D, Huberman B A. Binding hierarchies:A basis for dynamic perceptual grouping. Neural Computing,1992,4:341-355P
    [9]Liu X D, Xiu C B. A novel hysteretic chaotic neural network and its applications. Neurocomputing,2007,70:2561-2565P
    [10]Sun M, Zhao L, Cao W, Xu Y Q, Dai X F, Wang X X. Novel hysteretic noisy chaotic neural network for broadcast scheduling problems in packet radio networks. IEEE Transactions on Neural Networks 2010,21:1422-1433P
    [11]阮炯,顾凡及,蔡志杰著.神经动力学模型、方法和应用.北京:科学出版社,2002
    [12]Aihara K, Takabe T, Toyoda M. Chaotic Neural Networks. Physice Letters A,1990,144(6-7):333-340P
    [13]Adachi M, Aihara K. Associative Dynamics in a Chaotic Neural Network. Neural Networks,1997,10(1):83-98P
    [14]Chen L, Aihara K. Global searching ability of chaotic neural networks. IEEE Transactions on Circuits and Systems-I:fundamental theory and applications,1999,46(8):974-993P
    [15]Aihara K, et al. Chaotic Neural Networks, Physics Letters A,1999, 11(41),333-339P
    [16]Kwok T, Smith K A. A unified framework for chaotic neural network approaches to combinatorial optimization. IEEE Transactions on Neural Networks,1999,10(4):978-981P
    [17]Kwok T, Smith K A. Experiment analysis of chaotic neural network models for combinatorial optimization under a unifying framework. Neural Networks,2000,13:731-744P
    [18]Hayakawa Y, Marumoto A, Sawada Y. Effects of the Chaotic Noise on the Performance of a Neural Network Model for Optimization Problems. Physical Review E,1995,51(4):2693-2696P
    [19]Kaneko K, Globally coupled circle map. Physica D,1991,54:5-19P
    [20]Shuai J, Chen Z, Liu R, Wu B. Self-evolution neural model. Physics Letters A,1996,221:311-316P
    [21]修春波,徐勘.基于混沌算子网络的时间序列多步预测研究.物理学报.2010,59(11):7650-7656页
    [22]房育栋,余英林.混沌神经元动力学分析.中国神经网络学术大会论文集.安徽合肥.1993:199-203页
    [23]Nakagawa M. A chaos associative model with a sinusoidal actiation function.Chaos, Solitons & Fractals.1999,10(9):1437-1452P
    [24]Wang L. Oscillatory and chaotic dynamics in neural networks under varying operating conditions. IEEE Transactions on neural networks,1996,7(6):1382-1387P
    [25]Potapov A, Ali M K. Robust chaos in neural networks. Physics Letters A,2002,77:310-322P
    [26]Algis Garliauskas. Analysis of chaos phenomena in strong non-linear synapseneural networks. IEEE International Fuzzy Systems Conference Proceedings. Seoul, Korea,1999:438-442P
    [27]Zerkaoui S, Druaux F, Leclercq E, Lefebvre D. Stable, oscillatory, and chaotic regimes in the dynamics of small neural networks with delay. Neural Networks,2009,22:702-717P
    [28]Zhou Z, Wu J. Stable periodic orbits in nonlinear discrete-time neural networks with delayed feedback. Computers & Mathematics with Applications,2003,45:935-942P
    [29]Liu X, Cao J. On periodic solutions of neural networks via differential inclusions. Neural Networks,2009,22:329-334P
    [30]Kaslik E, Sivasundaram S. Multiple periodic solutions in impulsive hybrid neural networks with delays. Applied Mathematics and Computation,2011,217:4890-4899P
    [31]Kushibe M, Liu Y, Ohtsubo J, Associative memory with spatiotemporal chaos control, Phys. Rev. E.1996,53:4502-4508P
    [32]Mizutani S, Sano T, Uchiyama T, Sonehara N. Controlling chaos in chaotic neural networks. Electron. Commun. Jpn. Part 3,1998,81:73-82P
    [33]Nakamura K, Nakagawa M. On the associative model with parameter controlled chaos neurons. J. Phys. Soc. Jpn.,1993,62:2941-2955P
    [34]Zhang H G, Ma T D, Huang G B, Wang Z L, Robust global gxponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control, IEEE Trans. Syst., Man, Cybern. B, Cybern. 2010,40:831-8441'
    [35]Xia M, Fang J A, Tang Y, Wang Z, Dynamic depression control of chaotic neural networks for associative memory. Neurocomputing,2010,73:776-783P
    [36]He G, Cao Z, Zhu P, Ogura H, Controlling chaos in a chaotic neural network. Neural Networks,2003,16:1195-1200P
    [37]He G, Shrimali M D, Aihara K, Threshold control of chaotic neural network. Neural Networks,2008,21:114-121P
    [38]He G, Chen L, Aihara K, Associative memory with a controlled chaotic neural network. Neurocomputing,2008,71:2794-2805P
    [39]唐运虞,刘向东,修春波.一种新型暂态混沌神经网络及其在函数优化中的应用.计算机工程与科学,2006,28(3):116-118页
    [40]石园丁,王建华.基于混沌神经网络的多目标数据关联.华东船舶工业学院学报(自然科学版),2002,16(4):38-42页
    [41]李薪宇,吕炳朝.暂态混沌神经网络中的模拟退火策略优化.计算机应用,2005,25(10):2410-2412页
    [42]Kiranyaz S, Ince T, Yildirim A, Gabbou M. Evolutionary artificial neural networks by multi-dimensional particle swarm optimization. Neural Networks,2009,22:1448-1462P
    [43]Kordik P, Koutnik J, Drchal J, Kovarik O, Cepek M, Snorek M. Meta-learning approach to neural network optimization. Neural Networks,2010,23:568-582P
    [44]Lee S, Park J. Dual-mode dynamics neural network for combinatorial optimization. Neurocomputing,1995,8:283-304P
    [45]余群明,王耀南.类噪声混沌编码在图像联想记忆中的应用研究.系统工程与电子技术.2002,24(11):16-18,21页
    [46]李克,杨绿溪,何振亚.混沌神经网络用于灰度图像的联想记忆.应用科学学报.1999,17(3):296-301页
    [47]Rosandich R G. HAVNET:A new neural network architecture for pattern recognition. Neural Networks,1997,10:139-151P
    [48]Artyomov E, Pecht 0 Y. Modified high-order neural network for invariant pattern recognition. Pattern Recognition Letters.2005,26:843-851P
    [49]Mendoza 0, Melin P, Castillo 0. Interval type-2 fuzzy logic and modular neural network for face recognition applications. Applied Soft Compution,2009,9:1377-1387P
    [50]Jiang J. Image compression with neural networks-A syrvey. Signal Processing:Image Communication.1999,14:737-760P
    [51]Khaled Ahmed Nagaty. On learning to estimate the block directional image of a fingerprint using a hierarchical. Neural Networks,2003,16:133-144P
    [52]Pajares G, Guijarro M, Ribeiro A. A Hopfield neural network for combining classigiers applied to textured images. Neural Networks,2010,23:144-153P
    [53]郑丽颖.混沌神经网络及模糊混沌神经网络的研究与应用.哈尔滨工程大学博士学位论文.2002,11
    [54]张建民.协作型模糊混沌神经网络研究.哈尔滨工程大学博士学位论文.2006,4
    [55]Zhang J, Wang K. Research about the Cooperation Fuzzy Chaos Neural Network. Proceedings of the World Congress on Intelligent Control and Automation. Dalian, China, June,2006,vol:2974-2978P
    [56]张建民,王科俊.永磁同步电动机的模糊混沌神经网络建模.中国电机工程学报,2007,27(3):7-11页
    [57]Wang K, Ye X, Feng W. Study of the Fusion among Fuzzy, Chaos and Neural Network. IEEE Proceedings of the 2004 International Conference on Intelligent Mecharonics and Automation. Chengdu, P. R. China.2004:500-504P
    [58]Tang M, Wang K, Zhang Y. A Research on Chaotic Recurrent Fuzzy Neural Network and Its Convergence. IEEE International Conference on Mechatronics and Automation. China, Harbin,2007:682-687P
    [59]Wang K, Tang M, Zhang Y. The study of fuzzy chaotic neural network based on chaotic method.哈尔滨工程大学学报,2006,Vol.27.Suppl:64-70页
    [60]唐墨.新型模糊混沌神经网络研究.哈尔滨工程大学博士学位论文.2008
    [61]张松华,何怡刚.基于遗传小波神经网络的RFID调制识别.计算机工程.2011,37(2):191-193页
    [62]潘永湘,屈省源,林隧芳.基于免疫进化算法的小波神经网络的混沌优化设计.西安理工大学学报,2011,20(3):259-262页
    [63]李凤云,严德昆.免疫优化神经网络对倒立摆的控制.控制工程.2008,15:126-128页
    [64]罗晓曙.混沌控制同步的理论方法及其应用.广西:广西师范大学出版社,2007
    [65]陈关荣,汪小帆.动力系统的混沌化——理论、方法和应用.上海:上海交通大学出版社,2006
    [66]李士勇编著.模糊控制、神经网络控制和智能控制论.第二版.哈尔滨:哈尔滨工业大学出版社,1998
    [67]陈丰苏.混沌控制及其应用.北京:中国电力出版社出版社,2006.
    [68]邹恩,李祥飞,陈建国.混沌控制及其优化应用.长沙:国防科技大学出版社,2002
    [69]张化光,王智良,黄玮.混沌系统的控制理论.沈阳:东北大学出版社,2003
    [70]王明军,混沌控制、同步及在保密通信中的应用.大连理工大学博士论文.2010,7
    [71]Zhou C, Chen T, Huang W. Chaotic neural network with nonl inear self feedback and its application in optimization. Neuraocomputing,1997,14:209-222P
    [72]杨立江,陈天论,黄五群.暂态混沌动力学在神经网络优化计算中的应用.南开大学学报(自然科学版),1999,32:99-103页
    [73]A. Potapove, M. Kali. Robust chaos in neural networks. Physics Letters A,2000,277:310-322P
    [74]徐耀群,孙明,张家海.小波混沌神经网络及其在优化计算中的应用.6th World congress on intelligent control and automation.2006:3004-3009页
    [75]Chen S, Shih C. Transiently chaotic neural networks with piecewise linear output functions. Chaos, Solitons & Fractals,2009,39(2):717-730P
    [76]Liu X, Xiu C. A novel hysteretic chaotic neural network and its applications. Neurocomputing,2007,70:2561-2565P
    [77]Xu Y, Sun M, Duan G. Wavelet chaotic neural networks and their application to optimization problems. Lecture Notes in Computer Science,2006, 3791:379-384P
    [78]Xiu C, Liu X, Tang Y, et al. A novel network of chaotic elements and its application in multi-valued associative memory. Physics Letters A,2004, 331(3-4):217-224P
    [79]余群明,王耀南.时空混沌控制在联想记忆中的应用.电子学报,2001, 29(5):678-681P
    [80]E. Ott, Grebogi.C, J. A. Yorke. Controlling chaos, Phys. Tev. Lett.,1990, 64(11):1196-1199P
    [81]L. M. Pecora, T.L.Carroll. Synchronization in chaotic systems. Phys. Tev. Lett.,1990,64(8):821-827P
    [82]赵光宙.现代控制理论.北京:机械工业出版社,2010
    [83]刘豹,唐万生.现代控制理论.北京:机械工业出版社,2006
    [84]Salarieh H, Alasty A, Adaptive chaos synchronization in Chua's systems with noisy parameters. Math. Comput. Simulat.,2008,79:233-241P
    [85]Ge Z M, Li S C, Li S Y, Chang C M, Pragmatical adaptive chaos control from a new double van der Pol system to a new double Duffing system. Appl. Math. Comput.,2008,203:513-522P
    [86]窦春霞,李鑫滨,袁石文.耦合时空混沌的模糊混沌神经网络鲁棒自适应控制.应用力学学报,2005,22(3):395-399页.
    [87]王健安,刘贺平.不同超混沌系统的自适应修正函数投影.物理学报,2010,59(4)2265-2270页
    [88]Park J H. Controlling chaotic systems via nonlinear feedback control. Chaos, Solitons & Fractals,2005,23:1049-1054P
    [89]Chen H K. Global chaos synchronization of new chaotic systems via nonlinear control. Chaos, Solitons & Fractals,2005,23:1245-1251P
    [90]朱志宇,刘维亭,蔡立勇.基于输出延迟反馈方法的船舶电力系统混沌控制.船舶工程.2009,31(6):36-40页
    [91]高继华,谢玲玲,彭建华.利用速度反馈方法控制时空混沌.物理学报.2009,58(8):5218-5222页
    [92]赵秋英,王鸥,张春蕊.线性反馈控制混沌的分析.东北林业大学学报.2009,37(6):117-119页
    [93]Tang R A, Liu Y L, Xue J K. An extended active control for chaos synchronization, Physcal Letter A,2009,373:1449-1454P
    [94]Njah A N, Synchronization via active control of identical and non-identical chaotic oscillators with external excitation. J. Sound Vib.,2009,327: 322-332P
    [95]张群力.环状脉冲控制下的多个混沌系统同步.控制理论与应用.2010,27(2):226-232页
    [96]黄玮,张化光.一类混沌系统的同步脉冲控制.东北大学学报(自然科学 版).2004,25(11):1027-1029页
    [97]桑海波,贺凯芬.外加偏高斯噪声控制时空混沌.北京师范大学学报(自然科学版),2007,43(4):410-413页.
    [98]张旭,沈柯.耦合映像格子中时空混沌的控制.物理学报,2001,50(4):624-627页
    [99]吴忠强,岳东,许世范.Chua混沌系统的一种模糊控制器设计——LMI法.物理学报,2002,51(6):1193-1196页
    [100]Hu G, Qu Z. Controlling spatiotemporal chaos in coupled map lattice systems. Physical Review Letters,1995,72:68-71P
    [101]雷利华,马冠一,蔡晓静,施浒立.基于Chebyshev映射的混沌序列研究.计算机工程,2009,35(24):4-6页
    [102]何国光,曹志彤.混沌神经网络的控制.物理学报,2001,50:2103-2107P
    [103]何国光等.混沌神经网络的延时反馈控制研究。物理学报,2006,55:1040-1049P
    [104]lshii S, Fukumizu K, Watanabe S. A network of chaotic elements for information processing. Neural Networks,1996,9:25-40P
    [105]Ishii S, Sato M. Associative memory based on parametrically coupled chaotic elements. Physica D,1998,121:344-366P
    [106]Tang X, Zheng L. A new parameter control method for S-GCM. Pattern Recognition Letters 2005,26:939-942P
    [107]吕金虎,陆君安,陈士华.混沌时间序列分析分析及其应用.武汉:武汉大学出版社,2002
    [108]He G, Shrimali M D, Aihara K. Threshold control of chaotic neural network, Neural Networks,2008,21:114-121P
    [109]Lasalle J P, The stability of dynamical systems. Society for Industrial and Applied Mathematics,1976
    [110]Robinson C. Dynamical systems:stability, symboic dynamics, and chaos. CRC Press, Boca Raton, London, New York, Washington, D. C.,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700