用户名: 密码: 验证码:
不锈钢表面有序介孔碳基薄膜的制备及其性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属双极板作为燃料电池的关键部件,在燃料电池工作过程中因电化学腐蚀,表面腐蚀产物不断增厚,使双板板的接触电阻增大,导致部分电能转换为热能,从而降低燃料电池能量转换的效率。通常在金属双极板表面涂覆一层导电防护膜,来解决或最小化上述问题的影响。本论文首次尝试将有序介孔碳制成薄膜应用于质子交换膜燃料电池不锈钢双极板表面防护,提出薄膜成分选择的新思路,通过在纳米尺度上进行多组分的协同组装对介孔碳膜进行改性,探讨薄膜微观结构形成机制,在模拟质子交换膜燃料电池酸性溶液中研究有序介孔碳基薄膜的电化学特性。论文的主要内容介绍如下:
     1、结合溶剂挥发诱导自组装法和旋涂法,以嵌段共聚物F127为模板剂,酚醛树脂为碳源,在304不锈钢表面直接制备有序介孔碳膜。结构测试显示,有序介孔碳膜的比表面积在500~650m2g~(-1),孔容0.4~0.5cm~3g~(-1),介孔比例大于70%,说明其具有较好的介孔结构。相比于不锈钢裸片,涂覆有序介孔碳膜后,腐蚀电位提高了100~400mV,腐蚀电流下降了1个数量级,模拟质子交换膜燃料电池的恒电位极化时,腐蚀电流密度可低至0.464μA cm~(-2),但此时接触角仅为71°,电导率为0.0043S m~(-1)。进一步提高热处理温度,会引起骨架的收缩,介孔碳膜局部产生裂痕,在极化测试过程中极不稳定,导致电荷传递阻抗的降低和腐蚀产物扩散速率加快。针对纯介孔碳膜的缺点,我们尝试了下面4种改性途经。
     2、在有序介孔碳膜中引入刚性的二氧化硅组分,强化介孔碳膜的热稳定性和防腐性能。通过三元共组装制备介孔碳-二氧化硅复合膜,在400到700℃的热处理过程中,其孔径收缩了12.2%,较纯介孔碳收缩14.7%,明显降低,扫描电镜测试显示复合膜表面未见裂痕。电化学测试表明,经二氧化硅复合后的有序介孔碳膜腐蚀电流密度(0.0975μAcm~(-2))减小为纯介孔碳膜的五分之一,碳化温度达700℃时恒电位极化曲线也非常稳定,说明高温热处理后碳-二氧化硅薄膜的致密性依然较好。
     3、在介孔碳中分别掺杂B、P、N等元素形成杂化介孔碳,以改善介孔碳的石墨化程度和防腐性能。在高温热处理时,这些元素有利于酚醛树脂由无定形向石墨化转变,提高了涂层的导电能力和疏水性,其中硼酸的加入还能一定程度上提高了薄膜的热稳定性。如热处理温度为500℃时,掺杂B、P、N的介孔碳膜电导率分别可达0.15、0.21、0.029S m~(-1),对应的接触角分别为86、91、80°,显著高于纯介孔碳膜。恒电位极化测试显示,杂化介孔碳膜在0.5M H2SO4中具有良好的稳定性,动电位极化测试其腐蚀电流密度分别为0.285、0.0299、0.166μA cm~(-2),表现出较好的防腐性能。
     4、将含W或Mo元素的前驱体添加于酚醛树脂前驱体中,分别制备有序介孔碳-钨复合薄膜和碳-钼复合薄膜。由于钨和钼化合物具有催化石墨化效应,介孔碳膜的石墨化程度和电导率随着这两种元素的含量的提高而增大。热处理温度为500℃时,其电导率分别可达0.82和0.11S m~(-1)。介孔骨架的特殊空间结构,引导钨化合物以规则的棒状形式生长,该棒状物主要由氧化钨和碳化钨组成。动电位极化测试结果显示碳-钨复合薄膜最低的腐蚀电流密度为0.0559μAcm~(-2)。有序介孔碳-钼薄膜具有非常致密的结构,钼主要以氧化钼和碳化钼的复合形式均匀的嵌入在碳壁中,粒径约4nm,在0.5M H_2SO_4中的自腐蚀电位为277mV,腐蚀电流密度仅有0.0273μAcm~(-2)。
     5、为了同时增强介孔碳膜的疏水性和电导率,在制备有序介孔碳的过程中原位加入高石墨化、高导电的石墨烯或碳纳米管,获得了高电导率、且具有微纳米粗糙结构的复合膜。其电导率分别0.35和0.41S m~(-1),接触角为90和96°,在模拟PEMFC工作环境下的测试的自腐蚀电流密度分别为0.140和0.008μAcm~(-2),表现出优异的防腐性能。
Metal bipolar plates develop a passivating oxide layer on the surface that does protect the bulkmetal from progression of corrosion, but also cause an undesirable effect of a high surface contactresistance, especially as the passivating oxide layer is thickened during operation. This causes thedissipation of some electric energy into heat and a reduction in the overall efficiency of the fuel cellpower stack. The problems outlined above may be overcome or minimized by protecting metalbipolar plates from the corrosive fuel cell operating conditions with coatings which should beconductive and adhere to the base metal without exposing the substrate to corrosive media. In thispaper, ordered mesoporous carbon films are first used as protective coating of stainless steel bipolarplates. Ordered mesoporous carbon films are modified by cooperative assembly with othercomponents in nanometer scale. We discuss the formation mechanism of microstructures of compositefilms, put forward a new idea to select an appropriate component as modifier, and analyse theprotective properties against corrosion with samples exposed to sulfuric acid solution to simulateproton exchange membrane fuel cells environment. The main contents are as follows:
     1. Ordered mesoporous carbon film is prepared on the304stainless steel by the combination ofsolvent evaporation induced self assembly method and spin-coating method, with block copolymerF127as template agent, phenolic resin as carbon source. Structure tests display, ordered mesoporouscarbon films have a high specific area of500~650m2g~(-1), pore volume of0.4~0.5cm~3g~(-1), pore ratioof greater than70%. Compared with304stainless steel, ordered mesoporous carbon film makescorrosion potential shifted to positive direction by100~400mV, corrosion current decreased by1order of magnitude, potentiostatic polarization process in the operation pressure of a fuel cell is stable.The corrosion current density can be as low as0.464μA cm~(-2), but the contact angle is71°and theelectrical conductivity is0.0043S m~(-1). As the heat treatment temperature further rises, the structure ofordered mesoporous carbon film would shrink and generate some cracks, which could lead to theunstabitily of the polarized process, and reduce the charge transfer impedance, speed the diffusion rateof corrosion product. In order to improve the properties of pure mesoporous carbon film, we try to usefour method to modify mesoporous carbon.
     2. The rigid silica is introduced in the ordered mesoporous carbon film to strengthen the thermalstability and corrosion resistance. The results show that the mesoporous carbon-silica composite filmhas a highly ordered2D hexangular mesoporous structure. From400to700℃, the bore diameter is contracted by12.2%, whereas the pure mesoporous carbon is contracted by14.7%. Scanning electronmicroscope test shows that there is not crack in the surface of composite film. Electrochemical testshows that, the mesoporous carbon-silica composite film has a corrosion current density (0.0975μAcm~(-2)), which is1/5of the pure mesoporous carbon film. After heat treatment of700℃, potentiostaticpolarization curve of composite film is also very stable, the results show that composite film still has adensity structure after heat treatment of high temperature.
     3. Ordered mesoporous hybrid carbon films are prepared by tri-assembly with B, P, Ncompounds as dopant source. During the course of high temperature heat treatment, these elements isin favor of transition of phenolic resin from amorphous state to graphite, and can improve theconductivity and hydrophobicity of mesoporous carbon film. Boracic acid also can improve thethermal stability of the film. For example, when heating temperature is500℃, the conductivity of B,P, N doped mesoporous carbon films can reach to0.15,0.21,0.029S m~(-1), the contact angles are86,91,80°, respectively, which are significantly higher than that of pure mesoporous carbon film.Potentiostatic polarization test shows, hybrid mesoporous carbon film in0.5M H_2SO_4has a goodstability. Potentiodynamic polarization tests show that the corrosion current density is0.285,0.0299,0.166μA cm~(-2), respectively, which means better anti-corrosion properties.
     4. Ordered mesoporous carbon-tungsten(molybdenum) composite films are prepared by mixingthe the precursor of W or Mo and phenolic resin. As a result of the catalytic graphitization effect oftungsten and molybdenum compounds, the degree of graphitization and conductivity of mesoporouscarbon film can increase with the content of the two element. When heating temperature is500℃,their conductivity reaches to0.82and0.11S m~(-1), respectively. Due to the confinement effect ofmesoporous structure, tungsten compounds, composed of tungsten oxide and tungsten carbide, aregrowing into rodlike. Potentiodynamic polarization shows that the lowest corrosion current densityof the mesoporous carbon-tungsten composite film is0.0559μA cm~(-2). Ordered mesoporouscarbon-molybdenum composite films have very dense structure, composed of molybdenum oxide andmolybdenum carbide composite. The molybdenum compounds are embedded in the mesoporouscarbon walls, with a particle size of4nm. In the0.5M H_2SO_4, the corrosion potential and corrosioncurrent density of mesoporous carbon-molybdenum composite films are277mV and0.0273μA cm~(-2),respectively.
     5. In order to enhance hydrophobic property and conductivity of mesoporous carbon film,conductive graphene or carbon nanotubes are added to ordered mesoporous carbon in situ. Theconductivity is0.35and0.41S m~(-1), the contact angles are90°and96°, respectively. The corrosion current density is0.140μA cm~(-2) and0.008μA cm~(-2), in simulated work environment of PEMFC.
引文
[1] Everett D H. IUPAC manual of symbols and terminology [J]. Pure Appl. Chem.,1972,31:578~585.
    [2] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared withliquid crystal template [J]. J. Am. Chem. Soc.,1992,114(27):10834~10843.
    [3] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesizedby a liquid-crystal template mechanism [J]. Nature,1992,359:710~712.
    [4] Soler-illia G J D, Sanchez C, Lebeau B, et al. Chemical strategies to design textured materials:From microporous and mesoporous oxides to nanonetworks and hierarchical structures [J]. Chem.Rev.,2002,102(11):4093~4138.
    [5] Firouzi A, Kumar D, Bull L M,et al. Cooperative organization of inorganic-surfactant andbiomimetic assemblies [J]. Science,1995,267(5201):1138~1143.
    [6] Monnier A, Schuth F, Huo Q, et al. Cooperative formation of inorganic-organic interfaces in thesynthesis of silicate mesostructures [J]. Science,1993,261(5126):1299~1303.
    [7] Huo Q S, Margolese D I, Ciesla U, et al. Generalized synthesis of periodic surfactant inorganiccomposite-materials [J]. Nature,1994,368(6469):317~321.
    [8] Chen C Y, Burkett S L, Li H X, et al. Studies on mesoporous materials II. Synthesis mechanism ofMCM-41[J]. Microporous Mater,1993,2(1):27~34.
    [9] Sun T, Ying J Y. Synthesis of microporous transition-metal-oxide molecular sieves by asupramolecular templating mechanism [J]. Nature,1997,389:704~706.
    [10] Huo Q S, Leon R, Stucky G D. Mesostructure design with gemini surfactants: supercageformation in a three-dimensional hexagonal array [J]. Science,1995,268(5215):1324~1327.
    [11] Huo Q S, Margolese D I, Stucky G D. Surfactant control of phases in the synthesis ofmesoporous silica-based materials [J]. Chem. Mat.,1996,8(5):1147~1160.
    [12] Wan Y, Zhao D Y. On the controllable soft-templating approach to mesoporous silicates. Chem.Rev.,2007,107(7):2821~2860
    [13] Attard G S, Glyde J C, G ltner C G. Liquid-crystalline phases as templates for the synthesis ofmesoporous silica [J]. Nature,1995,378:366~368.
    [14] Tanev P T, Chibwe M, Pinnavaia T J, et al. Titanium-containing mesoporous molecular-sieves forcatalytic-oxidation of aromatic-compounds [J]. Nature,1994,368:321~323.
    [15] Kim S S, Zhang W Z, Pinnavaia T J. Ultrastable mesostructured silica vesicles [J]. Science,1998,282(5392):1302~1305.
    [16] Ryoo R, Kim J M, Ko C H, et al. Disordered molecular sieve with branched mesoporous channelnetwork [J]. J. Phys. Chem.,1996,100(45):17718~17721.
    [17] Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica withperiodic50to300angstrom pores [J]. Science,1998,279(5350):548~552.
    [18] Zhao D Y, Huo Q S, Feng J L, et al. Nonionic triblock and star diblock copolymer and oligomericsurfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J.Am. Chem. Soc.,1998,120(24):6024~6036.
    [19] Yu C Z, Yu Y H, Zhao D Y. Highly ordered large caged cubic mesoporous silica structurestemplated by triblock PEO-PBO-PEO copolymer [J]. Chem.Commun.,2000,(7):575~576.
    [20] Liu X Y, Tian B Z, Yu C Z, et al. Room temperature synthesis in acidic media of large porethree-dimension bicontinuous mesoporous silica with Ia3d symmetry [J]. Angew. Chem. Int. Ed.,2002,41(20):3876~3878.
    [21] Che S, Liu Z, Ohsuna T, et al. Synthesis and characterization of chiral mesoporous silica [J].Nature,2004,429(6989):281~284.
    [22] Vinu A, Srinivasu P, Miyallara M, et al. Preparation and catalytic performances of ultralarge-poreTiSBA-15mesoporous molecular sieves with very high Ti content [J]. J. Phys. Chem. B,2006,110(2):801~806.
    [23] Asefa T, MacLachan M J, Coombs N, et al. Periodic mesoporous organosilicas with organicgroups inside the channel walls [J]. Nature,1999,402:867~871.
    [24] Tian B Z, Liu X Y, Tu B, et al. Self-adjusted synthesis of ordered stable mesoporous minerals byacid–base pairs [J]. Nat. Mater.,2003,2:159~163.
    [25] Nelson P A, Elliott J M, Attard G S, et al. Mesoporous nickel/nickel oxide-a nanoarchitecturedelectrode [J]. Chem. Mater.,2002,14(2):524~529.
    [26] Yang P D, Deng T, Zhao D Y, et al. Hierarchically ordered oxides [J]. Science,1998,282(5397):2244~2246.
    [27] Shi Y F, Wan Y, Liu R L, et al. Synthesis of highly ordered mesoporous crystalline WS2andMoS2via a high-temperature reductive sulfuration route [J]. J. Am. Chem. Soc.,2007,129(30):9522~9531.
    [28] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves viatemplate-mediated structural transformation [J]. J. Phys. Chem. B,1999,103(37):7743~7746.
    [29] Kyotani T. Synthesis of various types of nano carbons using the template technique [J]. Bull.Chem. Soc. Jpn.,2006,79(9):1322~1337.
    [30] Wan Y, Yang H F, Zhao D Y.“Host-guest” chemistry in the synthesis of ordered nonsiliceousmesoporous materials [J]. Acc. Chem. Res.,2006,39(7):423~432.
    [31] Joo S H, Choi S J, Oh I, et al. Ordered nanoporous arrays of carbon supporting high dispersionsof platinum nanoparticles [J]. Nature,2001,412:169~172.
    [32] Jun S, Joo S H, Ryoo R, et al. Synthesis of new, nanoporous carbon with hexagonally orderedmesostructure [J]. J. Am. Chem. Soc.,2000,122(43):10712~10713.
    [33] Lee J, Yoon S, Hyeon T, et al. Synthesis of a new mesoporous carbon and its application toelectrochemical double-layer capacitors [J]. Chem. Commun.,1999,21:2177~2178.
    [34] Ryoo R, Joo S H, Jun S, et al. In Zeolites and mesoporous materials at the dawn of the2lstcentury-Proceedings of the13th International Zeolite Conference [C], Montpellier, France.2001.
    [35] Ryoo R, Joo S H, M. Kruk, et al. Ordered mesoporous carbons [J]. Adv. Mater.,2001,13(9):677~681.
    [36] Moriguchi I, Ozono A, Mikuriya K, et al. Micelle-templated mesophases of phenol-formaldehydepolymer [J]. Chem. Lett.,1999,28(11):1171~1172.
    [37] Lee K T, Oh S M. Novel synthesis of porous carbons with tunable pore size bysurfactant-templated sol-gel process and carbonisation [J]. Chem. Commun.,2002,(22):2722~2723.
    [38] Liang C D, Hong K L, Guiochon G A, et al. Synthesis of a large-scale highly ordered porouscarbon film by self-assembly of block copolymers [J]. Angew. Chem. Int. Ed.,2004,43(43):5785~5789.
    [39] Wan Y, Shi Y F, Zhao D Y. Supramolecular aggregates as templates: ordered mesoporouspolymers and carbons [J]. Chem. Mater.,2008,20(3):932~945.
    [40] Tanaka S, Nishiyama N, Egashira Y, et al. Synthesis of ordered mesoporous carbons withchannel structure from an organic-organic nanocomposite [J] Chem. Commun.,2005,(16):2125~2127.
    [41] Meng Y, Gu D, Zhang F Q, et al. Ordered mesoporous polymers and homologous carbonframeworks: amphiphilic surfactant templating and direct transformation [J]. Angew. Chem. Int.Ed.,2005,44(43):7053~7059.
    [42] Meng Y, Gu D, Zhang F Q, et al. A family of highly ordered mesoporous polymer resin andcarbon structures from organic-organic self-assembly [J]. Chem. Mater.,2006,18(18):4447~4464.
    [43] Huang Y, Cai H Q, Yu T, et al. Formation of mesoporous carbon with aface-centered-cubic Fd3m structure and bimodal architectural pores from thereverse amphiphilic triblock copolymer PPO-PEO-PPO [J]. Angew. Chem. Int. Ed.,2007,119(7):1107~1111.
    [44] Deng Y H, Yu T, Wan Y, et al. Ordered mesoporous silicas and carbons with largeaccessible pores templated from amphiphilic diblock copolymer poly(ethyleneoxide)-b-polystyrene [J]. J. Am. Chem. Soc.,2007,129(6):1690~1697.
    [45] Kim T W, Park I S, Ryoo R. A synthetic route to ordered mesoporous carbon materials withgraphitic pore walls [J]. Angew. Chem. Int. Ed.,2003,42(36):4375~4379.
    [46] Kim C H, Lee D K, Pinnavaia T J. Graphitic mesostructured carbon prepared from aromaticprecursors [J]. Langmuir,2004,20(13):5157~5159.
    [47] Yang H F, Yan Y, Liu Y, et al. A simple melt impregnation method to synthesize orderedmesoporous carbon and carbon nanofiber bundles with graphitized structure from pitches [J]. J.Phys. Chem. B,2004,108(45):17320~17328.
    [48] Xia Y D, Mokaya R. Synthesis of ordered mesoporous carbon and nitrogen-doped carbonmaterials with graphitic pore walls via a simple chemical vapor deposition method [J]. Adv.Mater.,2004,16(17):1553~1558.
    [49] Xia Y D, Mokaya R. Generalized and facile synthesis approach to N-doped highly graphiticmesoporous carbon materials [J]. Chem. Mater.,2005,17(6):1553~1560.
    [50] Xia Y D, Yang Z X, Mokaya R. Mesostructured hollow spheres of graphitic N-doped carbonnanocast from spherical mesoporous silica [J]. J. Phys. Chem. B,2004,108(50):19293~19298.
    [51] Gupta G, Slanac D A, Kumar P, et al. Highly stable Pt/ordered graphitic mesoporous carbonelectrocatalysts for oxygen reduction [J]. J. Phys. Chem. C,2010,114(24):10796~10805.
    [52] Liu R, Wu D, Feng X, et al. Nitrogen-doped ordered mesoporous graphitic arrays with highelectrocatalytic activity for oxygen reduction [J]. Angew. Chem. Int. Ed.,2010,122(14):2619~2623.
    [53] Xia Y D, Yang Z X, Mokaya R. Simultaneous control of morphology and porosity in nanoporouscarbon: graphitic mesoporous carbon nanorods and nanotubules with tunable pore size [J]. Chem.Mater.,2006,18(1):140~148.
    [54] Gierszal K P, Jaroniec M, Kim T W, et al. High temperature treatment of ordered mesoporouscarbons prepared by using various carbon precursors and ordered mesoporous silica templates [J].New J. Chem.,2008,32(6):981~993.
    [55] Sevilla M, Fuertes A B. Catalytic graphitization of templated mesoporous carbons [J]. Carbon,2006,44(3):468~474.
    [56] Lee K T, Ji X, Rault M, Nazar L F. Simple synthesis of graphitic ordered mesoporous carbonmaterials by a solid-state method using metal phthalocyanines [J]. Angew. Chem. Int. Ed.,2009,48(31):5661~5665.
    [57] Long D H, Zhang J, Yang J H, et al. Chemical state of nitrogen in carbon aerogels issued fromphenol-melamine-formaldehyde gels [J]. Carbon,2008,46(9):1259~1262.
    [58] Hulicova D, Yamashita J, Soneda Y, et al. Supercapacitors prepared from melamine-based carbon[J]. Chem. Mater.,2005,17(5):1241~1247.
    [59] Gorgulho H F, Gonealves F, Pereira M F R, et al. Synthesis and characterization ofnitrogen-doped carbon xerogels [J]. Carbon,2009,47(8):2032~2039.
    [60] Lu A H, Li W C, Salabas E L, et al. Low temperature catalytic pyrolysis for the synthesis of highsurface area, nanostructured graphitic carbon [J]. Chem. Mater.,2006,18(8):2086~2094.
    [61] Yang C M, Weidenthaler C, Spliethoff B, et al. Template synthesis of ordered mesoporous carbonwith polypyrrole as carbon precursor [J]. Chem. Mater.,2005,17(2):355~358.
    [62] ōya A, ōtani S. Influences of particle size of metal on catalytic graphitization ofnon-graphitizing carbons [J]. Carbon,1981,19(5):391~400.
    [63] Xu S H, Zhang F Y, Kang Q, et al. The effect of magnetic field on the catalytic graphitization ofphenolic resin in the presence of Fe-Ni [J]. Carbon,2009,47(14):3233~3237.
    [64] Yao J Y, Li L X, Song H H, et al. Synthesis of magnetically separable ordered mesoporouscarbons from F127/[Ni(H2O)6](NO3)2/resorcinol-formaldehyde composites [J]. Carbon,2009,47(2):436~444.
    [65] Gao W J, Wan Y, Dou Y Q, et al. Synthesis of partially graphitic ordered mesoporous carbonswith high surface areas [J]. Adv. Energy Mater.,2011,1(1):115~123.
    [66] Zhou J H, He J P, Wang T, et al. NiCl2assisted synthesis of ordered mesoporous carbon and anew strategy for a binary catalyst [J]. J. Mater. Chem.,2008,18(47):5776~5781.
    [67] Sun D, He J P, Zhou J H, et al. MClx(M=Pd, Fe, Cr) assisted synthesis of ordered mesoporouscarbon and their electrocatalytic performance after loading with Pt nanoparticles [J]. ActaPysico-Chimica Sinca,2010,26(2):385~391.
    [68] Li J S, Gu J, Li H J, et al. Synthesis of highly ordered Fe-containing mesoporous carbonmaterials using soft templating routes [J]. Micropor. Mesopor. Mat.,2010,128(1-3):144~149.
    [69] Ji X L, Herle P S, Rho Y, Nazar L F. Carbon/MoO2composite based on porous semi-graphitizednanorod assemblies from in situ reaction of tri-block polymers [J]. Chem. Mater.,2007,19(3):374~383.
    [70] Feng C M, Li H X, Wan Y. Fabrication of N-doped highly ordered mesoporous polymers andcarbons [J]. Journal of Nanoscience and Nanotechnology,2009,9(2):1558~1563.
    [71] Carrette L, Friedrich K A, Stimming U. Fuel cells-fundamentals and applications [J]. Fuel Cells,2001,1(1):5~39.
    [72] Collantes G O. Incorporating stakeholder’s perspectives into models of new technologiesdiffusion: the case of fuel cell vehicles [J]. Technological Forecasting and Social Change,2007,74(3):267~280.
    [73] Sch fer A, Heywood J B, Weiss M A. Future fuel cell and internal combustion engineautomobile technologies: a25-year life cycle and fleet impact assessment [J]. Energy,2006,31(12):2064~2087.
    [74] Gottesfeld S, Zawodzinski T. Polymer electrolyte fuel cells [M]. Adv. Electrochem. Sci. Eng.1997,5:195~301.
    [75] Steele B. Materia1s technology in fuel cell development [J]. Mater. Design,1990,11(1):4~10.
    [76] Borup R L, Vanderborgh N E. Design and testing criteria for bipolar plate materials for PEM fuelcell applications [C]. Materials for electrochemical energy storage and conversion-batteries,capacitors and fuel cells, Materials Research Society Symposium Proceedings,1995,(393):151~155.
    [77] Tsuchiya H, Kobayashi O. Mass production cost of PEM fuel cell by learning curve [J]. Int. JHydrogen Energy,2004,29(10):985~990.
    [78] Samu A, Pertti K, Jari I, et al. Bipolar plate, method for producing bipolar plate and PEM fuelcell [P]. United State Patent Appl.,2009,0142645.
    [79] Cooper J S. Design analysis of PEMFC bipolar plates considering stack manufacturing andenvironment impact [J]. J. Power Sources,2004,129(2):152~69.
    [80] Bonnemann H,Brijour W,Brinkmann R et al. Preparation, characterization, and application offine metal particles and metal colloids using hydrotrior anoborates [J]. Molecular Catalysis,1994,86(1-3):129~177.
    [81] Wind J, Spah R, Kaiser W, et al. Metallic bipolar plates for PEM fuel cells [J]. J. Power Sources,2002,105(2):256~260.
    [82] Hsieh S S, Huang C F, Feng C L. A novel design and micro-fabrication for copper (Cu)electroforming bipolar plates [J]. Micron,2008,39(3):263~268.
    [83] Nikam V V, Reddy R G. Corrosion studies of a copper-beryllium alloy in a simulated polymerelectrolyte membrane fuel cell environment [J]. J. Power Sources,2005,152(1):146~155.
    [84] Nikam V V, Reddy R G. Copper alloy bipolar plates for polymer electrolyte membrane fuel cell[J]. Electrochim. Acta.,2006,51(28):6338~6345.
    [85] Lee H Y, Lee S H, Kim J H, et al. Thermally nitrided Cu-5.3Cr alloy for application as metallicseparators in PEMFCs [J]. Int. J. Hydrogen Energy,2008,33(15):4171~4177.
    [86] Weil K S, Kim J Y, Xia G, et al. Boronization of nickel and nickel clad materials for potentialuse in polymer electrolyte membrane fuel cells [J]. Surf. Coat. Technol.,2006,201(7):4436~4441.
    [87] Paulauskas I E, Brady M P, Meyer H M, et al. Corrosion behavior of CrN, Cr2N and π phasesurfaces on nitrided Ni-50Cr for proton exchange membrane fuel cell bipolar plates [J]. Corros.Sci.,2006,48(10):3157~3171.
    [88] Zhu B H, Lindbergh G, Simonsson D, Comparison of electrochemical and surfacecharacterisation methods for investigation of corrosion of bipolar plate materials in moltencarbonate fuel cell-Part I. Electrochemical study [J]. Corros. Sci.,1999,41(8):1497~1513.
    [89] Li M C, Luo S Z, Zeng C L, et al. Corrosion behavior of TiN coated type316stainless steel insimulated PEMFC environments [J]. Corros. Sci.,2004,46(6):1369~1380.
    [90] Wen T M, Hou K H, Bai C Y, et al. Corrosion behaviour and characteristics of reformingchromized coatings on SS420steel in the simulated environment of proton exchange membranefuel cells [J]. Corros. Sci.,2010,52(11):3599~3608.
    [91] Kraytsberg A, Auinat M, Ein-Eli Y. Reduced contact resistance of PEM fuel cell’s bipolar platesvia surface texturing [J]. J. Power Sources,2007,164(2):697~703.
    [92] Silva R F, Franchi D, Leone A, et al. Surface conductivity and stability of metallic bipolar platematerials for polymer electrolyte fuel cells [J]. Electrochim. Acta,2006,51(17):3592~3598.
    [93] Davies D P, Adcock P L, Turpin M, et al. Stainless steel as a bipolar plate material for solidpolymer fuel cells [J]. J. Power Sources,2000,86(1-2):237~342.
    [94] Hodgson D R, May B, Adcock P L, et al. New lightweight bipolar plate system for polymerelectrolyte membrane fuel cells [J]. J. Power Sources,2001,96(1):233~235.
    [95] Makkus R C, Janssen A H H, Bruijn F A, et al. Use of stainless steel for cost competitive bipolarplates in the SPFC [J]. J. Power Sources,2000,86(1-2):274~282.
    [96] Wang H, Sweikart M A, Turner J A. Stainless steel as bipolar plate material for protonelectrolyte membrane fuel cells [J]. J. Power Sources,2003,115(2):243~251.
    [97] Kumagai M, Myung S T, Kuwata S, et al. Corrosion behavior of austenitic stainless steels as afunction of pH for use as bipolar plates in polymer electrolyte membrane fuel cells [J].Electrochim. Acta,2008,53(12):4205~4212.
    [98] Pozio A, Zaza F, Masci A, et al. Bipolar plate materials for PEMFCs: a conductivity and stabilitystudy [J]. J. Power Sources,2008,179(2):631~639.
    [99] Hentall P L, Lakeman J B, Mepsted G O, et al. New materials for polymer electrolyte membranefuel cell current collectors [J]. J. Power Sources,1999,80(1-2):235~241.
    [100] Wang Y, Northwood D O. Effects of O2and H2on the corrosion of SS316L metallic bipolarplate materials in simulated anode and cathode environments of PEM fuel cells [J]. Electrochim.Acta,2007,52(24):6793~6798.
    [101] Iversen A K. Stainless steels in bipolar plates-surface resistive properties of corrosion resistantsteel grades during current loads [J]. Corros. Sci.,2006,48(5):1036-1058.
    [102] Shanian A, Savadogo O. TOPSIS multiple-criteria decision support analysis for materialselection of metallic bipolar plates for polymer electrolyte fuel cell [J]. J. Power Sources,2006,159(2):1095~104.
    [103] Li M C, Zeng C L, Luo S Z, et al. Electrochemical corrosion characteristics of type316stainless steel in simulated anode environment for PEMFC [J]. Electrochim. Acta2003,48(12):1735~1741.
    [104] Tawfik H, Hung Y, Mahajan D. Metal bipolar plates for PEM fuel cell-A review [J]. J. PowerSources,2007,163(2):755~767.
    [105] Joseph S, McClure J C, Chianelli R, et al. Conducting polymer-coated stainless steel bipolarplates for proton exchange membrane fuel cells (PEMFC)[J]. Int. J Hydrogen Energy,2005,30(12):1339~1344.
    [106] Fukutsuka T, Yamaguchi T, Miyano S I, et al. Carbon-coated stainless steel as PEFC bipolarplate material [J]. J. Power Sources,2007,174(1):199~205.
    [107] Chung C Y, Chen S K, Chiu P J, et al. Carbon film-coated304stainless steel as PEMFC bipolarplate [J]. J. Power Sources,2008,176(1):276~281.
    [108] Fu Y, Lin G Q, Hou M, et al. Carbon-based films coated316L stainless steel as bipolar plate forproton exchange membrane fuel cells [J]. Int. J. Hydrogen Energy,2009,34(1):405~409.
    [109] Feng K, Shen Y, Sun H, et al. Conductive amorphous carbon-coated316L stainless steel asbipolar plates in polymer electrolyte membrane fuel cells [J]. Int. J. Hydrogen Energy,2009,34(16):6771~6777.
    [110] Cho E A, Jeon U S, Hong S A, et al. Performance of a1kW-class PEMFC stack usingTiN-coated316stainless steel bipolar plates [J]. J. Power Sources,2005,142(1-2):177~183.
    [111] Myung S T, Kumagai M, Asaishi R, et al. Nanoparticle TiN-coated type310S stainless steel asbipolar plates for polymer electrolyte membrane fuel cell [J]. Electrochem. Commun.,2008,10(3):480~484.
    [112] Dur E, Cora N, Ko M. Experimental investigations on the corrosion resistancecharacteristics of coated metallic bipolar plates for PEMFC [J]. Int. J. Hydrogen Energy,2011,36(12):7162~7173.
    [113] Zhang H B, Lin G Q, Hou M, et al. CrN/Cr multilayer coating on316L stainless steel as bipolarplates for proton exchange membrane fuel cells [J]. J. Power Sources,2012,198:176~181.
    [114] Antunes R A. Thesis [D]. University of S o Paulo,2006,224~231.
    [115] Yang D, Liu C, Liu X, et al. EIS diagnosis on the corrosion behavior of TiN coated NiTisurgical alloy [J]. Curr. Appl. Phys.,2005,5(5):417~421.
    [116] Liu C, Bi Q, Leyland A, Matthews A. An electrochemical impedance spectroscopy study of thecorrosion behavior of PVD coated steels in0.5N NaCl aqueous solution. Part I: establishment ofequivalent circuits for EIS data modeling [J]. Corros. Sci.2003,45(6):1243~56.
    [117] Liu C, Leyland A, Bi Q, Matthews A. Corrosion resistance of multi-layered plasma assistedphysical vapour deposition TiN and CrN coatings [J]. Surf. Coat. Technol.2001,141(2-3):164~173.
    [118] Nordin M, Herranen M, Hogmark S. Influence of lamellae thickness on the corrosion behaviourof multilayered PVD TiN/CrN coatings [J]. Thin Solid Films1999,348(1-2):202~209.
    [119] Ho W Y, Pan H J, Chang C L, et al. Corrosion and electrical properties of multi-layeredcoatings on stainless steel for PEMFC bipolar plate applications [J]. Surf. Coat. Technol.2007,202(4-7):1297~1301.
    [120] Choi H S, Han D H, Hong W H, et al.(Titanium, chromium) nitride coatings for bipolar plate ofpolymer electrolyte membrane fuel cell [J]. J. Power Sources,2009,189(2):966~971.
    [121] Ren Y J, Zeng C L. Corrosion protection of304stainless steel bipolar plates using TiCfilmsproduced by high-energy microarc alloying process [J]. J. Power Sources,2007,171(2):778~782.
    [122] Wang Y, Northwood D O. An investigation into polypyrrolecoated316L stainless steel as abipolar plate material for PEM fuel cells [J]. J. Power Sources,2006,163(1):500~508.
    [123] Wang Y, Northwood D O. An investigation into the effects of a nano-thick gold interlayer onpolypyrrole coatings on316L stainless steel for the bipolar plates of PEM fuel cells [J]. J. PowerSources,2008,175(1):40~48.
    [124] García M A L, Smit M A. Study of electrodeposited polypyrrole coatings for the corrosionprotection of stainless steel bipolar plates for the PEM fuel cell [J]. J. Power Sources,2006,158(1):397~402.
    [125] Appleby A J. Recent developments in fuel cell materials [C]. Symposium on Materials forElectrochemical Energy Storage and Conversion-Batteries, Capacitors and Fuel Cells, at the1995MRS Spring Meeting, Mater. Res. Soc. Symp. Proc.1995,393:11~24.
    [126] Mehta V, Cooper J S. Review and analysis of PEM fuel cell design and manufacturing [J]. J.Power Sources,2003,114(1):32~53.
    [127] Kreuer K D, On the development of proton conducting materials for technological applications[J]. Solid State Ionics,1997,97(1-4):1~15.
    [128] Antunes R A, Oliveira M C L, Ett G, et al. Corrosion of metal bipolar plates for PEM fuel cells:A review [J]. Int. J. Hydrogen Energy,2010,35(8):3632~3647.
    [129] Gamboa S A, Gonzalez-Rodriguez J G, Valenzuela E, et al. Evaluation of the corrosionresistance of Ni-Co-B coatings in simulated PEMFC environment [J]. Electrochim. Acta,2006,51(19):4045~4051.
    [130] Elsener B, Rota A, Bh ni H. Impedance study on the corrosion of PVD and CVD titaniumnitride coatings [J]. Mater. Sci. Forum,1989,44~45:29~38.
    [131] Hermann A, Chaudhuri T, Spagnol P. Bipolar plates for PEM fuel cells: A review [J]. Int. J.Hydrogen Energy,2005,30(12):1297~1302.
    [132] Kitta S, Uchida H, Watanabe M. Metal separators coated with carbon/resin composite layers forPEFCs [J]. Electrochim. Acta,2007,53(4):2025~2033.
    [133] Kumar A, Reddy R G. Materials and design development for bipolar/end plates in fuel cells [J].J. Power Sources,2004,129(1):62~67.
    [134] Kumar A, Reddy R G, Fundam. PEM fuel cell bipolar plate-Material selection, design andintegration [C]. Annual Meeting of the Minerals-Metals-and-Materials-Society, Adv. Mater.Energy Convers,2002,41~53.
    [135] Zhang F Q, Meng Y, Gu D, et al. A facile aqueous route to synthesize highly orderedmesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure [J]. J. Am.Chem. Soc.,2005,127(39):13508-13509.
    [136] Pang J B, Li X, Wang D H, et al. Silica-templated continuous mesoporous carbon films by aspin-coating technique [J]. Adv.Mater.,2004,16(11):884~886.
    [137] Tanaka S, Katayama Y, Tate M P, et al. Fabrication of continuous mesoporous carbon films withface-centered orthorhombic symmetry through a soft templating pathway [J]. J. Mater. Chem.,2007,17(34):3639~3645.
    [138] Chu P P, Wu H D. Solid state NMR studies of hydrogen bonding network formation of novolactype phenolic resin and poly(ethylene oxide) blend [J]. Polymer,2000,41(1):101~109.
    [139] Kosonen H, Ruokolalnen J, Torkkeli M, et al. Micro-and macrophase separation in phenolicresol resin/PEO-PPO-PEO block copolymer blends: Effect of hydrogen-bonded PEO length [J].Macromol. Chem. Phys,2002,203(2):388~392.
    [140] Kim Y J, Kim M I, Yun C H, et al. Comparative study of carbon dioxide and nitrogenatmospheric effects on the chemical structure changes during pyrolysis of phenol-formaldehydespheres [J]. J. Colloid Interface Sci.,2004,274(2):555~562.
    [141] Trick K A, Saliba T E. Mechanisms of the pyrolysis of phenolic resin in a carbon/phenoliccomposite [J]. Carbon,1995,33(11):1509~1515.
    [142] Kivelson S, Chapman O L. Polyacene and a new class of quasi-one-dimensional conductors [J].Physical Review B,1983,28(12):7236~7243.
    [143] Chu P K, Li L. Characterization of amorphous and nanocrystalline carbon films [J]. Mater.Chem. Phys.,2006,96(2-3):253~277.
    [144] Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys. Rev. B,2000,61(20):14095~14107.
    [145] Zhao D, Sun J, Li Q, et al. Morphological control of highly ordered mesoporous silica SBA-15[J]. Chem Mater,2000,12(2):275~279.
    [146] Liu R L, Shi Y F, Wan Y, et al. Triconstituent Co-assembly to Ordered MesostructuredPolymer-Silica and Carbon-Silica Nanocomposites and Large-Pore Mesoporous Carbons withHigh Surface Areas [J]. J. Am. Chem. Soc.,2006,128(35):11652~11662.
    [147] Hwang T, Lee H Y, Kim H, et al. Two layered silica protective film made by a spray-and-dipcoating method on304stainless steel [J]. J Sol-Gel Sci Technol.,2010,55(2):207~212.
    [148] Mennig M, Schelle C, Duran A, et al. Investigation of glass-like sol-gel coatings for corrosionprotection of stainless steel against liquid and gaseous attack [J]. J. Sol-Gel Sci. Technol.,1998,13(1-3):717~722.
    [149] Atik M, Kha C R, Neto P L, et al. Protection of316L stainless steel by zirconia sol-gel coatingsin15%H2SO4solutions [J]. J Mater Sci Lett.,1995,14(3):178~181.
    [150] Ono S, Tsuge H, Nishi Y, et al. Improvement of corrosion resistance of metals by anenvironmentally friendly silica coating method [J]. Journal of Sol-Gel Science and Technology,2004,29(3):147~153.
    [151] Vasconcelos D C L, Carvalho J A N, Mantel M, et al. Corrosion resistance of stainless steelcoated with sol-gel silica [J]. Journal of Non-Crystalline Solids,2000,273(1-3):135~139.
    [152] Ting C C, Wu H Y, Vetrivel S, et al. A one-pot route to synthesize highly ordered mesoporouscarbons and silicas through organic–inorganic self-assembly of triblock copolymer, sucrose andsilica [J]. Micropor. Mesopor. Mat.,2010,128(1-3):1~11.
    [153] Wei H, Lv Y, Han L, et al. Facile synthesis of transparent mesostructured composites andcorresponding crack-free mesoporous carbon/silica monoliths [J]. Chem. Mater.,2011,23(9):2353~2360.
    [154] Wang T, He J P, Sun D, et al. Fabrication of continuous mesoporous organic-inorganicnanocomposite films for corrosion protection of stainless steel in PEM fuel cells [J]. Corros. Sci.,2011,53(4):1498~1504.
    [155] Feng K, Cai X, Sun H L, et al. Carbon coated stainless steel bipolar plates in polymerelectrolyte membrane fuel cells [J]. Diam. Relat. Mater.,2010,19(11):1354~1361.
    [156] Liu R L, Wu D Q, Feng X L, et al. Nitrogen-doped ordered mesoporous graphitic arrays withhigh electrocatalytic activity for oxygen reduction [J]. Angew. Chem. Int. Ed.,2010,49(14):2565~2569.
    [157] Hulicova-Jurcakova D, Kodama M, Shiraishi S, et al. Nitrogen-enriched nonporous carbonelectrodes with extraordinary supercapacitance [J]. Adv. Funct. Mater.,2009,19(11):1800~1809.
    [158] Zhang J, Liu X, Blume R, et al. Surface-modified carbon nanotubes catalyze oxidativedehydrogenation of n-butane [J]. Science,2008,322(5898):73~77.
    [159] Li Y, Zhong J, Yang X Z, et al. Simple synthesis of semi-graphitized ordered mesoporouscarbons with tunable pore sizes [J]. New Carbon Materials,2011,26(2):123~129.
    [160] Abramovi B F, Bjelica L J, Gaál F F, et al. Some electrochemical characteristics of boron-andphosphorus-doped glassy carbon electrodes [J]. Electroanalysis,2003,15(10):878~884.
    [161] Wang T, He J, Sun D, et al. Synthesis of mesoporous carbon-silica-polyaniline andnitrogen-containing carbon-silica films and their corrosion behavior in simulated protonexchange membrane fuel cells environment [J]. J. Power Sources,2011,196(22):9552~9560.
    [162] Martin-Hopkin M B, Gilpin R K, Jaroniec M. Studies of the surface heterogeneity of chemicallymodified porous carbons by gas-solid chromatography [J]. J. Chromatogr. Sci.,1991,29(4):147~158.
    [163] Bahr J L, Tour J M. Covalent chemistry of single-wall carbon nanotubes [J]. J. Mater. Chem.,2002,12:1952~1958.
    [164] Zhao X, Wang A, Yan J, et al. Synthesis and electrochemical performance ofheteroatom-incorporated ordered mesoporous carbons [J]. Chem. Mater.,2010,22(19):5463~5473.
    [165] Wang X, Liang C, Dai S. Facile synthesis of ordered mesoporous carbons with high thermalstability by self-assembly of resorcinol-formaldehyde and block copolymers under highly acidicconditions [J]. Langmuir,2008,24(14):7500~7505.
    [166] Rats D, Sevely J, Vandenbulcke L, et al. Characterization of diamond films deposited ontitanium and its alloys [J]. Thin Solid Films,1995,270(1-2):177~183.
    [167] Coutures J P, Erre R, Massiot D, et al. Ar+ion beam effects on MxOy-alumina silica glasses [J].Radiation Effects,1986,98(1-4):83~91.
    [168] Bertoncello R, Casagrande A, Casarin M, et al. TiN, TiC and Ti(C, N) film characterization andits relationship to tribological behaviour [J]. Surface and interface analysis,1992,18(7):525~531.
    [169] Leclercq G, Kamal M, Lamonier J F, et al. Treamant of bulk group VI transition metal carbideswith hydrogen and oxygen [J]. Applied Catalysis A: General,1995,121(2):169~190.
    [170] Droulas J L, Tran Minh Duc, Jugnet Y. Etude des propiétés interfaciales des dép ts parévaporation et pulvérisation d'aluminium sur polyéthylène téréphtalate [C]. Le Vide, lesCouches Minces,1991, Supplément258:39-41.
    [171] Moncoffre N, Hollinger G, Jaffrezic H, et al. Temperature influence during nitrogenimplantation into steel [J]. Nuclear Instruments and Methods in Physics Research B,1985,7-8:177~183.
    [172] Bui L N, Thompson M, Mckeown N B, et al. Surface modification of the biomedical polymerpoly (ethylene terephthalate)[J]. Analyst,1993,118:463~474.
    [173] Contarini S, Howlett S P, Rizzo C, et al. XPS study on the dispersion of carbone additives insilicon carbide powders [J]. Applied Surface Science,1991,51(3-4):177~183.
    [174] Shirasaki T, Derr A, Ménétrier M, et al. Synthesis and characterization of boron-substitutedcarbons [J]. Carbon,2000,38(10):1461~1467.
    [175] Liu Y, Zhang L, Cheng L, et al. Effect of deposition temperature on boron-doped carboncoatings deposited from a BCl3-C3H6-H2mixture using low pressure chemical vapor deposition[J]. Appl. Surf. Sci.,2009,255(21):8761~8768.
    [176] Burgess J S, Acharya C K, Lizarazo J, et al. Boron-doped carbon powders formed at1000°Cand one atmosphere [J]. Carbon,2008,46(13):1711~1717.
    [177] Cermignani W, Paulson T E, Onneby C, et al. Synthesis and characterization of boron-dopedcarbons [J]. Carbon,1995,33(4):367~374.
    [178] Wang D W, Li F, Chen Z G, et al. Synthesis and electrochemical property of boron-dopedmesoporous carbon in supercapacitor [J]. Chem. Mater.,2008,20(22):7195~7200.
    [179] Wagner C D, Moulder J F, Davis L E, et al. Handbook of X-ray photoelectron spectroscopy [M].Perking-Elmer Corporation, Physical Electronics Division, end of book,1979.
    [180] Uddin M N, Shimoyama I, Bada Y, et al. Synthesis and characterization of oriented graphitelikeB-C-N hybrid [J]. J. Appl. Phys.,2006,99(8):084902.
    [181] Deshpande S V, Stephen E G, Harris J A, et al. Filament activated chemical vapor deposition ofboron carbide coatings [J]. Appl. Phys. Lett.,1994,65(14):1757~1759.
    [182] Onyiriuka E C. Aluminium, titanium boride, and nitride films sputter-deposited frommulticomponent alloy targets studied by XPS [J]. Applied Spectroscopy,1993,47(1):35~37.
    [183] Sogabe T, NakajimaK, Inagak Mi. Effect of boron-doping on structure and some properties ofcarbon-carbon composite [J]. J. Mater. Sci.,1996,31(24):6469~6476.
    [184] ōya A, Yamashita R, ōtani S. Catalytic graphitization of carbons by borons [J]. Fuel,1979,58(7):495~500.
    [185] ōya A, ōtani S. Catalytic graphitization of carbons by various metals [J]. Carbon,1979,17(2):131~137.
    [186] ōya A, Marsh H. Review phenomena of catalytic graphitization [J]. J. Mater. Sci.,1982,17(2):309~322.
    [187] Jeong H K, Lee Y P, Lahaye R J W E, et al. Evidence of graphitic AB stacking order of graphiteoxides [J]. J. Am. Chem. Soc.,2008,130(4):1362~1366.
    [188] Calizo I, Balandin A A, Bao W, et al. Temperature dependence of the raman spectra of grapheneand graphene multilayers [J]. Nano Lett.,2007,7(9):2645~2649.
    [189] Jin W H, Feng K, Li Z G, et al. Improvement of corrosion resistance and electrical conductivityof304stainless steel using close field unbalanced magnetron sputtered carbon film [J]. J. PowerSources,2011,196(23):10032~10037.
    [190] Wang L X, Sun J C, Li P B, et al. Molybdenum nitride modified AISI304stainless steel bipolarplate for proton exchange membrane fuel cell [J]. Int. J. Hydrogen Energy,2012,37(7):5876~5883.
    [191] Fu Y, Lin G Q, Hou M B, et al. Optimized Cr-nitride film on316L stainless steel as protonexchange membrane fuel cell bipolar plate [J]. Int. J. Hydrogen Energy,34(1):453~458.
    [192] Yi P Y, Peng L F, Feng L Z, et al. Performance of a proton exchange membrane fuel cell stackusing conductive amorphous carbon-coated304stainless steel bipolar plates [J]. J. PowerSources,2010,195(20):7061~7066.
    [193] Lei M K, Yuan L J, Zhang Z L, et al. XPS studies of synthesized B-C-N films by plasma sourceion nitriding [J]. J. Inorg. Mater.,1999,14(4):189~192.
    [194] Lee Y B, Lee C H, Lim D S. The electrical and corrosion properties of carbon nanotube coated304stainless steel/polymer composite as PEM fuel cell bipolar plates[J]. Int. J. Hydrogen Energy,2009,34(24):9781~9787.
    [195] Hamada T, Suzuki K, Kohno T, et al. Structure of coke powder heat-treated with boron [J].Carbon,2002,40(8):1203~1210.
    [196] Rakszawski J F, Parker W E. The effect of group IIIA–VIA elements and their oxides ongraphite oxidation [J]. Carbon,1964,2(1):53~63.
    [197] McKee D W, Spiro C L, Lamby E J. The effects of boron additives on the oxidation behavior ofcarbons [J]. Carbon,1984,22(6):507~511.
    [198] Molina-Sabio M, Rodriguez-Reinoso F, Caturla F, et al. Porosity in granularcarbonsactivatedwith phosphoricacid Carbon [J]. Carbon,1995,33(8):1105~1103.
    [199] Solm M S, Pugmire R J, Jagtoyen M. Evolution of carbonstructure in chemically activatedwood [J]. Carbon,1995,33(9):1247~1254.
    [200] Puziy A M, Poddubnaya O I, Socha R P, et al. XPS and NMR studies of phosphoric acidactivated carbons [J]. Carbon,2008,46(15):2113~2123.
    [201] Imamura R, Matsui K, Takeda S, et al. A new role for phosphorus in graphitization of phenolicresin [J]. Carbon,1999,37(2):261~267.
    [202]殷荣忠.酚醛树脂及应用[M],北京:化学工业出版社,1990.
    [203]李宝华,李开喜,吕春祥,等.掺磷酚醛树脂炭用作捏离子电池负极的研究[J].无机材料学报,2002,17(4):672~678.
    [204] Zhao X, Zhang Q, Zhang B, et al. Dual-heteroatom-modified ordered mesoporous carbon:Hydrothermal functionalization, structure, and its electrochemical performance [J]. J. Mater.Chem.,2012,22(11):4963~4969.
    [205] Ley L, Cardona M, Pollak R A. Photoemission in semiconductors, Photoemission in solids. II.Case studies [M],1979,27:11~172.
    [206] Dake L S, Baer D R, Friedrich D M. Auger parameter measurements of phosphorus compoundsfor characterization of phosphazenes [J]. J. Vac. Sci. Technol. A,1989,7(3):1634~1638.
    [207] Morgan W E, Stec W J, Wazer J R V. Inner-orbital binding-energy shifts of antimony andbismuth compounds [J]. Inorg. Chem.,1973,12(4):953~955.
    [208] Fabianowski W, Coyle L C, Weber B A, et al. Spontaneous assembly of phosphatidylcholinemonolayers via chemisorption onto gold [J]. Langmuir,1989,5(1):35~41.
    [209] Nyquist R A, Kagel R O. Infrared spectra of inorganic compounds (3800-45cm-1)[M].Academic Press, New York,1971.
    [210] Brame E G, Grasselli J G. Infrared and Raman Spectroscopy [M]. Marcel Dekker: New York,1977:514~515.
    [211] Jagtoyen M, Derbyshire F. Activated carbons from yellow poplar and white oak by H3PO4activation [J]. Carbon,1998,36(7-8):1085~1097.
    [212] Xiang H Q, Fang S B, Jiang Y Y. Lithium insertion in carbons prepared fromphosphorus-containing polymers [J]. Journal of Power Sources,2001,94(1):85~91.
    [213] Li Q, Yang J P, Feng D, et al. Facile synthesis of porous carbon nitride spheres with hierarchicalthree-dimensional mesostructures for CO2capture [J]. Nano Res.,2010,3(9):632~642.
    [214] Kawaguchi M, Yagi S, Enomoto H. Chemical preparation and characterization of nitrogen-richcarbon nitride powders [J]. Carbon,2004,42(2):345~350.
    [215] Khabashesku V N, Zimmerman J L, Margrave J L. Powder Synthesis and Characterization ofAmorphous Carbon Nitride [J]. Chem. Mater.,2000,12(11):3264~3270.
    [215] Huynh M H, Hiskey M A, Archuleta J G, et al. Preparation of nitrogen-rich nanolayered,nanoclustered, and nanodendritic carbon nitrides [J]. Angew. Chem., Int. Ed.,2005,44(5):737~739.
    [216] Sidik R A, Anderson A B, Subramanian N P, et al. O2reduction on graphite and nitrogen-dopedgraphite: experiment and theory [J]. J. Phys. Chem. B,2006,110(4):1787~1793.
    [217] Jiang L Q, Gao L, Modified carbon nanotubes: an effective way to selective attachment of goldnanoparticles [J]. Carbon,2003,41(15):2923~2929.
    [218] Terrones M, Kamalakaran R, Seeger T, et al. Novel nanoscale gas containers: encapsulation ofN2in CNxnanotubes [J]. Chem. Commun.,2000,2335~2336.
    [219] Glerup M, Castignolles M, Holzinger M, et al. Synthesis of highly nitrogen-doped multi-walledcarbon nanotubes [J]. Chem. Commun.,2003,2542~2543.
    [220] Zhi L J, Gorelik T, Friedlein R, et al. Solid-state pyrolyses of metal phthalocyanines: a simpleapproach towards nitrogen-doped CNTs and metal/carbon nanocables [J]. Small,2005,1(8-9):798~801.
    [221] Czerw R, Terrones M, Charlier J C, et al. Identification of electron donor states in n-dopedcarbon nanotubes [J]. Nano Lett.2001,1(9):457~460.
    [222] Golberg D, Dorozhkin P S, Bando Y, et al. Strueture, transport and field-emission properties ofcompound nanotubes: CNxvs. BNCx(x<0.1)[J]. Appl. Phys. A,2003,76(4):499~507.
    [223] Zhang D Y, Zhang G Y, Liu S, et al. Lithium storage in polymerized carbon nitride nanobells [J].Applied Physics Letters,2001,79(21):3500~3502.
    [224] Gong K P, Du F, Xia Z H, et al. Nitrogen-doped carbon nanotube arrays with highelectrocatalytic activity for oxygen reduction [J]. Science,2009,323(5915):760~764.
    [225] Wei D, Liu Y, Wang Y, et al. Synthesis of N-doped graphene by chemical vapor deposition andits electrical properties [J]. Nano Lett.,2009,9(5):1752~1758.
    [226] Qu L T, Liu Y, Baek J B, et al. Nitrogen-doped graphene as efficient metal-free electrocatalystfor oxygen reduction in Fuel Cells [J]. ACS Nano,2010,4(3):1321~1326.
    [227] Wiggins-Camacho J D, Stevenson K J. Effect of nitrogen concentration on capacitance, densityof states, electronic conductivity, and morphology of N-doped carbon nanotube electrodes [J]. J.Phys. Chem. C,2009,113(44),19082~19090.
    [228] Yue B, Ma Y M, Tao H S, et al. CNx nanotubes as catalyst support to immobilize platinumnanoparticles for methanol oxidation [J]. J. Mater. Chem.,2008,18,1747~1750.
    [229] Vinu A. Two-dimensional hexagonally-ordered mesoporous carbon nitrides with tunable porediameter, surface area and nitrogen content [J]. Adv. Funct. Mater.,2008,18(5):816~827.
    [230] Park S S, Chu S W, Xue C F, et al. Facile synthesis of mesoporous carbon nitrides using theincipient wetness method and the application as hydrogen adsorbent [J]. J. Mater. Chem.,2011,21,10801~10807.
    [231] Liu R L, Wu D Q, Feng X L, et al. Nitrogen-doped ordered mesoporous graphitic arrays withhigh electrocatalytic activity for oxygen reduction [J]. Angew. Chem.,2010,122(14):2619~2623.
    [232] Guo Y X, He J P, Wang T, et al. Enhanced electrocatalytic activity of platinum supported onnitrogen modified ordered mesoporous carbon [J]. J. Power Sources,2011,196(22):9299~9307.
    [233] Tang J, Jing X, Wang B, et al. Infrared spectra of soluble polyaniline [J]. Synth. Met.,1988,24(3):231~238.
    [234] Quillard S, Louran G, Lefrant S, et al, Vibrational analysis of polyaniline: a comparative studyof leucoemeraldine, emeraldine, and pernigraniline bases [J]. Phys. Rev. B,1994,50(17):12496~12508.
    [235] Yang G W, Han H Y, Li T T, et al. Synthesis of nitrogen-doped porous graphitic carbons usingnano-CaCO3as template, graphitization catalyst, and activating agent [J]. Carbon,2012,50(10):3753~3765.
    [236] Datta K K R, Balasubramanian V V, Ariga K, et al. Highly crystalline and conductivenitrogen-doped mesoporous carbon with graphitic walls and its electrochemical performance [J].Chem. Eur. J.,2011,17(12):3390~3397.
    [237] Wijesinghe T L S L, Blackwood D J. Electrochemical and photoelectrochemicalcharacterization of the passive film formed on AISI254SMO super-austenitic stainless steel [J].J. Electrochem. Soc.,2007,154(1): C16~C23.
    [238] ōya A, Otani S. Effects of particle size of calcium and calcium compounds of graphitization ofphenolic resin carbon [J]. Carbon,1979,17(2):125~129.
    [239] Shohoji N, Amaral PM, Fernandes J C, et al. Catalytic graphitisation of amorphous carbonduring solar carbide synthesis of VIagroup metals (Cr, Mo and W)[J]. Materials TransactionsJim,2000,41(1):246~249.
    [240]汤静,何建平,王涛等.石墨化的有序介孔碳的制备及其作为载体的Pt化剂对甲醇的电催化氧化[J].2011,69(15):1751~1759.
    [241]孙盾.碳-氧化硅基介孔复合薄膜的制备及其防护性能研究[D].硕士学位论文,南京:南京航空航天大学,2010.
    [242] Yu T, Deng Y H, Wang L, et al. Ordered mesoporous nanocrystalline titanium-carbide/carboncomposites from in situ carbothermal reduction [J]. Adv. Mater.,2007,19(17):2301~2306.
    [243] Ramqvist L, Hamrin K, Johansson G, et al. Charge transfer in transition metal carbides andrelated compounds studied by ESCA [J]. J. Phys. Chem. Solids,1969,30(7):1835~1847.
    [244] Mackie N M,. Castner D G, Fisher E R. Characterization of pulsed-plasma-polymerizedaromatic Films [J]. Langmuir,1998,14(5):1227~1235.
    [245] Kumar S, Chopra D R, Smith G C, Photoemission study of low pressure chemical vapordeposited and reactively sputtered titanium nitride in W/TiN/Si [J]. J. Vac. Sci. Technol. B,1992,10(3):1218~1220.
    [246] Lang C D, Li, Z J, Dai S. Mesoporous carbon materials: synthesis and modification [J]. Angew.Chem., Int. Ed.2008,47(20):3696~3717.
    [247] Schüth F. Non-siliceous mesostructured and mesoporous materials [J]. Chem. Mater.,2001,13(10):3184~3195.
    [248] Liu C Y, Chen C F, Leu J P, et al. Fabrication and carbon monoxide sensing characteristics ofmesostructured carbon gas sensors [J]. Sens. Actuators B,2009,143(1):12~16.
    [249] Xing W, Qiao S, Ding R, et al. Superior electric double layer capacitors using orderedmesoporous carbons [J]. Carbon,2006,44(2):216~224.
    [250] Fischbach D B. Tensile creep behavior of glassy carbon [J]. Carbon,1971,9(2):193~203.
    [251] Zaldivar R J, Rellick G S, Some observations on stress graphitization in carbon-carboncomposites [J]. Carbon,1991,29(8):1155~1163.
    [252]刘露,肖雄,曹国飞等.磷钼酸对PAN基炭纤维的催化石墨化[J].材料科学与工程学报,28(3):373~378.
    [253] Sorensen A C, Fuller B L, Eklund A G, et al. Mo-doped mesoporous silica for thiophenehydrodesulfurization: Comparison of materials and methods [J]. Chem. Mater.,2004,16(11):2157~2164.
    [254] Solmaz A, Balci S, Dogu T. Synthesis and characterization of V, Mo and Nb incorporatedmicro–mesoporous MCM-41materials [J]. Mater. Chem. Phys.,2011,125(1-2):148~155.
    [255] Dou J, Zeng H C. Preparation of Mo-embedded mesoporous carbon microspheres forfriedel-crafts alkylation [J]. J. Phys. Chem. C,2012,116(14):7767~7775.
    [256] L Leclercq, J P Bonnelle, B Delmon. Surface properties and catalysis by non-metals [M]. NATOASI Series,1983,433.
    [257] Oshikawa K, Nagai M, Omi S. Characterization of molybdenum carbides for methanereforming by TPR, XRD, and XPS [J]. J. Phys. Chem. B,2001,105(38):9124~9131.
    [258] Clayton C R, Lu Y C. A bipolar model of the passivity of stainless steel: the role of Mo addition[J]. J. Electrochem. Soc.,1986,133(12):2465~2473.
    [259] Miyazaki E, Kojima I, Orita M. Catalysis by transition-metal carbides, VII: kinetic and xpsstudies of the decomposition of methanol on TiC, TaC, Mo2C, WC and W2C [J]. Bull. Chem.Soc. Jpn.,1986,59(3):689~695.
    [260] Hopfeng rtner G, Borgmann D, Rademacher I, et al. XPS studies of oxidic model catalysts:internal standards and oxidation numbers [J]. J. Electron Spectroscopy and Related Phenomena,1993,63(2):91~116.
    [261] Liang C D, Dai S. Synthesis of mesoporous carbon materials via enhanced hydrogen-bondinginteraction [J]. J. Am. Chem. Soc.,2006,128(16):5316~5317.
    [262] Frackowiak E, Metenier K, Bertagna V, et al. Supercapacitor electrodes from multiwalledcarbon nanotubes [J]. Appl. Phys. Lett.,2000,77(15):2421~2423.
    [263] Izadi-Najafabadi A, Yamada T, Futaba D N, et al. High-power supercapacitor electrodes fromsingle-walled carbon nanohorn/nanotube composite [J]. ACS Nano,2011,5(2):811~819.
    [264] Guo B K, Wang X Q, Fulvio P F, et al. Soft-templated mesoporous carbon-carbon nanotubecomposites for high performance lithium-ion batteries [J]. Adv. Mater.,2011,23(40):4661~4666.
    [265] Fulvio P F, Mayes R T, Wang X Q, et al.“Brick-and-mortar” self-assembly approach tographitic mesoporous carbon nanocomposites [J]. Adv. Funct. Mater.,2011,21(12):2208~2215.
    [266] Jo Y, Cheon J Y, Yu J, et al. Highly interconnected ordered mesoporous carbon-carbon nanotubenanocomposites: Pt-free, highly efficient, and durable counter electrodes for dye-sensitizedsolar cells [J]. Chem. Commun.,2012,48,8057~8059.
    [267] Peng Z, Zhang D S, Shi L Y, et al. High performance ordered mesoporous carbon/carbonnanotube composite electrodes for capacitive deionization [J]. J. Mater. Chem.,2012,22:6603~6612.
    [268] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbonfilms [J]. Science,2004,306(5695):666~669.
    [269] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchabletransparent electrodes [J]. Nature,2009,457:706~710.
    [270] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phaseexfoliation of graphite [J]. Nat. Nanotechnol.,2008,3:563~568.
    [271] Berger C, Song Z M, Li X B, et al. Electronic confinement and coherence in patterned epitaxialgraphene [J]. Science,2006,312(5777):1191~1196.
    [272] Ramanathan T, Abdala A A, Stankovich S, et al. Functionalized graphene sheets for polymernanocomposites [J]. Nat. Nanotechnol.2008,3:327~331.
    [273] Kim K S, Park S J. Electrochemical performance of graphene/carbon electrode containedwell-balanced micro-and mesopores by activation-free method [J], Electrochimica Acta,2012,65:50~56.
    [274] Wang W G, Yu J G, Xiang Q J, et al. Enhanced photocatalytic activity of hierarchicalmacro/mesoporous TiO2-graphene composites for photodegradation of acetone in air [J].Applied Catalysis B: Environmental,2012,119-120:109~116.
    [275] Wang Z M, Wang W D, Coombs N, et al. Graphene oxide-periodic mesoporous silica sandwichnanocomposites with vertically oriented channels [J]. ACS Nano,2010,4(12):7437~7450.
    [276] Sun X, He J P, Tang J, et al. Structural and electrochemical characterization of orderedmesoporous carbon-reduced graphene oxide nanocomposites [J]. J. Mater. Chem.,2012,22(21):10900~10910.
    [277]原长洲.碳纳米管基复合材料的制备、表征及其超电容特性研究[D].博士学位论文,南京航空航天大学,2009.
    [278] Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. J. Am. Chem. Soc.,1958,80(6):1339~1339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700