鱼藤酮结构改造、类似物合成与生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文根据鱼藤酮及其衍生物的构效关系并结合抗抑郁药物以及抗肿瘤药物的研究成果,设计合成一系列新颖的鱼藤酮衍生物,并对所合成的化合物进行体外活性评价,为鱼藤酮的应用以及活性的多样性研究打下基础。
     本论文研究工作分为三个部分:
     1.本研究以鱼藤酮为起始原料,在强碱条件下经氧硫叶立德开环重排,引入环丙结构到鱼藤酮分子中,并对活性部位进行醚化和酯化结构修饰,设计合成了12个结构新颖的环丙鱼藤衍生物;采用活性亚结构拼接原理,引入具有较好生物活性的肟醚结构到化合物3a分子中,设计合成了5个环丙鱼藤肟醚衍生物;通过酰氯催化的贝克曼重排反应得到结构新颖的环丙鱼藤酰胺化合物7。化合物经1H NMR和MS对结构进行了确证。培养了关键中间体2和目标化合物7的晶体结构,经X-射线衍射分析表明得到化合物的分子与预期化合物结构一致。由于氧硫叶立德可以从两个方向进攻鱼藤酮分子,因此形成的环丙烷结构在分子中存在两种构象,单晶结构显示一个晶胞中同时存在环丙鱼藤衍生物的一对非对映异构体。
     通过高通量筛选方法测试了化合物的杀虫、杀菌和除草活性,结果显示该系列化合物具有一定的杀虫活性。
     2.以鱼藤酮为原料,与水合肼进行开环重排反应引入具有5-HT重摄取/5-HTlA受体双重抑制作用药物的碱性中心吡唑环结构到鱼藤酮分子中,并对分子的胺基以及酚羟基进行醚化以及酯化结构修饰得到12个结构新颖的鱼藤吡唑衍生物;其中化合物10d和10e通过亲核取代反应引入不同的杂原子侧链,设计合成了28个N-酰基吡唑鱼藤酚化合物。化合物经1HNMR、13C NMR和MS对结构进行了确证。培养了化合物lla的晶体结构,经X-射线衍射分析进一步确证了化合物结构。由于水合肼的氨基可以从两个方向进攻鱼藤酮分子,因此形成的吡唑环结构在分子中存在两种构象,单晶显示一个晶胞中同时存在鱼藤吡唑化合物的一对非对映异构体。
     通过建立荧光物质ASP的高通量筛选手段测试了化合物对5-HT重摄取的抑制活性,结果显示大部分化合物生物活性较好。
     3.以取代苯酚为原料通过亲核取代、环合、溴代、缩酮化、重排以及水解反应构建了鱼藤酮的苯并吡喃结构基团,并以商业化的具有较好生物活性的呋喃酚替代鱼藤酮的2-异丙烯基苯并呋喃结构基团,以酰胺基团代替鱼藤酮的二氢吡喃连接基团将苯并吡喃以及苯并呋喃结构以一定构型相连接,得到具有新颖结构的三个系列共28个化合物。
     所得化合物经1H NMR和MS对结构进行了确证,并测试了该类化合物对Hel细胞的体外抑制活性,结果表明该系列化合物具有较好的抑制活性。
Rotenone is a broad-spectrum insecticide and its derivatives show several biological activities including acaricide and antitumor. Based on the structure-activity relationship of rotenone derivatives and the research of antidepressant drugs and anticancer drugs, we designed and synthesized a series of novel rotenone derivatives, and evaluated their bioactivities in vitro. The main results of this thesis are described as followings:
     1. Twelve novel cyclopropane rotenone derivatives were designed and synthesized from rotenone by open-loop rearrangement with the dimethyloxo-sulphonium methylide in alkaline conditions, etherification and esterification to modify the structure of active sites. Five cycloprop rotenone oxime-ether derivatives were designed and synthesized by the principle of Substructure Link Way, introducing the oxime-ethers group with excellent bioacitivity into the compound3a. The novel compound7was obtained by Beckmann rearrangement reaction with chloride-catalyzed.
     The structures of new compounds were characterized by1H NMR and MS. For the key intermediates, we analysis the crystal structures of compound2and7by X-ray diffraction, which were consistent with the target compound. Owing to the attack of rotenone by dimethyloxosulphonium methylide from two directions, there are two conformations of cyclopropane structure in the molecule. X-ray diffraction shows that a pair of diastereoisomers exists in the crystal lattice of cycloprop rotenone.
     The bioassay indicated that some compounds show moderate insecticidal activity.
     2. Twelve pyrazole rotenone derivatives were designed and synthesized from rotenone via the open-loop rearrangement react with hydrazine hydrate to introduce an alkaline center of pyrazole ring as a dual inhibitors, the etherification of amine group and esterification of phenolic hydroxyl group. Twenty-eight N-acylpyrazole rotenone derivatives were designed and synthesized from the compound10d and10e by the nucleophilic substitution reaction to introduce different side chains of hetero atoms.
     The structures of newly compounds were confirmed by1H NMR,13C NMR and MS. We obtained the crystal structure of compound11a, which was consistent with the target compound by X-ray diffraction analysis. For the amino group of the hydrazine hydrate offensing rotenone molecule from two directions, there were two conformations of pyrazole structure present in the molecule. X-ray diffraction found that a pair of diastereoisomers existed in one crystal lattice of pyrazole rotenone.
     Through the high-throughput screening means of fluorescent substance ASP, the compounds were evaluated for their activity as5-HT inhibitor in vitro. Most of the compound exhibited potent inhibitory activity against5-HT.
     3. In order to establish a certain configuration between benzopyran and benzofuran, three series of twenty-eight compounds were designed and synthesized from the substituted phenol by nucleophilic substitution, cyclization, bromation, ketalization, rearrangement and hydrolysis reaction, then altered2-isopropenyl benzofuran group of rotenone with benzofuranol, which has preferred biological activity to commercialize, and finally altered dihydropyran group with amide group.
     The structures of novel compounds were determined by1H NMR and MS. The antitumor assay indicated that this series of compounds have a certain degree of antitumor activity against Hela cell line.
引文
[1]Ohnishi T. Iron-sulfur clusters/semiquinones in Complex I. Biochimica et Biophysica Acta (BBA)-Bioenergetics,1998,1364(2):186-206
    [2]Yagi T, Matsuno-Yagi A. The Proton-Translocating NADH-Quinone Oxidoreductase in the Respiratory Chain:The Secret Unlocked. Biochemistry, 2003,42(8):2266-2274
    [3]Brandt U. Energy Converting NADH:Quinone Oxidoreductase (Complex I). Annual Review of Biochemistry,2006,75(1):69-92
    [4]Sazanov L A. Respiratory Complex I:Mechanistic and Structural Insights Provided by the Crystal Structure of the Hydrophilic Domain. Biochemistry, 2007,46(9):2275-2288
    [5]Degli Esposti M. Inhibitors of NADH-ubiquinone reductase:an overview. Biochimica et Biophysica Acta (BBA)-Bioenergetics,1998,1364(2):222-235
    [6]Schuler F, Casida J E. The insecticide target in the PSST subunit of complex I. Pest Management Science,2001,57(10):932-940
    [7]Sazanov L A, Hinchliffe P. Structure of the Hydrophilic Domain of Respiratory Complex I from Thermus thermophilus. Science,2006,311(5766):1430-1436
    [8]Berrisford J M, Sazanov L A. Structural Basis for the Mechanism of Respiratory Complex I. Journal of Biological Chemistry,2009,284(43):29773-29783
    [9]Efremov R G, Baradaran R, Sazanov L A. The architecture of respiratory complex I. Nature,2010,465(7297):441-445
    [10]Darrouzet E, Issartel J P, Lunardi J, et al. The 49-kDa subunit of NADH-ubiquinone oxidoreductase (Complex I) is involved in the binding of piericidin and rotenone, two quinone-related inhibitors. FEBS Letters,1998, 431(1):34-38
    [11]Page C C, Moser C C, Chen X, et al. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature,1999,402(6757):47-52
    [12]Nakamaru-Ogiso E, Sakamoto K, Matsuno-Yagi A, et al. The ND5 Subunit Was Labeled by a Photoaffinity Analogue of Fenpyroximate in Bovine Mitochondrial Complex I. Biochemistry,2002,42(3):746-754
    [13]Gong X, Xie T, Yu L, et al. The Ubiquinone-binding Site in NADH:Ubiquinone Oxidoreductase from Escherichia coli. Journal of Biological Chemistry,2003, 278(28):25731-25737
    [14]Yano T, Dunham W R, Ohnishi T. Characterization of the △μH+-Sensitive Ubisemiquinone Species (SQNf) and the Interaction with Cluster N2:New Insight into the Energy-Coupled Electron Transfer in Complex I. Biochemistry, 2005,44(5):1744-1754
    [15]Sekiguchi K, Murai M, Miyoshi H. Exploring the binding site of acetogenin in the ND1 subunit of bovine mitochondrial complex I. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2009,1787(9):1106-1111
    [16]Hollingworth R M, Ahammadsahib K I. Inhibitors of respiratory complex I. Mechanisms, pesticidal actions and toxicology. Reviews in pesticide toxicology, 1995,3:277-302
    [17]Schuler F, Casida J E. Functional coupling of PSST and ND1 subunits in NADH:ubiquinone oxidoreductase established by photoaffinity labeling. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2001,1506(1):79-87
    [18]Nicolaou KC, Pfefferkorn J A, Schuler F, et al. Combinatorial synthesis of novel and potent inhibitors of NADH:ubiquinone oxidoreductase. Chemistry & Biology,2000,7(12):979-992
    [19]Fang J, Beattie D S. Novel FMN-Containing Rotenone-Insensitive NADH Dehydrogenase from Trypanosoma brucei Mitochondria:Isolation and Characterization. Biochemistry,2002,41(9):3065-3072
    [20]Grivennikova V G, Kotlyar A B, Karliner J S, et al. Redox-Dependent Change of Nucleotide Affinity to the Active Site of the Mammalian Complex I. Biochemistry,2007,46(38):10971-10978
    [21]Hofhaus G, Attardi G. Efficient selection and characterization of mutants of a human cell line which are defective in mitochondrial DNA-encoded subunits of respiratory NADH dehydrogenase. Molecular and Cellular Biology,1995,15(2): 964-974
    [22]Sherer T B, Richardson J R, Testa C M, et al. Mechanism of toxicity of pesticides acting at complex I:relevance to environmental etiologies of Parkinson's disease. Journal of Neurochemistry,2007,100(6):1469-1479
    [23]Satoh T, Miyoshi H, Sakamoto K, et al. Comparison of the inhibitory action of synthetic capsaicin analogues with various NADH-ubiquinone oxidoreductases. Biochimica et biophysica acta,1996,1273(1):21-30
    [24]Yabunaka H, Kenmochi A, Nakatogawa Y, et al. Hybrid ubiquinone:novel inhibitor of mitochondrial complex I. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2002,1556(2-3):106-112
    [25]Lindell S D, Ort O, Lummen P, et al. The design and synthesis of novel inhibitors of NADH:ubiquinone oxidoreductase. Bioorganic & Medicinal Chemistry Letters,2004,14(2):511-514
    [26]Purohit A, Benetti R, Hayes M, et al. Quinazoline derivatives as MC-I inhibitors: Evaluation of myocardial uptake using Positron Emission Tomography in rat and non-human primate. Bioorganic & Medicinal Chemistry Letters,2007,17(17): 4882-4885
    [27]Radeke H, Hanson K, Yalamanchili P, et al. Synthesis and Biological Evaluation of the Mitochondrial Complex 1 Inhibitor 2-[4-(4-Fluorobutyl)-benzylsulfanyl]-3-methylchromene-4-one as a Potential Cardiac Positron Emission Tomography Tracer. Journal of Medicinal Chemistry,2007,50(18):4304-4315
    [28]Purohit A, Radeke H, Azure M, et al. Synthesis and Biological Evaluation of Pyridazinone Analogues as Potential Cardiac Positron Emission Tomography Tracers. Journal of Medicinal Chemistry,2008,51(10):2954-2970
    [29]Surup F, Shojaei H, von Zezschwitz P, et al. Iromycins from Streptomyces sp. and from synthesis:New inhibitors of the mitochondrial electron transport chain. Bioorganic & Medicinal Chemistry,2008,16(4):1738-1746
    [30]Leiris S J, Khdour O M, Segerman Z J, et al. Synthesis and evaluation of verticipyrone analogues as mitochondrial complex I inhibitors. Bioorganic & Medicinal Chemistry,2010,18(10):3481-3493
    [31]La Forge F B, Haller H L, Smith L E. The Determination of the Structure of Rotenone. Chemical Reviews,1933,12(2):181-213
    [32]Nagai K. uber rotenone, ein wirksamer bestandteil der derriswurzei. J Tokyo Chem Soc,1902,23:740
    [33]Butenandt A. Uber das Rotenon, den physiologisch wirksamen Bestandteil der Derris elliptica. Justus Liebigs Annalen der Chemie,1928,464(1):253-277
    [34][34] Takei S. Uber Rotenon, den wirksamen Bestandteil der Derriswurzel. Berichte der deutschen chemischen Gesellschaft (A and B Series),1928,61(5): 1003-1007
    [35]Butenandt A, Mc Cartney W. Untersuchungen uber pflanzliche Fisch-und Insektengifte. III.3. Mitteilung uber Rotenon, den physiologisch wirksamen Bestandteil der Derris elliptica:Die Konstitution des Rotenons. Justus Liebigs Annalen der Chemie,1932,494(1):17-41
    [36]LaForge F B, Haller H L. Rotenone. Xix. The nature of the alkali soluble hydrogenation products of rotenone and its derivatives and their bearing on the structure of rotenone. Journal of the American Chemical Society,1932,54(2): 810-818
    [37]Takei S, Miyajima S, Ono M. Rotenone, the active constituent of derris root. IX. Addendum on the constitution of tetrahydrotubaic acid and of rotenone. Synthesis of some degradation products of rotenone. Ber Deut Chem Ges,1932, 65B:1041-1049
    [38]Buchi G, Crombie L, Godin P J, et al.553. The absolute configuration of rotenone. Journal of the Chemical Society (Resumed),1961,0(0):2843-2860
    [39]Arora S K, Bates R B, Grady R A, et al. Crystal and molecular structure of the one to one complex of rotenone and carbon tetrachloride. Journal of the American Chemical Society,1975,97(20):5752-5755
    [40]周中振.鱼藤酮类衍生物的研究进展.有机化学,2008,28(11):1849-1856
    [41]Nawrot J, Harmatha J, Kostova I, et al. Antifeeding activity of rotenone and some derivatives towards selected insect storage pests. Biochemical Systematics and Ecology,1989,17(1):55-57
    [42]胡林,黄晓东,夏坚.鱼藤酮及六种哒唑、咪唑类医用驱虫剂对松材线虫的作用.江西农业大学学报,2006,28(2):204-207
    [43]李水清,孙江华,张钟宁.鱼藤酮对松墨天牛产卵和取食行为的影响.昆虫学报,2005,48(5):687-691
    [44]Srivastava P, Panda D. Rotenone inhibits mammalian cell proliferation by inhibiting microtubule assembly through tubulin binding. FEBS Journal,2007, 274(18):4788-4801
    [45]莫美华,黄彰欣.鱼藤酮及其混剂对蔬菜害虫的毒效研究.华南农业大学学报,1994,15(4):58-62
    [46]李世龙.牛螨病的诊治.云南农业,1998,1:14-17
    [47]Li L, Wang H K, Chang J J, et al. Antitumor Agents,138. Rotenoids and Isoflavones as Cytotoxic Constituents from Amorpha fruticosa. Journal of Natural Products,1993,56(5):690-698
    [48]Cao S, Schilling J K, Miller J S, et al. Cytotoxic Compounds from Mundulea chapelieri from the Madagascar Rainforestl. Journal of Natural Products,2004, 67(3):454-456
    [49]Sakurai Y, Sakurai N, Taniguchi M, et al. Rautandiols A and B, Pterocarpans and Cytotoxic Constituents from Neorautanenia mitis,1. Journal of Natural Products, 2005,69(3):397-399
    [50]Haller H L, Goodhue L D, Jones H A. The Constituents of Derris and Other Rotenone-bearing Plants. Chemical Reviews,1942,30(1):33-48
    [51]Oberholzer M E, Rall G J H, Roux D G. Synthesis of neobanone, a 12a-methoxy-rotenoid. Journal of the Chemical Society, Perkin Transactions 1, 1977,0(4):423-426
    [52]Norton L B, Hansberry R. Constituents of the Insecticidal Resin of the Yam Bean (Pachyrrhizus erosus)1. Journal of the American Chemical Society,1945,67(9): 1609-1614
    [53]Cheng H M, Yamamoto I, Casida J E. Rotenone photo decomposition. Journal of Agricultural and Food Chemistry,1972,20(4):850-856
    [54]Konoshima T, Terada H, Kokumai M, et al. Studies on Inhibitors of Skin Tumor Promotion, XII. Rotenoids from Amorpha fruticosa. Journal of Natural Products, 1993,56(6):843-848
    [55]Fang N, Casida J E. Novel Bioactive Cube Insecticide Constituents:Isolation and Preparation of 13-homo-13-Oxa-6a,12a-dehydrorotenoids. The Journal of Organic Chemistry,1997,62(2):350-353
    [56]Fang N, Rowlands J C, Casida JE. Anomalous Structure-Activity Relationships of 13-homo-13-Oxarotenoids and 13-homo-13-Oxadehydro-rotenoids. Chemical Research in Toxicology,1997,10(8):853-858
    [57]Fang N, Casida J E. Cube Resin Insecticide:Identification and Biological Activity of 29 Rotenoid Constituents. Journal of Agricultural and Food Chemistry,1999,47(5):2130-2136
    [58]Robertson A.122. Experiments on the synthesis of rotenone and its derivatives. Part Ⅲ. The dehydrorotenone nucleus. Journal of the Chemical Society (Resumed),1933:489-493
    [59]Miyano M, Matsui M. Synthesen und Konfigurationsermittlung in Rotenoid-Reihe. Ⅳ. Mitteilung. Synthese des Rotenons. Bulletin of the Agricultural Chemical Society of Japan,1958,22(2):128-130
    [60]Miyano M, Matsui M. Synthesen und Konfigurationsermittlung in der Rotenoid-Reihe, V. Partialsynthese des Rotenons und Dihydrorotenons. Chemische Berichte,1958,91(10):2044-2052
    [61]Miyano M, Kobayashi A, Matsui M. Syntheses and Configurational Analysis of Rotenoids, XIX The Total Synthesis of Natural Rotenone. Agricultural and Biological Chemistry,1961,25(9):673-677
    [62]Miyano M. Rotenoids. XX.1 Total Synthesis of Rotenone. Journal of the American Chemical Society,1965,87(17):3958-3962
    [63]Omokawa H, Yamashita K. A Novel Synthesis of (±)-Mun-duserone via Acetylenic Intermediates. Agricultural and Biological Chemistry,1973,37(1): 195-196
    [64]Pastine S J, Sames D. Concise Synthesis of the Chemopreventitive Agent (±)-Deguelin via a Key 6-Endo Hydroarylation. Organic Letters,2003,5(22): 4053-4055
    [65]Unai T, Cheng H M, Yamamoto I, et al. Chemical and Biological O-Demethylation of Rotenone Derivatives. Agricultural and Biological Chemistry,1973,37(8):1937-1944
    [66]Ueno H, Miyoshi H, Inoue M, et al. Structural factors of rotenone required for inhibition of various NADH-ubiquinone oxidoreductases. Biochim Biophys Acta, 1996,1276(3):195-202
    [67]Chubachi M, Hamada M. Photooxygenation of Rotenone. Chemistry Letters, 1974,3(5):397-400
    [68]Ueno H, Miyoshi H, Ebisui K, et al. Comparison of the Inhibitory Action of Natural Rotenone and its Stereoisomers with Various NADH-ubiquinone Reductases. European Journal of Biochemistry,1994,225(1):411-417
    [69]Ashack R J, McCarty L P, Malek R S, et al. Evaluation of rotenone and related compounds as antagonists of slow-reacting substance of anaphylaxis. Journal of Medicinal Chemistry,1980,23(9):1022-1026
    [70]Josephs J L, Casida J E. Novel synthetic rotenoids with blocked B/C ring systems. Bioorganic & Medicinal Chemistry Letters,1992,2(6):593-596
    [71]Burgos J, Redfearn E R. The inhibition of mitochondrial reduced nicotinamide-adenine dinucleotide oxidation by rotenoids. Biochimica et Biophysica Acta (BBA)-Enzymology and Biological Oxidation,1965,110(3): 475-483
    [72]叶姣,彭俊梅,胡艾希.鱼藤酮肟羧酸酯的合成和生物活性.有机化学,2011,31(6):886-890
    [73]胡艾希,叶姣,邹孟,等.羧酸鱼藤酮肟酯及其制备方法与应用,CN101337968B,2010-12-1
    [74]胡艾希,王超,叶姣,等.氨基甲酸鱼藤酮肟酯及其制备方法与应用,CN101343277B,2010-10-6
    [75]胡艾希,王超,邹孟,等.鱼藤酮肟醚及其制备方法和应用,CN101284836B,2010-6-23
    [76]Ye J, Wang C, Hu A X, et al. Synthesis, Crystal Structure and Biological Activities of N-Octyl Rotenone Oximino Carbamate. Chinese J Struct Chem, 2010,29(2):297-301
    [77]江定心,张信旺.鱼藤酮腙的合成及生物活性.农药,2006,45(12):810-811
    [78]Liu Y Q, Ohkoshi E, Li L H, et al. Design, synthesis and cytotoxic activity of novel spin-labeled rotenone derivatives. Bioorganic & Medicinal Chemistry Letters,2012,22(2):920-923
    [79]Crombie L, Josephs J L, Cayley J, et al. The rotenoid core structure: Modifications to define the requirements of the toxophore. Bioorganic & Medicinal Chemistry Letters,1992,2(1):13-16
    [80]Singhai A K, Sharma R P, Brauah J N, et al. Conversion of rotenone into elliptone and 12a-hydroxyrotenone. Chem & Ind,1982,15:549
    [81]Caboni P, Sherer T B, Zhang N, et al. Rotenone, Deguelin, Their Metabolites, and the Rat Model of Parkinson's Disease. Chemical Research in Toxicology, 2004,17(11):1540-1548
    [82]Kostova I, Spasovska N, Maneva L, et al. Reaction of rotenoids with hydrazine. Heterocycles,1986,24(9):2471-2477
    [83]Shinichi N, Teppei A, Taisei U, et al. Studies on the chemical transformation of rotenoids. I. Ring transformation of (-)-(6aS,12aS,2R)-rotenone into benzopyrano[3,4-c]-pyrazoles. Heterocycles,1986,24(4):913-917
    [84]Kostova I. Reactions of rotenoids with hydroxylamine. Liebigs Annalen der Chemie,1988,1988(3):195-198
    [85]Kostova I, Simova S. Preparation and stereochemical characterization of some N-acyl-[1]benzopyrano[3,4-c]pyrazole derivatives from rotenoids. Monatshefte fur Chemie/Chemical Monthly,1989,120(12):1107-1112
    [86]Sakakibara J, Nagai S I, Akiyama T, et al. Studies on the Chemical Transformations of Rotenoids. Ⅳ.:Synthesis of Novel Benzofuro[2,3-d]-pyridazines Fused with Tetrazole,1,2,4-Triazole and 1,2,4-Triazine. Chemical & Pharmaceutical Bulletin,1988,36(5):1685-1691
    [87]Jinsaku S, Shinichi N, Teppei A, et al. Studies on the chemical transformations of rotenoids. Ⅲ Ring conversions of methyl rotenononate and β-rotenonone. Heterocycles,1988,27(2):423-435
    [88]Nagai S I, Takemoto S, Ueda T, et al. Studies on the chemical transformations of rotenoids.6 Synthesis and antitumor-promoting activity of benzofuro[2,3-d]-pyridazines fused with 1,2,4-triazole,1,2,4-triazine and 1,2,4-triazepine. Journal of Heterocyclic Chemistry,2001,38(5):1097-1101
    [89]Nagai S I, Ueda T, Sakakibara H, et al. Studies on the chemical transformations of rotenoids.5. Synthesis and cytotoxicity of 1,3-diazepino[5,6-b]benzofuran and pyridazino[4,5-b]benzofurans fused with thiazole, imidazole and pyrimidine. Journal of Heterocyclic Chemistry,1998,35(3):591-594
    [90]Cockerill G S, Levett P C, Whiting D A. Synthesis of novel inhibitors of electron transport. Journal of the Chemical Society, Perkin Transactions 1,1995,0(9): 1103-1113
    [91]Levett P C, Whiting D A, Cayley J, et al. Structural requirements for respiratory inhibition by rotenoids; is an intact B/C ring system essential?. Bioorganic & Medicinal Chemistry Letters,1994,4(3):505-508
    [92]Ahmad-Junan S A, Amos P C, Cockerill G S, et al. Synthetic studies on electron transport inhibitors related to natural products. Biochemical Society transactions, 1994,22(1):237-241
    [93]Carson D, Cass M W, Crombie L, et al. New synthetic methods in rotenoid chemistry:[7[prime or minute]-13C]- and [7[prime or minute]-14C]-(-)-rotenone and (+/-)-isorotenone. Journal of the Chemical Society, Perkin Transactions 1,1982:773-778
    [94]Corey E J, Chaykovsky M. Formation and Photochemical Rearrangement of β'-Ketosulfoxonium Ylides. Journal of the American Chemical Society,1964, 86(8):1640-1641
    [95]Kessler R C Berglund P, Demler O, et al. The epidemiology of major depressive disorder:Results from the national comorbidity survey replication (ncs-r). The Journal of the American Medical Association,2003,289(23):3095-3105
    [96]Chuang C Y, Shi Y C, You H P, et al. Antidepressant Effect of GABA-Rich Monascus-Fermented Product on Forced Swimming Rat Model. Journal of Agricultural and Food Chemistry,2011,59(7):3027-3034
    [97]Ramanathan L, Hu S, Frautschy S A, et al. Short-term total sleep deprivation in the rat increases antioxidant responses in multiple brain regions without impairing spontaneous alternation behavior. Behavioural Brain Research,2010, 207(2):305-309
    [98]Takeuchi K, Kohn T J, Honigschmidt N A, et al. Advances toward new antidepressants beyond SSRIs:1-Aryloxy-3-piperidinylpropan-2-ols with dual 5-HT1A receptor antagonism/SSRI activities. Part 5. Bioorganic & Medicinal Chemistry Letters,2006,16(9):2347-2351
    [99]Rocco V P, Spinazze P G, Kohn T J, et al. Advances toward new antidepressants beyond SSRIs:1-aryloxy-3-piperidinylpropan-2-ols with dual 5-HT1A receptor antagonism/SSRI activities. Part 4. Bioorganic & Medicinal Chemistry Letters, 2004,14(10):2653-2656
    [100]Hatzenbuhler N T, Evrard D A, Harrison B L, et al. Synthesis and Biological Evaluation of Novel Compounds within a Class of 3-Aminochroman Derivatives with Dual 5-HT1A Receptor and Serotonin Transporter Affinity. Journal of Medicinal Chemistry,2006,49(15):4785-4789
    [101]郑永勇,解鹏,张瑾,等.芳基哌嗪苯并嗯嗪类化合物的涉及、合成及生物活性研究.药学学报,2012,47(6):755-763
    [102]Muto Y, Ninomiya M, Fujiki H. Present Status of Research on Cancer Chemoprevention in Japan. Japanese Journal of Clinical Oncology,1990,20(3): 219-224
    [103]Barron D, Ibrahim R K. Isoprenylated flavonoids--a survey. Phytochemistry, 1996,43(5):921-982
    [104]Jiangning G, Xinchu W, Hou W, et al. Antioxidants from a Chinese medicinal herb-Psoralea corylifolia L. Food Chemistry,2005,91(2):287-292
    [105]Stevens J F, Ivancic M, Hsu V L, et al. Prenylflavonoids from Humulus lupulus. Phytochemistry,1997,44(8):1575-1585
    [106]Fang N, Casida J E. New Bioactive Flavonoids and Stilbenes in Cube Resin Insecticide. Journal of Natural Products,1998,62(2):205-210
    [107]Elsohly H N, Joshi A S, Nimrod A C, et al. Antifungal chalcons from Maclura tinctoria. Planta Med,2001,67(1):87-89
    [108]Tsopmo A, Tene M, Kamnaing P, et al. Geranylated flavonoids from Dorstenia poinsettifolia. Phytochemistry,1998,48(2):345-348
    [109]汪秋安,丁敏,景明.2-取代芳基苯并呋喃类化合物的合成.合成化学,2006,14(2):162-165
    [110]von ReuB S H, Konig W A. Corsifurans A-C,2-arylbenzofurans of presumed stilbenoid origin from Corsinia coriandrina (Hepaticae). Phytochemistry,2004, 65(23):3113-3118
    [111]聂爱华,顾为,王勇俊,等.2H-1-苯并吡喃衍生物的合成及其体外抗癌活性的初步评价.中国药物化学杂志,2008,18(2):81-89
    [112]Zhang F F, Shen H M, Zhu X Q. Research progress on anti-tumor effects of luteolin. Zhejiang Da Xue Xue Bao,2006,35:573-578
    [113]Kanadaswami C, Lee L T, Lee P Ph, et al. The Antitumor Activities of Flavonoids. In Vivo,2005,19(5):895-909
    [114]Chowdhury A R, Sharma S, Mandal S, et al. Luteolin, an emerging anti-cancer flavonoid, poisons eukaryotic DNA topoisomerase I. Biochemical Journal,2002, 366(2):653-661
    [115]Pieters L, Van Dyck S, Gao M, et al. Synthesis and Biological Evaluation of Dihydrobenzofuran Lignans and Related Compounds as Potential Antitumor Agents that Inhibit Tubulin Polymerization. Journal of Medicinal Chemistry, 1999,42(26):5475-5481
    [116]Ni G, Zhang Q J, Zheng Z F, et al.2-Arylbenzofuran Derivatives from Morus cathayana. Journal of Natural Products,2009,72(5):966-968
    [117]Nguyen P H, Le T V T, Thuong P T, et al. Cytotoxic and PTP1B inhibitory activities from Erythrina abyssinica. Bioorganic & Medicinal Chemistry Letters, 2009,19(23):6745-6749
    [118]Atta S M S, Farrag D S, Sweed A M K, et al. Preparation of new polycyclic compounds derived from benzofurans and furochromones. An approach to novel 1,2,3-thia-, and selena-diazolofurochromones of anticipated antitumor activities. European Journal of Medicinal Chemistry,2010,45(11):4920-4927
    [119]Burns T P, Rieke R D. Preparation of Grignard reagents from 3-halo ethers. The Journal of Organic Chemistry,1983,48(22):4141-4143
    [120]Zeiger G, Heilmann D, Henning D, et al. Aryloxyalkanoic acids, their esters and cycling products as pesticide-active compounds. Wissenschaftliche Zeitschrift der Paedagogischen Hochschule Karl Liebknecht Potsdam,1977,21(1):29-46
    [121]Gaimster K. Plant-growth substances:ω-aryl- and ω-aryloxy-alkylcarboxylic acids. Journal of the Science of Food and Agriculture,1956,7(5):320-329
    [122]Barrett I, Meegan M J, Hughes R B, et al. Synthesis, biological evaluation, structural-activity relationship, and docking study for a series of benzoxepin-derived estrogen receptor modulators. Bioorganic & Medicinal Chemistry,2008,16(21):9554-9573
    [123]Khanna J M, Tandon V K, Kar K, et al. A new class of antiarrhythmic agents: Mannich bases of 3,4-dihydro-l-benzoxepin-5(2H)-ones and related compounds. Indian Journal of Chemistry, Section B:Organic Chemistry Including Medicinal Chemistry,1985,24B(1):71-77
    [124]Synerholm M E, Zimmerman P W. Preparation of a series of ω-(2,4-dichlorophenoxy)-aliphatic acids and some related compounds with a consideration of their biochemical role as plant-growth regulators. Contributions from Boyce Thompson Institute,1947,14:369-382
    [125]Tandon V K, Awasthi A K, Singh K A, et al. Nickel-Promoted Favorskii Type Rearrangement of Cyclic a-Bromoketones. Heterocycles,2010,80(1):593-600
    [126]Sarges R, Schnur R C, Belletire J L, et al. Spiro Hydantoin Aldose Reductase Inhibitors. Journal of Medicinal Chemistry,1988,31(1):230-243
    [127]O'Donnell R W H, Reed F P, Robertson A.99. Experiments on the synthesis of rotenone and its derivatives. Part Ⅸ. Journal of the Chemical Society (Resumed), 1936:419-422
    [128]罗先福,胡艾希,王宇,等.4-(7-甲氧基-2,2-二甲基-2,3-二氢苯并呋喃-5-基)-2-芳氨基噻唑的合成、晶体结构及杀虫活性.高等学校化学学报,2011,32(12):2800-2805
    [129]Marquet A, Jacques J. Halogenations with quaternary ammonium perhalides in tetrahydrofuran. Ⅱ. Selective halogenations in the α-position of ketones and dioxolanes. Bulletin de la Societe Chimique de France Publisher,1962:90-6
    [130]Tandon V K, Awasthi A K, Singh K A, et al. Nickel-promoted favorskii type rearrangement of cyclic a-bromoketones. Heterocycles,2010,80(1):593-600
    [131]Swarai B, Maiti S R. Ray Chaudhuri, Amareshwar Chatterjee. Lweis Acid-Promoted Favorskii-Type Ring Contraction of Some Cyclic a-Bromo Ketones and Their Acetals. Synthesis,1987,9:806-809