橡胶中炭黑的分散度评价机理和方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混炼过程是橡胶加工中必不可少的重要环节。炭黑、白炭黑等填料作为橡胶制品重要的补强剂,其分散性的好坏直接影响到胶料的物理机械性能和后续加工性能,甚至橡胶产品的质量和使用寿命。炭黑等补强剂分散不均,易形成大的凝胶块,不仅不利于压延、挤出等后续加工工艺的顺利进行,对高速制品还容易引起动平衡问题。炭黑(包含白炭黑等补强剂)分散度主要反映的是炭黑等补强剂在胶料中的分散情况。它与混炼方法、混炼时间等多个因素有关,如上顶栓压力、转子转速、冷却水温度、转子结构和类型等条件的变化都会产生不同的混炼效果。研究炭黑在混炼过程中的分散机理,量化评定其分散程度有利于改善混炼工艺和橡胶制品的质量。
     目前,可自动评价炭黑分散度的仪器虽然在橡胶工业中已经得到较为广泛的应用,但存在的问题也是非常明显的,具体表现在炭黑与橡胶之间没有明显的界限,炭黑的识别存在较大误差;分散度评价方法不够科学和完整,仅能在局部范围内评价炭黑的破碎程度,未能实现其整体破碎和扩散程度的评价;炭黑分散过程稳定性仅能通过反映密炼机瞬时功率的过程曲线间接的表征等等。
     针对这些问题,本文对炭黑的识别、炭黑形态特征的表征、分散度评价体系的建立、炭黑分散过程稳定性的判断进行了深入地研究,具体工作如下:
     1.结合对胶料图像特点的分析,通过对几种图像分割算法的比较,选择K均值法作为识别炭黑的方法。针对K均值法存在的问题,提出了两种优化方法:基于对称分布的优化方法和基于拐点的优化方法。通过对比实验结果,认为基于拐点的优化方法更加合理。运用K均值法,并结合基于拐点的图像优化方法,解决了区分炭黑和橡胶的问题。
     2.针对炭黑结构形态对胶料性能产生的影响,提出了通过长径比、形态复杂度来表征炭黑形态特征的方法。椭圆拟合法和最小外接长方形法的运用,解决了长径比的计算问题。经实验数据对比,认为椭圆拟合法更加合理。基于凸包的方法和基于周长的方法解决了形态复杂度的表征问题。实验结果表明,基于周长的方法更准确。
     3.通过观察对比,发现了炭黑与杂质形态上的差异性,实现了胶料图像中丝状杂质、划痕等的处理。针对丝状杂质成弧形、周长比较长等特点,通过计算区域中空面积和周长与实心率的比值来识别该类型杂质。实验数据表明,中空面积大于3个像素、或者周长与实心率的比值大于160的区域可以认为是该类型杂质。对于划痕等线型杂质,实验结果表明,长径比不小于6.5的区域可以认定为该类型杂质。
     4.通过对标准图片的研究和分析,发现了“炭黑的总面积和个数随着分散度的提高不断变小”这一变化规律。本文以炭黑的总面积或个数为基础,并结合炭黑面积特征区间的划分,建立了四种评价炭黑微观分散度的模型。实验数据表明,基于面积的8特征区间的评价模型比较合理。
     5.引入统计过程控制(SPC)方法,在对炭黑进行多点检测的基础上,通过分析炭黑浓度是否满足稳定状态下数据分布的要求,实现了炭黑分散过程稳定性的判断。再利用多点检测的炭黑数据,计算出可以反映炭黑宏观破碎程度和扩散程度的特征值(主要包括均值、偏度、峰度)。
     本文在研究如何更准确的识别炭黑的基础上,实现了炭黑形态特征的量化表征,建立了一套从微观和宏观两个层面综合评价炭黑分散度的体系,提出了更直接评价炭黑分散稳定性的方法,并开发出一套与之相对应的软件系统。课题的研究成果,对研究混炼过程中各工艺参数变化对分散度的影响,建立分散度和胶料物理性能之间的对应关系,最终实现混炼过程的优化提供理论支持和实验依据。
Mixing is absolutely necessary and important in the process of rubber processing. The dispersion of rubber product's important reinforcing fillers, such as carton black and white carton black, has great influence on rubber's physical and mechanical properties and processing performance, even rubber product's quality and service life. It's easy to form big tiles when carton black's dispersion is uneven, which is not only bad to the subsequent process, such as rolling, extruder, but also causes unbalance problem of products with great speed. The dispersion of carton black(including other fillers) shows dispersing condition of carton black in rubber, which is related with many factors, such as convertible-top peg's press, rotor's speed, cooling water's temperature, rotor's structure and type. Changing these factors will have an effect on mixing. It's great meaningful for improving mixing process and quality of rubber product to research carton black's dispersion theory and evaluate carton black's dispersion.
     At present, the devices that can evaluate carton black's dispersion automatically have been great application in rubber industry, but their problems are also obvious. for example, there are some deviations in recognizing carton black of rubber image because there is not obvious boundary between carton black and rubber. The method of evaluating dispersion is not enough complete and scientific, the result of evaluation just represents local carton black's fragmentation, not shows the degree of carton black's whole fragmentation and diffusion. The stability of carton black's dispersion process is just characterized by process curve which shows instantaneous power of mixer.
     In accordance with these problems, this paper researched identifying carton black, characterizing carton black's morphology, building the dispersion evaluation system, judging the stability of carton black's dispersion process deeply, special works included:
     1. By the way of comparing several typical image segmentation algorithm combined with analysis of rubber image's feature, k-means method was selected to process image. Thinking about the problems of k-means, two methods were supplied: the method based on symmetric distribution and the method based on inflection point. By comparing outcomes of experiments, the method based on inflection point was more reasonable. Combining the method based on inflection point, k-means algorithm solved the problem of distinguish carton black and rubber.
     2. Given the influence of carton black's shape on rubber's property, A new method was supported that the parameters, such as length diameter ratio, morphology complexity, were used to characterize carton black's shape. The method of ellipse fitting and the method of minimum bounding rectangle solved the problem of calculating length diameter ratio. Experiments proved that the method of ellipse fitting was more reasonable. The method based on convex hull and the method based on perimeter solved the problem of calculating morphology complexity. Experiments proved that the method of perimeter was more precise.
     3. According to the difference between impurity and carton black, filamentous impurities and scratches in rubber image was disposed. According to the characteristics of long perimeter and arc about filamentous impurities, the ratio of perimeter to solidity of region and hole's area were calculated to distinguish this type of impurity. Experiments proved that if hole's area was larger than3pixels or the value of the ratio larger than160, the region was regarded as filamentous impurity. For linear impurity, such as scratch, experiments proved that if a region's length-diameter ratio is larger than6.5, the region was regarded as scratch.
     4. Though analyzing standard images, the rule was found that the whole area and count of carton black changed smaller with the improvement of dispersion level. Combined with divided feature regions, this paper built four evaluation models about carton black's microcosmic dispersion on the basis of the whole area and count of carton black. Experiments proved that the model had eight feature regions based on area was more reasonable.
     5. According to the theory that product's feature values satisfied normal distribution in the stable process, on the basis of detecting carton black many times, SPC was used to judge whether canton black's density satisfied the requirement of data distribution in the stable process, which decided the stability of carton dispersing process. According to the detected data, the feature values (including mean, skewness, kurtosis) were calculated, which described macroscopic fragmentation and diffusion of carton black.
     On the basis of identifying carton black more precisely, this paper built an evaluation model that represented the degree of fragmentation and diffusion from local and global perspectives,supplied a new method of evaluating carton black's dispersion stability directly and developed corresponding software system. The project researching was helpful for researching the influence of changing process parameters on carton black's dispersion, building the relationship between dispersion and rubber's physical properties, which was used to optimizing mixing process.
引文
[1]王梦蛟,填充聚合物-填料和填料-填料相互作用对填充硫化胶动态力学性能的影响(续1)[J],轮胎工业,2000,20(11):670-677
    [2]张士齐,贾红兵,刘卫东,填料-橡胶的化学和物理作用及其对补强的影响[J],橡胶工业,2003,50(4):201-204
    [3]赵光贤,橡胶的补强[J],橡塑技术与装备,2007,33(4):23-27
    [4]Michael Strauβ, Thomas Pieper, Weiguo Peng, Hanns-Georg Kilian, Structure of filled rubbers and mechanism of reinforcement[J], MAKROMOLEKULARE CHEMIE,1993,76(1):131-136
    [5]C. W. Van Der Wal, H. W. Bree, F. R. Schwarzl, Mechanical properties of highly filled elastomers. Ⅱ. Relationship between filler characteristics, thermal expansion, and bulk moduli[J], JOURNAL OF APPLIED POLYMER SCIENCE,1965,9(6):2143-2166
    [6]Mohammad Mahdi Saatchi, Akbar Shojaei, Effect of carbon-based nanoparticles on the cure characteristics and network structure of styrene-butadiene rubber vulcanizate[J], POLYMER INTERNATIONAL,2012,61(4):664-672
    [7]Wenjin Zhang, Arkady I. Leonov, IGC study of filler-filler and filler-rubber interactions in silica-filled compounds[J], JOURNAL OF APPLIED POLYMER SCIENCE,2001,81(10): 2517-2530
    [8]Klara Aniskevich, Olesja Starkova, Andrey Aniskevich, Deformational properties of filled rubber under quasistatic loading[J], JOURNAL OF APPLIED POLYMER SCIENCE,2012, 123(3):1621-1629
    [9]曹智灵,炭黑对硫化胶基本性能定伸应力的影响[J],贵州化工,2007,32(2):42-44
    [10]朱永康,橡胶用补强炭黑发展的新动向[J],橡胶参考资料,2009,39(1):13-17
    [11]Debapriya De, Prabir Kr. Panda, Madhusudan Roy, Satyaban Bhunia, Abu Ismail Jaman, Reinforcing effect of nanosilica on the properties of natural rubber/reclaimed ground rubber tire vulcanizates[J], POLYMER ENGINEERING & SCIENCE,2013,53(2):227-237
    [12]Chih-Cheng Peng, Astrid Gopfert, Markus Drechsler, Volker Abetz, "Smart" silica-rubber nanocomposites in virtue of hydrogen bonding interaction[J], POLYMERS FOR ADVANCED TECHNOLOGIES,16(11-12):770-782
    [13]S. Thongsang, N. Sombatsompop, A. Ansarifar, Effect of fly ash silica and precipitated silica fillers on the viscosity, cure, and viscoelastic properties of natural rubber[J], POLYMERS FOR ADVANCED TECHNOLOGIES,2008,19(9):1296-1304
    [14]Saeed Ostad Movahed, Ali Ansarifar, Mo Song, Comparing the dynamic behaviour of several rubbers filled with silanized silica nanofiller[J], POLYMER INTERNATIONAL,2009,58(2): 209-217
    [15]K. Ansar Yasin, A. Ansarifar, S. Hameed, L. Wang, A new method for crosslinking and reinforcing acrylonitrile-butadiene rubber using a silanized silica nanofiller[J], POLYMERS FOR ADVANCED TECHNOLOGIES,2011,22(2):215-224
    [16]A. Ansarifar, L. Wang, R. J. Ellis, Y. Haile-Meskel, Novel technique for crosslinking and reinforcing high-cis polybutadiene rubber using a silanized silica nanofiller[J], JOURNAL OF APPLIED POLYMER SCIENCE,2007,106(2):1135-1145
    [17]王文英,橡胶加工工艺[M],北京:化学工业出版社,1993:100-128
    [18]鲁冰雪,张振秀,付丽等,不同粒径炭黑填充的氯化聚乙烯/氯丁橡胶共混胶的性能[J],合成橡胶工业,2012,35(2),152-156
    [19]何燕,马连湘,崔琪,炭黑对轮胎胎面胶热物性的影响[J],合成橡胶工业,2007,30(3):211-214
    [20]曲秀芳,子午线轮胎胎面动态变形与炭黑结构形态的关系[J],世界橡胶工业,2006,33(11),16-17
    [21]朱永康,炭黑结构对工业轮胎胶料机械性能的影响[J],橡塑资源利用,2012,2:1-4
    [22]崔琪,张方良,何燕,马连湘,炭黑用量及硫化对橡胶导热系数的影响[J],世界橡胶工业,2008,35(2):17-19
    [23]关兵峰,魏海捷,马国富,赵春禄,炭黑填充橡胶补强机理的研究进展[J],特种橡胶制品,2010,32(2):59-64
    [24]杨鸣波,聚合物成型加工基础[M],北京:化学工业出版社,2009:59-84
    [25]赵素合,聚合物加工工程[M],北京:中国轻工业出版社,2001:7-60
    [26]Amal M.K. Esawi, Hanadi G. Salem, Hanady M. Hussein, Adham R. Ramadan. Effect of processing technique on the dispersion of carbon nanotubes within polypropylene carbon nanotube-composites and its effect on their mechanical properties[J], Polymer Composites. 2010,31(5):772-780
    [27]Shinichi Kawasaki, Masahiro Yamada, Kana Kobori, Fengzhe Jin, Toshikazu Takata. Fine dispersion of carbon black in fluorene-based resin[J], Polymer Composites.2008,29(9):1044-1048
    [28]S.N.Goyanes,M.P.Beccar Varela, M.C.Mariani, A.J.Marzocca. Influence of carbon black dispersion on the thermal diffusivity of an SBR vulcanizate[J], Journal of Applied Polymer Science. 1999,72(11):1379-1385
    [29]R.B.Mathur, B.P.Singh, T.L.Dhami, Y.Kalra, N.Lal, R.Rao, A.M. Rao. Influence of carbon nanotube dispersion on the mechanical properties of phenolic resin composites[J], Polymer Composites,2010,31(2):321-327
    [30]Sung-Seen Choi, Changwoon Nah, Byung-Wook Jo. Properties of natural rubber composites reinforced with silica or carbon black:influence of cure accelerator content and filler dispersion[J], Polymer International,2003,52(8):1382-1389
    [31]Kataoka Takahiro, Zetterlund Per, Yamada Bunichiro. Effect of mixing sequence on the properties of carbon black and silica filled rubber[J], Plastics, Rubber and Composites,2003,32(7): 291-296
    [32]J.M.Richards, G.H.Wostenholm, B.Yates, M.I.Darby, L.N. Phillips. Thermal properties of carbon-filled silicone rubbers for use in thermal expansion moulding[J], Journal of Materials Science,1990,25(1):721-724
    [33]Lianshi Wang, Yaling Lin, Anqiang Zhang. Dispersion of carbon black in high-abrasion furnace black filled nonsulfur modified powdered polychloroprene rubber[J], Journal of Applied Polymer Science,2006,101(1):192-196
    [34]Jiyun Feng, Chi-ming Chan, Jian-xiong Li. A method to control the dispersion of carbon black in an immiscible polymer blend[J], Polymer Engineering & Science,2003,43(5):1058-1063
    [35]James L. White, Dan Liu, Sug Hun Bumm. Development of dispersion in rubber-particle compounds in internal and continuous mixers[J], Journal of Applied Polymer Science,2006,102(4): 3940-3943
    [36]赵相森,何景武,董方清,混炼工艺对炭黑分散性及胶料力学性能的影响[J],轮胎工业,2000,20(10):614-615
    [37]吕强,吴启明,张有华,曾喜胜,混炼工艺对混炼胶中炭黑分散性的影响[J],轮胎工业,2001,21(9):559-561
    [38]吴秀丽,张贺广,改进混炼工艺提高炭黑分散度[J],轮胎工业,1999,19(10):625-627
    [39]唐云峰,炭黑分散度对轮胎胶料质量的影响[J],轮胎工业,1996,16(2):90-92
    [40]A.Y.Coran, J.B.Domet. The dispersion of carbon black in rubber-part Ⅰ. Rapid method for assessing quality of dispersion[J], Rubber Chem. Technol.,1992,95:173
    [41]M.Rahim Vaseghi, D. William Southwart, G.A. William Murray. Carbon Black Dispersion in Rubber[J], Iranian Journal of Polymer Science and Technology,1995,4(2):146-152
    [42]Paolo Marconcini, Massimo Macucci. Optimized technique for the calculation of carbon nanotube dispersion relationships[J], physica status solidi (a),2007,204(6):1898-1904
    [43]Natthakarn Romyen, Supakanok Thongyai, Piyasan Praserthdam. Surfactant-dispersed carbon black in polyimide nanocomposites:Spectroscopic monitoring of the dispersion state in the polymer matrix[J], Journal of Applied Polymer Science,2010,115(3):1622-1629
    [44]胡辉婵,橡胶中碳黑分散度的质量智能评级模型及其软件系统实现[D],华南理工大学硕士论文,2002
    [45]谢振合,橡胶中炭黑分散度的模式识别及软件设计[D],华南理工大学硕士论文,2005
    [46]于晓辉,橡胶炭黑分散度的预测模型及应用的研究[D],青岛科技大学硕士论文,2006
    [47]邓海燕,Dispergrader:检测炭黑分散度[J],现代橡胶技术,2004,30(5):34
    [48]中国橡胶助剂网,新型橡胶炭黑分散度测定仪推出[J],广东橡胶,2006,(6):27
    [49]安阳,用干涉显微技术测量炭黑分散度[J],现代橡胶技术,2006,32(6):40-41
    [50]谢振合,张海,混炼胶炭黑分散度自动识别的特征指标体系及图像处理方法[J],橡胶工业,2006,53(2):99-103
    [51]赵野军,吕柏源,程源,基于测距对橡胶炭黑分散度的综合评定[J],特种橡胶制品,2006,27(5): 39-42
    [52]李显丽,橡胶炭黑分散度等级测定系统的设计与开发[D],北京交通大学硕士论文,2004
    [53]谢振合,炭黑分散度独立成分提取Fisher判别的研究[J],橡胶工业,2006,53(11):645-650
    [54]王明兰,炭黑在橡胶中分散性的模式识别(I)[J],华南师范大学学报(自然科学版),2000,(3):56-61
    [55]王明兰,胶料中炭黑分散性的Fisher判别法[J],橡胶工业,2000,47(9):551-554
    [56]王明兰,橡胶分散性的二维综合指标法[J],2000,18(4): 348-352
    [57]王明兰,一种新的橡胶炭黑分散性识别方法[J],控制理论与应用,2001,18(5):792-795
    [58]汪传生,祝卫国,混炼胶中炭黑分散度测定方法的改进[J],橡胶工业,2004,51(12):755-758
    [59]王明兰,橡胶中炭黑分散度的自动判别[J],信息与控制,2002,31(1):59-67
    [60]张海,马铁军,钟荣.密炼机混炼过程功率曲线的作用[J],橡胶工业,1999,46(4):232-234
    [61]王艳秋,橡胶塑炼与混炼[M],北京:化学工业出版社,2005:123-196
    [62]Manas Z, Analysis of mixing in polymer processing equipment[J], Rheology Bulletin,1997, 66(1):5-35
    [63]Hui-Fuang Ng, Automatic thresholding for defect detection[J], Pattern Recognition Letters, 2006,27:1644-1649
    [64]M. V. Kharinov,Adaptive dichotomous image segmentation toolkit[J], Pattern Recognition and Image Analysis,2012,22(1):228-235
    [65]Byung-Gyu Kim,Do-Jong Kim,Dong-Jo Park,Novel precision target detection with adaptive thresholding for dynamic image segmentation,Machine[J]. Vision and applications,2001,12(5): 259-270
    [66]Isabeau Birindelli,Stefano Finzi Vita,A class of quasi-linear elliptic systems arising in image segmentation[J],Nonlinear Differential Equations and Applications NoDEA,1998,5(4):445-459
    [67]P. A. Chochia,Image segmentation via contour tracking in application to the analysis of the photographs of electronic microcircuits[J], Journal of Communications Technology and Electronics, 2010,55(12):1466-1473
    [68]M. Kharinov,Adaptive hierarchical image segmentation technique[J],Pattern Recognition and Image Analysis,2011,21(2):270-273
    [69]Zeng-liang Fu,Ming Ye,Yong-lin Su,Yan-ping Lin,Cheng-tao Wang,A novel active contour model for medical image segmentation[J],Journal of Shanghai Jiaotong University (Science),2010, 15(5):549-555
    [70]Johannes Hatzl,Toufik Mansour,Mark Shattuck,Maximizing a Sum Related to Image Segmentation Evaluation[J], Journal of Mathematical Modelling and Algorithms,2011,10(2):193-203
    [71]Shilong Wang,Yuru Xu,Yongjie Pang,A fast underwater optical image segmentation algorithm based on a histogram weighted fuzzy c-means improved by PSO[J], Journal of Marine Science and Application,2011,10(1):70-75
    [72]王家文,李仰军,Matlab7.0图形图像处理[M],北京:国防工业出版社,2006:247-252
    [73]Chang Yao,Hou-jin Chen,Automated retinal blood vessels segmentation based on simplified PCNN and fast 2D-Otsu algorithm[J], Journal of Central South University of Technology,16(4): 640-646
    [74]Fangyan Nie,Yonglin Wang,Meisen Pan,Guanghan Peng,Pingfeng Zhang,Two-dimensional extension of variance-based thresholding for image segmentation[J],Multidimensional Systems and Signal Processing,2013,24(3):485-501
    [75]Yinggan Tang,Weiwei Mu,Xiumei Zhang,Yixian Yang,Modified Fuzzy Linear Discriminant Analysis for Threshold Selection[J],Circuits, Systems, and Signal Processing,32(2):711-726
    [76]Russell B. P. Stasiuk,Improving styletted oral tracheal intubation:rational use of the OTSU[J], Canadian Journal of Anesthesia,2001,48(9):911-918
    [77]Zuoyong Li,Chuancai Liu,Guanghai Liu,Xibei Yang,Yong Cheng,Statistical thresholding method for infrared images[J], Pattern Analysis and Applications,2011,14(2):109-126
    [78]Reynold R. Farrera-Rebollo,Ma. de la Paz Salgado-Cruz,Jorge Chanona-Perez,Gustavo F. Gutierrez-Lopez,Liliana Alamilla-Beltran,Georgina Calderon-Dominguez,Evaluation of Image Analysis Tools for Characterization of Sweet Bread Crumb Structure[J], Food and Bioprocess Technology,2012,5(2):474-484
    [79]Mingquan Wang,Yu Wang,Li Chai, Application of an improved watershed algorithm in welding image segmentation[J], Russian Journal of Nondestructive Testing,2011,47(5):352-357
    [80]Dang Ba Khac Trieu,Tsutomu Maruyama,Real-time image segmentation based on a parallel and pipelined watershed algorithm[J], Journal of Real-Time Image Processing,2007,2(4):319-329
    [81]Bieniek A.,Moga A.,An efficient watershed algorithm based on connected components[J], Pattern Recogn.,2000,33:907-916
    [82]Sun H.,Yang J.,Ren M.,A fast watershed algorithm based on chain code and its application in image segmentation[J], Pattern Recogn. Lett.,2005,26:1266-1274
    [83]Zahirazami S.,Akil M.,Implementation of a watershed algorithm on FPGAs[J], Proceedings SPIE Applications of Digital Image Processing,1999,3460:98-105
    [84]Rambabu C.,Chakrabarti I.,Mahanta A.,Flooding-based watershed algorithm and its prototype hardware architecture[J],Vis. Image Signal Process.,2004,151(3):224-234
    [85]F. U. Siddiqui,N. A. Mat Isa,Optimized K-means (OKM) clustering algorithm for image segmentation[J], Opto-Electronics Review,2012,20(3):216-225
    [86]Takashi Saegusa,Tsutomu Maruyama,An FPGA implementation of real-time K-means clustering for color images[J], Journal of Real-Time Image Processing,2007,2(4):309-318
    [87]Redmond S.J.,Heneghan C.,A method for initialising the K-means clustering algorithm using kd-trees[J], Pattern Recogn. Lett.,2007,28(8):965-973
    [88]Khan S.S.,Ahmad A.,Cluster center initialization algorithm for K-means clustering[J], Pattern Recogn. Lett.,2004,25(11):1293-1302 [89] Kanungo T.,Mount D.M.,Netanyahu N.S.,Piatko C.D., Silverman R., Yu A.Y.,An efficient
    k-means clustering algorithm:analysis and implementation[J], IEEE Trans Pattern Anal. Mach. Intell.,2002,24(7):881-892
    [90]Maliatski B.,Yadid-Pecht O.,Hardware-driven adaptive k-means clustering for real-time video imaging[J], IEEE Trans. Circuits Syst. Video Technol.,2005,15(1):164-166
    [91]XiaoFeng Zhang,CaiMing Zhang,WenJing Tang,ZhenWen Wei,Medical image segmentation using improved FCM[J], Science China Information Sciences,2012,55(5):1052-1061
    [92]Ji Z,Sun Q,Xia D,A framework with modified fast FCM for brain MR images segmentation [J], Patt Recogn.,2011,44:999-1013
    [93]Ahmed M N,Yamany S M,Mohamed N,A modified fuzzy C-mean algorithm for bias field estimation and segmentation of MRI data[J], IEEE Trans Medic Imag.,2002,21:193-199
    [94]Chuang K,Tzeng H,Chen S,Fuzzy C-means clustering with spatial information for image segmentation[J], Comput Medic Imag Graph,2006,30:9-15
    [95]Wang X,Bu J.,A fast and robust image segmentation using FCM with spatial information[J], Digit Sign Process,2010,20:1173-1182
    [96]Cai W,Chen S,Fast and robust fuzzy cmeans clustering algorithms incorporating local information for image segmentation[J], Patt Recogn.,2007,20:825-838
    [97]Tan K,Isa N,Color image segmentation using histogram thresholding-Fuzzy Cmeans hybrid approach[J], Patt Recogn.,2011,44:1-15
    [98]崔屹,图像处理与分析——数学形态学方法及应用[M],北京:科学出版社,2000:59-112
    [99]Shan-chun Wei,Jian Wang,Tao Lin,Shan-ben Chen,Application of image morphology in detecting and extracting the initial welding position[J], Journal of Shanghai Jiaotong University (Science),2012,17(3):323-326
    [100]Mukhopashyay S,Chanda B,An edge preserving noise smoothing technique using multi-scale morphology[J],Signal Processing,2002,82(4):527-544
    [101]Zhang L J,Xu J W,Yang J H,Multiscale morphology analysis and its application to fault diagnosis[J],Mechanical Systems and Signal Processing,2008,22:597-610
    [102]Verdu-Monedero R,Angulo J,Spatially-variant directional mathematical morphology operators based on a diffused average squared gradient field[J],Lecture Notes in Computer Science, 2008,5259:542-553
    [103]Li T G,Wang S P,Zhao N,Gray-scale edge detection for gastric tumor pathologic cell images by morphological analysis[J],Computers in Biology and Medicine,2009,39:947-952
    [104]Ming Tong,Jia Hu,Hongbing Ji,An adaptive digital image watermark algorithm based on gray-scale morphology[J],Journal of Electronics (China),2009,26(3):417-422
    [105]Abraham Mathew,Abi N. Eldo,A. G. Molly,Optimization of culture conditions for the production of thermostable polygalacturonase by Penicillium SPC-F 20[J],Journal of Industrial Microbiology & Biotechnology,2008,35(9):1001-1005
    [106]Marsh,Michael. CIM solutions toward 21st century SPC[J],SMT Surface Mount Technology Magazine,1997, 11(10):48-50
    [107]郎志正,质量管理及其技术和方法[M],北京:中国标准出版社,2003:129-137
    [108]刘广第,质量管理学[M],北京:清华大学出版社,1995:3-9
    [109]庄楚强,吴亚森.,应用数理统计基础[M],广州:华南理工大学出版社,2002:62-65
    [110]张春林,马成勇,刘均,Delphi 7数据库系统设计及开发[M],北京:清华大学出版社,2003:92-129
    [111]杨宗志,delphi数据库程序设计[M],北京:清华大学出版社,2004:95-108
    [112]董良,高磊,朱明峰等,深入浅出delphi6[M],北京:清华大学出版社,2003:273-299
    [113]易玉华,黄伟彬,李俊,密炼机全自动混炼的瞬时功率控制[J],橡胶工业,2004.56(2),293-296
    [114]郝国法,向晓东等.基于SPCE061井下瓦斯自动检测、预测及监控系统的设计[J],武汉科技大学学报,2005,28(3):273-275
    [115]赵逢禹,徐济超,统计过程控制(SPC)软件的设计[J],计算机工程与应用,2000,34(6):158-160