用户名: 密码: 验证码:
石灰岩矿山地质环境风险分析与管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿产资源对我国经济建设至关重要,长期以来大规模和高强度地开发矿产资源,为国家的建设和发展做出了巨大贡献。但是,矿产资源开发对环境的影响一直没有得到足够重视,2006年之前基本没有对矿山环境问题进行有效防治。目前,我国对矿山地质环境保护和恢复的工作刚刚起步,对矿山关闭设计缺乏系统的规划和设计,许多已废弃关闭的矿山由于没有有效地开展地质环境治理和恢复工作,矿区内的环境日益恶化。
     为了有效地保护这些废弃老矿区的地质环境,国家于2005年开始立法强制采矿权人对其所有的矿山开采产生的环境问题进行治理,并建立了矿山地质环境保证金制度,从2009年起将矿山地质环境保护与恢复治理方案编制与矿山土地复垦方案编制作为申请采矿权或采矿权延续、年检的前置条件。另外,从2001年起,国家财政投入资金,通过设立矿山地质环境治理工程项目的形式在全国范围内对地质灾害隐患严重与危害巨大、生态环境破坏严重的矿山地质环境治理工程进行引导性资助;2010年开始加大对2006年之前遗留的矿山老地质环境治理专项经费投入,每年预算达60多亿,并先后部署了历史遗留老矿山环境治理项目、资源枯竭型城市矿山地质环境治理项目和矿山地质环境治理示范工程项目等一系列的治理工程。但上述治理工程项目尚缺乏基本理论与技术方法的指导。因此,亟待探索适合我国国情的矿山地质环境问题风险分析与管理理论与方法,以及矿山地质环境治理工程设计理论方法。
     石灰岩建材矿山在国内分布最广、数量最多的矿山,多分布在灰岩裸露的山区,采矿后的掌子面内常存在崩塌、落石等地质灾害。广西凤山县城区石灰岩矿山因其分布、开采方式、诱发的地质环境问题等具有典型性和代表性。
     论文以废弃石灰岩矿山为例,依托国家财政专项广西凤山县石灰岩矿山地质环境治理工程,采用资料收集、现场调查和测量、边坡三维影像扫描、红外线扫描、室内岩石与结构面试验和数值模拟等方法获取研究所需数据,运用工程地质分析、图解分析、块体理论、刚体极限平衡法、可靠度分析、地质灾害风险分析、建筑结构力学和岩土工程设计理论等基本理论开展了石灰岩矿山地质环境风险分析与管理研究,既对全国矿山地质环境治理具有示范作用和重要理论意义,也可指导凤山县矿山地质环境治理工程实践。主要研究内容如下。
     一、石灰岩矿山地质环境问题成因与分类研究
     首先总结了国内外矿山地质环境问题分类方法,然后基于矿山地质环境问题的特征与实质,从矿山地质环境风险分析与管理角度,提出了将矿山地质环境问题分为突发型矿山地质环境问题和渐变型矿山地质环境问题两大类。前者通过破坏概率或可靠度表示其危险性,风险减缓措施必须部署在灾害发生前;后者可通过统计或经验模型确定危险性,风险减缓措施可部署在地质环境问题发生前或发展过程中,无需预警或应急等管理措施。
     广西凤山县城区周边6处石灰岩矿山内,突发型矿山地质环境问题为落石、崩塌及矿渣堆不稳定斜坡;渐变型矿山地质环境问题包括土地资源占用、生态资源破坏和地形地貌景观破坏。分析了石灰岩矿山地质背景,揭示了采矿活动和主要矿山地质环境问题之间的关系,深入研究了石灰岩矿山地质环境问题的成因和组合模式,进而弄清了石灰岩矿山地质环境问题对人类社会的灾害效应。
     二、石灰岩矿山地质环境风险分析研究
     1、矿山地质环境风险分析的主要内容和基本流程
     根据矿山开采与矿山地质环境问题之间的相互影响机制,提出了矿山地质环境风险评价的主要内容和基本流程,整个体系包括五部分:
     1)矿山地质地质环境风险分析数据获取
     风险分析数据包括地质环境背景数据、已有矿山地质环境问题强度、破坏损失调查、防治工程现状和实施条件的数据。并以凤山废弃石灰岩矿山为例,探索了矿山地质环境风险评价所需主要环境参数获取方法。
     2)矿山地质环境危险性分析
     突发型地质环境问题危险性分析的核心是建立灾害规模、强度(速度、冲击力等)和发生频率的关系。渐变型地质环境问题危险性分析包括现状危险性和趋势预测两部分,通过历史数据统计或经验模型预测其危险性的发展趋势。
     3)矿山地质环境易损性评价
     易损性来源于三部分,即人员和建筑等物理实体的脆弱,社会、经济和生态的脆弱,生态和社会经济缺乏恢复能力。在易损评价被归为两类,第一类用于评价潜在人员损失和物理实体的损毁程度;第二类用于评价潜在的社会、生态和环境影响对人类社会的危害程度。
     4)矿山地质环境风险评估以可接受程度和容忍度作为风险评估的标准,确定风险是否被接受、容忍或者不容忍。
     5)矿山地质环境风险管理
     包括风险决策、风险控制和执行,风险控制措施包括三类:降低矿山地质环境问题的危险性的工程措施;降低承灾体易损性和减少灾害后果的软措施;分散灾害后果。
     2、突发型矿山地质环境问题风险分析理论与方法研究
     突发型矿山地质环境问题的承灾体是建筑物和人群,其风险评估主要包括灾前风险评估与灾后损失评估。从建筑物损失角度,以凤山4号石灰岩矿山为例,研究了石灰岩矿山崩塌和落石等突发型地质环境问题产生过程与发展趋势、风险评价的基本流程与方法。
     1)石灰岩矿山地质环境问题数据获取与分析方法。
     基于对矿山地质环境背景资料的系统收集,重点对开采掌子面、废石堆、矿渣堆和废弃矿业建筑进行了详细调查;采用了地形测量、现场调查、激光扫描、红外线探测和岩石物理力学试验等调查方法,以及块体理论、刚体极限平衡、可靠度分析方法、数值模拟等分析理论与方法,获取了岩土体物理力学性质与结构面数据;然后进行了掌子面矿山地质环境分区。
     2)危险性分析
     (1)落石危险性分析
     应用块体理论确定了落石的结构和失稳模式,然后根据滑动面物理力学特性,确定了工程开挖面上所有关键块体。具体分析过程是:块体理论→几何分析→除去稳定块体→找出工程作用力和自重作用力下可能失稳块体→据滑动面的剪切强度确定关键块体→赤平投影与矢量分析→确定失稳模式、落石体积,表明凤山4号石灰岩矿除Ⅱ区、Ⅷ区外均有落石灾害。
     利用结构面的规模(迹长)函数,分析了不同规模落石的出现概率,表明凤山4号石灰岩矿Ⅰ区、Ⅲ区、Ⅴ区、Ⅵ区、Ⅶ落石出现概率各不相同,Ⅳ区落石概率较高。
     采用验算点法计算了块体的可靠度指标及破坏概率,通过可靠度和破坏概率表示落石的危险性,得到凤山4号石灰岩矿Ⅰ、Ⅲ、Ⅴ、Ⅶ区危险性值分别为0.53、0.004、0.279、0.5。
     采用RockFall软件模拟了落石强度,得到落石水平位置、速度分布、弹跳高度等,并用于下一步易损性研究。
     (2)崩塌危险性分析
     凤山4号石灰岩矿山崩塌主要集中在Ⅱ区,存在错落式崩塌和倾倒式崩塌两种破坏模式,分别建立了两者的可靠度计算模型进行分析,通过可靠度和破坏概率标识崩塌体的危险性。错落式崩塌的体积为3695m3,在1/3、1/2和2/3饱水条件下,破坏概率分别为0.571、0.618和0.864。倾倒式崩塌体积4682m3,三个饱水条件下的破坏概率为0.28、0.728和1.00,崩塌体危险性极高。
     3)易损性分析
     建筑物的易损性程度(值)与突变型地质环境问题产生的灾害强度和结构损伤有关。在分析落石和崩塌等造成建筑物的易损性时,考虑了落石灾害强度的具体参数,如速度、能量和轨迹等,落石和建筑结构的相互作用和结构响应。建筑物结构响应与落石作用强度和作用位置密切相关,它们直接决定了建筑物主要承重构件的初始伤害和整体稳定性。通过落石和崩塌对建筑物的结构损伤的量化、使用相对维修成本表示经济损失计算确定易损性。
     落石对建筑物易损性评价计算方法有四个步骤:
     (1)碰撞可能性分析
     落石与建筑物发生碰撞共有40种不同碰撞的独立方案,计算了各方案中建筑物承重柱发生碰撞的概率。
     (2)单个结构构件对落石响应
     单个结构构件对落石响应与落石和结构有关,如质量、速度、作用区域、刚度、荷载、碰撞几何特征等;根据钢筋混凝土构件的线性剪切破坏模型,计算了落石撞毁1根、2根、3根或更多根柱子的初始能量,最后得到了落石碰撞柱子损毁特征曲线。
     (3)建筑连续倒塌分析
     通过落石对框架结构建筑物的撞击模式分析,采用SAP2000建立模型进行分析建筑物承重结构破坏后发生连续倒塌的可能性与损毁程度。
     (4)建筑结构损伤指数计算
     计算了40种不同碰撞的独立方案的建筑结构损伤指数,并建立了建筑结构损伤等级划分标准。继而考虑落石碰撞位置、每种方案发生的概率和产生损伤的相对维修成本RRC,建立了不同体积落石和到达建筑物速度组成的建筑物易损性评价矩阵。
     凤山石灰岩4号矿山中1.00m3直径落石当速度小于4m/s时建筑物易损性为0.01,4-6m/s对应的易损性为0.09,6-7.5m/s对应的易损性为0.17,8m/s对应的易损性为0.33。1.00m3直径落石当速度小于1.5m/s时建筑物易损性为0.01,3-8m/s的易损性为0.53。直径为4m落石,当速度大于1m/s时,建筑物完全破坏,易损性为1.0。
     4)风险评价
     突发型地质环境问题的风险表征为地质环境事故发生的可能性与这个事故发生后所造成的损失或危害之积;如果一个实际的矿山地质环境往往存在多个相对独立的矿山地质环境问题,则这个地质环境环境的风险为各个地质环境问题风险之叠加,可采用指数模型求和。据此计算了掌子面各个区域落石风险、崩塌风险与建筑物风险。结果表明:1#建筑物风险值为0.188,来自于落石作用造成的损坏,风险水平最高;2#建筑物风险值为0.042,来自于落石和崩塌的综合作用,风险程度处于中等水平;3#建筑物的风险值为0.002,主要来自于落石,风险程度处于低水平。
     3、渐变型地质环境问题风险分析
     渐变型矿山地质环境问题的承载体是环境与生态,其风险评估主要在地质环境问题存在后、其作用过程中的风险评估。论文从对社会和环境的影响及可恢复性角度,探讨了废弃矿山渐变型地质环境问题风险评价的技术方法。其风险评估主要包括四方面内容:土地资源破坏、地形地貌景观破坏、生态资源破坏、环境污染等。
     1)渐变型地质环境问题危险性评价
     渐变型地质环境问题危险性是对现状条件下危险性和某段时间t内矿山地质环境问题的发展趋势进行综合分析。需要回答的问题是:现状条件地质环境问题的分布范围、影响程度,以及某段时间t内各问题的影响范围和影响程度的变化过程。据此建立了5类不同适用范围与影响因素下的演化模型来预测短期内各地质环境问题的危险性,危险性的发生概率为1。
     2)渐变型地质环境问题易损性评价
     渐变型矿山地质环境问题易损性主要指对社会、经济和生态的脆弱性,以及生态和社会经济的可恢复性进行评价。
     对于单个矿山,某个渐变型矿山地质环境问题的易损性指在其作用下,时间t内社会、生态和环境的易损值,是社会影响、生态破坏与损失、环境破坏与损失的函数,可以用易损性函数来表达。
     (1)土地资源破坏的易损性
     提出了土地资源破坏的易损性由土地资源破坏对社会经济的影响指数、土地恢复的可行性指数决定,其社会影响指数通过影响的人口数量表示;恢复的可行性指数根据农牧用地和建筑用地的不同,前者采用环境敏感地区指数模型,后者采用不同功能建筑用地地质环境适宜性评价模型。并建立了凤山4号石灰岩矿山的土地资源破坏的易损性等级标准,计算了各区的土地资源破坏的易损性。
     (2)地形地貌景观破坏的易损性
     地形地貌景观破坏的易损性通过破坏强度、社会经济影响及恢复可行性指数三个评价指标确定。破坏强度由破坏面积、地形破坏程度和采矿前后地貌景观的对比的3个参数确定;社会经济影响包括矿山所在区位和社会经济发展规划2个参数;恢复可行性指数包括矿山类型、露采边坡高度、视觉缓冲区和政策法规4个指标。分4个易损性等级建立了矿山破坏地形地貌破坏易损性等级评价标准。
     (3)生态环境破坏的易损性
     生态资源破坏的易损性由自然环境指标、地境指标、生物多样性指标、生态系统动态平衡指标、生态景观指标和生态恢复案例指标6大类指标组成。
     (4)环境污染的易损性计算
     环境污染的易损性以评价污染物对人类健康的风险为目标。
     3)渐变型地质环境问题风险评估
     渐变型地质环境问题危险性可预测,所以发生的概率为1,即风险性=易损性。对于渐变型地质环境问题的风险评估,分两步进行。
     (1)单个渐变型矿山地质环境问题的风险评估
     土地资源破坏、地形地貌景观破坏、生态资源破坏和环境污染等四类渐变型矿山地质环境问题的风险可分别作为一项风险评估参数,对其进行单个渐变型矿山地质环境问题的风险评估。
     (2)多个渐变型矿山地质环境问题组合的风险性综合评估
     采用敏感性模型和综合指数模型,在确定各地质环境问题对总风险的影响权重后,通过线性指数模型计算综合风险。
     (3)凤山4号石灰岩矿山渐变型矿山地质环境风险评价
     根据凤山4号石灰岩矿山的地形地貌、所处区位及相关政策等资料,得出该矿山地形地貌破坏易损性等级评价结果,为3.46,属于高风险。
     凤山4号石灰岩矿山生态资源破坏风险评价的指标选择五个方面,按照1-4级直接打分,分别代表易损性由低到高:自然环境条件分值为2、地境指标的分值为4、生态系统动态平衡指标分值为4、生态景观指标分值为4、生态恢复案例分值为3。综合确定该矿山生态资源破坏的易损性等级为4,生态恢复的可能性低,属于生态资源破坏高风险区。
     将矿山地形地貌景观破坏风险评价结果、生态资源破坏结果按敏感因子+指数模型进行综合,得出该矿山为渐变型地质环境问题高风险区。评价结果表明不宜单纯考虑生态恢复措施,应结合当地社会经济发展需求采取综合治理措施。
     三、废弃石灰岩矿山地质环境风险管理研究
     建立了实现矿山地质环境风险管理多目标决策树,总结了矿山地质环境风险控制工程的组成,研究了如何从风险控制角度出发科学合理地选择治理工程。并以广西凤山废弃石灰岩采石场为例,完成了矿山地质环境风险管理与控制的实践。
     1、矿山地质环境风险管理方法研究
     矿山地质环境风险管理包括风险决策、制定风险控制计划(确定风险控制手段)和执行计划(监督管理)。提出了矿山地质环境风险管理多目标决策的3个主要步骤,3个一级目标与7个二级目标,评判准则,降低突发型地质环境问题发生概率、减少突发型地质环境问题后果、改善地质环境降低渐变型地质环境问题的影响、调整矿区社会经济结构等4个方面主要措施。
     分析了突发型地质环境问题与渐变型地质环境问题风险管理的主要特征。提出矿山地质环境风险控制是综合应用经济手段、行政手段、法律手段和技术手段四方面手段进行降低风险的过程。
     2、矿山地质环境风险控制技术方案选择——以凤山石灰岩矿山地质环境治理为例
     指出了矿山地质环境风险管理的技术手段包括制定与各项矿山地质环境保护和治理措施相适应的技术标准、规范和章程,并在矿山地质环境勘查、监测和治理恢复工作中贯彻执行,从而有效地减轻矿产资源开发对地质环境造成的负面影响。矿山地质环境治理工程是矿山地质环境风险管理的重要方面,属于风险控制中的技术手段。也往往是在经济、行政法律等风险控制手段之后的最终控制手段,也是投入最多、难度最大的控制手段,其成效主要取决于工程设计的科学性与合理性。
     矿山地质环境问题复杂多样,且危害性大,治理工程涉及个学科交义,需要综合考虑地质环境问题、治理工程的可行性、效益和社会的需求等四项主要指标。
     基于矿山地质环境风险分析与管理,运用层次分析模型对广西凤山4号石灰岩矿山地质环境风险控制方案进行多目标决策,确定的治理方案为:P11(削坡、清理危岩、坡面锚固)+P12(截水+落石平台拦截+监测)+P13(坡面整形+岩壁雕刻+部分生态恢复)+P14(风险教育)。雕刻后在坡体表面浅部加大了落石的风险,需要在坡脚堆积区的斜坡和落石平台通过植树种草减少落石距离。
     未来在生态文明和美丽中国的国家目标下,开展矿山地质环境风险研究尤为重要。需要探索适合我国国情的矿山地质环境风险评估和管理模式,加强渐变型矿山地质环境问题风险的易损性研究。本论文提出的地质环境风险评估和管理基本理论与技术方法也需要在其他矿种、开采方式和区域的矿山中应用,以期进一步完善评估指标和量化模型,形成更加符合我国国情的矿山地质环境风险分析与管理模式。
Mineral resources are important to economic construction. For a long time, large-scale and high-strength developing mineral resources has made tremendous contributions to the construction and development of the country. However, exploitation of mineral resources on the environment has not made enough attention; the mine environmental problems have not effectively treated before2006. At present, the mine geo-environmental protection and restoration work has just started. Mine closure lacks up systematic planning and design. Geo-environmental treatment projects and land resource restoration plans have not been implemented in many mines; the environment of mine is deteriorating.
     For protect the geo-environment of these old abandoned mine effectively, the government has been forcing mining right holders to treat all the environmental problems by establishing laws since2005, and has founded mine geo-environment deposit system. Preparation of mine geo-environmental protection and recovery management plan and mine land reclamation plan must be the pre-conditions of applying or extending mining rights, inspection from2009. In addition, the government finance has invested funds to guide the mine geo-environmental treatment projects which had seriously risks and great ecological damage due to geological disaster by setting up mine geo-environmental treatment projects in a nationwide from2001, and has increased the special funding which annual budget is more than60billion to treat old mine geo-environmental projects which was leaved over before2006, and has deployed a series of treatment projects such as the old mines, resource-exhausted cities and demonstration mine since2010. However, these governance projects still lack the guidance of basic theory and technical methods. So, it is very important to establish a mine geological environment risk assessment and management system, and explore mine geo-environmental engineering theory and technical methods which are suitable for our country.
     Limestone building mine is the most widely distributed and the largest number, they are most distributed in the exposed limestone mountains. The geological disasters collapse, rockfall often occur within the working face after mining. And the induced geo-environmental problem of limestone mines is typical and representative because of distribution, mining methods in Fengshan county, Guangxi.
     This article makes a case study in abandoned limestone mine and relies on state finance special project Guangxi Fengshan limestone mine geo-environmental treatment. Through data collection, field surveys and measuring,3D slope laser scanning, infrared scanning, laboratory tests of rock and structure surface, numerical simulation, the research data is obtained. Applying the basic theory:engineering geological analysis, graphical analysis, block theory, rigid body limit equilibrium method, reliability analysis, geological disaster risk analysis, building structural mechanics, geotechnical design theory, the article research on the geo-environmental risk analysis and management of abandoned limestone mine, which not only has demonstration effect and important theoretical significance to national mine geo-environmental risk analysis and management, project treatment but also guides Fengshan mine geo-environmental engineering in the practice. The main contents are as follows.
     First, the genesis and classification of Limestone mine geo-environmental problems.
     The article has summed up the domestic mine geo-environment classification firstly. Then based on the characteristics and substance of mine geo-environmental problems and from the mine geo-environmental risk analysis and management perspective, the mine geo-environmental problems are divided into two categories:burst mine geo-environment problems and graded mine geo-environment problems. The hazardous of burst mine geo-environment problems are expressed by the failure probability or reliability, the risk mitigation measures must be deployed before the disaster. The process of graded geo-environmental problems dangerous can be determined by statistics or empirical models. The risk mitigation measures can be deployed in front of the geological environment problems or the development process, without warning or other emergency management measures.
     In the6abandoned limestone mines around Fengshan county, burst mine geo-environment problems are rockfall, collapse and slag heap unstable slopes, graded mine geological environment problems include occupation of land resources, destruction of ecological resources and damage to the topography landscape. The paper analyses the limestone mine geology background, reveals the relationship between mining activities and mining geology major environmental issues, in-depth study the causes and combined mode of limestone mine geo-environment problems, and then figures out the disasters effects of limestone mine geo-environment to human society.
     Second, limestone mine geological environment risk analysis
     1. The main contents and basic risk analysis process of the mine geological environment
     According to the interaction mechanism of mining and mine geo-environmental issues, the main content and the basic process of mine geo-environmental risk assessment are proposed. The entire system consists of five parts:
     1) Data capture of mine geo-environmental risk analysis
     The data of risk analysis include geological environmental background data, the strength of the existing mine geological environment problems, loss damage surveys, control project status and implementation conditions. And as a case study of abandoned limestone mine in Fengshan, the environmental parameters required of the mine geo-environmental risk assessment for the major acquisition method are explored.
     2) Mine geo-environment hazard analysis
     The core of burst geo-environmental hazard analysis is to establish the scale of the disaster, the intensity (speed, impact, etc.) and the relationship between the frequencies of occurrence. The graded geo-environmental including two parts:the status and trends in risk prediction. Through historical data statistical or empirical models, the risk trends are predicted.
     3) Mine geo-environmental vulnerability assessment
     Vulnerability comes from three parts:the vulnerability of physical entities, such as personnel and building social; economic and ecological fragility; ecology and socio-economic lack resilience. In the vulnerability assessment, vulnerability is classified into two categories, the first category used to evaluate the extent of the potential damage to human loss and physical entities; the second category used to evaluate impact harm degree of the potential social, ecological and environmental to human society.
     4) Mine geo-environment risk assessment
     Risk assessment make acceptable level and tolerance as a standard to to determine whether the risk is accepted, tolerated or not tolerated.
     5) Mine geo-environment risk management
     Risk management Includes risk decisions, risk control and risk enforcement. Risk control measures include three categories:engineering measures to reduce the risk of mine geo-environmental problems; soft measures to reduce hazard bearing body vulnerability and the consequences disasters; decentralized disaster consequences.
     2. Theory and Methods of burst mine geo-environment risk analysis
     The hazard bearing bodies of burst mine geo-environment problems are building and the crowd. Its risk assessment include pre-disaster risk assessment and disaster damage assessment. From the perspective of the loss of the building, the process and development trend of collapse and rockfall in the limestone mine geo-environment problems, and the basic processes and methods of risk assessment have researched by research on the4th Fengshan limestone mine.
     1) Data acquisition and analysis of limestone mine geo-environment.
     Based on the collection of mine geo-environment background information, the exploitation of the working face, waste dumps, mining slag heaps and abandoned buildings are investigated in detail; Through topographic survey, site surveys, laser scanning, infrared detection, and rock mechanical testing and other investigation methods, as well as block theory, rigid limit balance, reliability analysis and numerical simulation analysis theory and method, the physical mechanical properties of the rock and soil and the data of structure surface are obtained. Then the tunnel face mine geological environment is partitioned.
     2) Hazard analysis
     (1) Rockfall hazard Analysis
     Application of block theory, the structure and rockfall instability mode is determined, and then based on the physical and mechanical properties of the sliding surface, all the key block are determined in the excavation works surface. Specific analysis process is:Specific analysis process is:block theory→geometric analysis→remove stable block→identify potential instability blocks under engineering force and weight force→determine key block by sliding surface shear strength,→stereographic projection and vector analysis→determine unstable mode and rockfall volume. The results show there is rockfall hazards in Fengshan the4th limestone mine except Ⅱ, Ⅷ.
     By using structural surface scale (trace length) function, the probabilities of different sizes rockfall occurrence are analyzed. The results indicate the probabilities of rockfall occurrence are different among Ⅰ, Ⅱ, Ⅴ, Ⅵ and Ⅶ in the4th limestone mine, and the probabilities of rockfall occurrence is higher.
     The reliability index and the failure probability of the block are calculated by using the checking point method. the danger of falling rocks is expressed by reliability and failure probability. The dangerous value of Ⅰ, Ⅲ, Ⅴ and Ⅵ zone respectively is0.53,0.004,0.279and0.5in Guangxi4th limestone mine.
     By using software RockFall to simulate the rockfall intensity, the rockfall horizontal position, velocity distribution, jumping height are obtained, which are used in the next vulnerability research.
     (2) Collapse hazard analysis
     Fengshan limestone NO.4mine of collapse are mainly distributed in II area, a potential collapse body boundary is made of the two large dipping fractures and slope, exists strewn at random type collapses and dump collapsed two failure modes. Strewn at random type collapse is volume of3695m3, in1/3,1/2and2/3full water conditions, the failure probability respectively is0.571,0.618and0.864.Dumping collapse is volume of4682m3, In full water under the condition, the failure probability respectively is0.28,0.28and0.728, the collapse body risk is extremely high.
     3) Vulnerability Analysis
     Vulnerability degree (value) of the building have relations with disasters strength and structural damage of mutant geo-environmental problems. Considering the specific parameters of intensity rockfall hazards, such as speed, power and trajectory, and the interaction between the structure and the building structure in response to falling rocks, the vulnerability of buildings caused by falling rocks and collapses are analyzed. Building structure response is closely related to rockfall impact intensity and position, which directly determines the initial injury and the overall stability of the main load-bearing building components. By quantifying structural damage of rocks and collapse to buildings falling and using the relative maintenance costs, the vulnerability is calculated.
     (1) Impact possibility
     Rockfall impact with building have a total of40kinds independent different program, the probability of each scenario building load-bearing columns collision is calculated.
     (2) The response of individual structural members to rockfall
     The response of individual structural members to rockfall is related to rockfall and structure, such as quality, speed, the area, stiffness, load, collision geometry feature. According to the linear shear failure model of reinforced concrete components, initial energy of Rockfall crashed one, two, three or more columns is calculated. Finally, collision damage characteristic curve of rockfall impact columns is obtained.
     (3) Building progressive collapse analysis
     Through the impact pattern analysis of rock falls to frame structure buildings, applying software SAP2000numerical simulation to analyze the damage degree of structures under the action of rockfalls.
     (4) Damage index calculation of building structure
     The grading standard of building structure can be set up according to the damage indexes of40independent programs. Then considering the collision location, the probability of each program and the relative repair costs (RRC), the building vulnerability assessment matrix including different volume rock falls and speeds reaching the building can be set up.
     In the Guangxi Fengshan limestone NO.4mine, for1m diameter rock falls, the building vulnerability is0.01when the speed is less than4m/s,0.09when the speed is4-6m/s,0.17when the speed is6-7.5m/s and0.33when the speed is more than8m/s. For2m diameter rock falls, the building vulnerability is0.01when the speed is less than1.5m/s,0.53when the speed is3-8m/s. For4m diameter rock falls, when the speed is more than1m/s, the building can be damaged totally and the vulnerability is1.0.
     4) Risk assessment of buildings
     The risk of burst mine geo-environment problems can be expressed as the multiply of the possibility of geological environment problems and the damage of the problem. The risk of real mine geo-environment problem is the summation of each problems with the use the index model. Based on the method, the calculated result shows:the risk of building NO.1is from the rock falls damage, the highest level of risk and the value of it is0.188; The risk of building NO.2is from the comprehensive function of rock falls and collapse, the middle level of risk and the value of it is0.042; the risk of building NO.3is from the rock falls damage, the low level of risk and the value of it is0.002.
     3. The risk analyses of gradient mine geo-environment problem
     The bearers of gradient mine geo-environment problems are environment and ecology and the assessment of the problem majors in the process of it. From the impact on society and the environment and recoverability, this paper explores the assessment technology and methods of gradient mine geo-environment problems in abandoned mine. The risk assessment include four respects:land resources destruction、landforms and landscape devastation、ecological resources destruction environmental pollution.
     1) Hazard assessment of gradient mine geo-environment problem
     The hazard of gradient mine geo-environment problems is the comprehensive analysis of the hazard under current conditions and the tendency of the problems within t time. The problems needed to solve include:the distribution range and impact of the present geo-environment problems, and the change processes of the problems'range and impact during the time t. According to the above, the evolution model of five different application range and impact factors can be established to predict the risk of geo-environment problems in the short term, the risk probability is1.
     2) Vulnerability assessment of gradient mine geo-environment problem
     The vulnerability assessment of gradient mine geo-environment problems refers to the social, economic, and ecological vulnerability, and evaluation about the recoverability of ecological and social economy.
     For a single mine, its vulnerability assessment of gradient mine geo-environment problems refers to the value of the social, ecological and environmental vulnerability within time under its effect, is the function about the social impact, ecological destruction and loss, environmental damage and loss, which can be called the vulnerability function.
     (1) Vulnerability of land resources destruction
     The vulnerability of land resources destruction is decided to influence index of land resources impact on social and economic and the feasibility of land restoration decision, and its social influence index bases on the influence of population; The feasibility of recovery index bases on the difference of farming land and construction land, the former uses the environmental sensitive area index model, and the latter uses the geo-environment suitability evaluation model of different function construction land. Then establish the vulnerability degree standard of land resources destruction in the Fengshan limestone NO.4mine, and calculate every mine's regional vulnerability of the destruction of land resources.
     (2) The damage vulnerability of landform and landscape
     The damage vulnerability of landform and landscape is determined by breaking strength、 social and economic influence and recovery feasibility index. It is divided into four level of vulnerability. The breaking strength can be determined by the area destroyed, the degree of terrain damage and the landscape contrast before and after mining. Social and economic impacts include mining zone location and socio-economic development planning two parameters. Recovery feasibility index include the type of mines, slope height, visual buffer and policies four indicators.
     (3) The vulnerability of ecological resources destruction
     The vulnerability of ecological resources destruction is composed of six categories of index: natural environmental index, land index, biodiversity index, ecological system dynamic balance index, landscape ecological index and ecological restoration case index.
     (4) Environmental pollution vulnerability calculation
     The vulnerability of environmental pollution set the risk of pollutants on human health as the goal.
     3) The risk assessment of gradient geo-environment
     The hazard of geo-environment problems can be predicted, so the hazard probability is1.That is to say, risk is equal to vulnerability. And the gradient mine geo-environment risk assessment includes two parts.
     (1) Risk assessment of single gradient mine geo-environment
     Every part of the gradient mine geo-environment risk can be regarded respectively as a risk assessment parameters including land resources destruction、landforms and landscape devastation、ecological resources destruction、environmental pollution. Then the single gradient mine geo-environment risk assessment should be finished.
     (2) Comprehensive risk assessment of multiple geo-environment problems.
     After determining the weight of the risk that every geo-environment problem brings, linear exponential model is in application to the comprehensive risk assessment better when choosing the sensitivity of the model and the comprehensive index model.
     (3) Risk assessment of gradient mine geo-environment in Guangxi Fengshan limestone NO.4mine.
     According to the landform、the location and the relevant policy, the damage vulnerability of landform is3.46,which means it is of high risk.
     In the paper, five indicators are considered for the Fengshan limestone NO.4mine ecological risk assessment. And scored them from1~4, the higher the score, the higher the vulnerability. The score of natural environmental conditions is2; land border index is4; ecological system homeostasis index is4; ecological landscape index is4, and ecological restoration case is3. Based on above, the vulnerability degree is4, belonging to high-risk areas of ecological resource damage.
     According to the sensitive factor+index model, combing the mine risk assessment results of landscape topography damage and results of the ecological resource damage, we can concluded that the mine belongs to the high-risk areas of geo-environment problem. The evaluation results indicate that we should not only consider the ecological restoration measures and should be combined with local social and economic development.
     Third, research on risk management of abandoned limestone mine geo-environment
     The paper set up the multi-objective decision tree, summarized the composition of mine geo-environment risk control engineering, and studied how to choose the management project scientifically from the point of risk management. Taking the Fengshan instance, the paper completed a practice of mine geo-environment of risk management and control.
     1. Research about risk management methods of mine geo-environment
     Risk management includes risk decision-making, risk control planning,(determination of the risk control measures) and implementation plan (supervision). The paper proposes3main steps for the multi-objective decision,3class one objects,7class two objects and the assessment criteria. And then put forward the main measures for the problem.
     In the paper, the main characteristics of burst geo-environment problem and gradient geo-environment problem have been analyzed. And the paper pointed out that mine geo-environment risk control is a comprehensive process applying economic instruments, administrative and legal means and technical means to reduce the risk.
     2. Technical solution selection of mine geo-environment risk control-taking the mine geo-environment treatment in Fengshan instance
     Technical methods to mine geo-environment of risk management including the development of technical standards, norms and regulations adapted to the mine geo-environment protection and management measures, implementation in the mine geo-environment investigation, monitoring and treatment recovery. Thus effectively reduce negative impact on the environment caused by the geological development of mineral resources. Mine geo-environment treatment project is an important aspect of the mine geo-environment of risk management, belongings to technical means. Also tend to be the ultimate risk control measures in the economic, administrative and legal means of control after, but also the largest investment, the most difficult means of control and its effectiveness depends mainly on the engineering design of science and rationality.
     Mine geo-environment is complex and diverse, and the dangers of it are large. We need to consider the geological environment problems; the feasible of treatment project, effectiveness and social demand four major factors.
     Based on the mine geo-environment risk analysis and management, the management solutions can be determined by using analytical hierarchy model:P11(cutting slope, cleaning dangerous rock, slope anchorage)+P12(catchwater, rock fall platform, monitoring)+P13(slope plastic+rock carvings, slope ecological recovery)+P14(risk education). The carved shallow of the slope surface increased the risk of falling rocks, so we need to decrease the rock fall distance by planting grass in the slope toe accumulation zone and rock fall platform.
     In the future, with the national targets of ecological civilization and beautiful China, carrying out mine geo-environment risk research is particularly important. We need to explore suitable mine geo-environmental risk assessment and management for China; strengthen the vulnerability study about graded mine geo-environment risks. The basic theory presented in this paper about the geo-environment risk assessment and management and technical methods also need to be used in other minerals, mining methods and mining application areas. So the assessment indicators and quantitative models can be further improved and the suitable mine geo-environment risk analysis and management model for China can be formed.
引文
[1]何芳,徐友宁,乔冈,等.中国矿山环境地质问题区域分布特征[J].中国地质,2010,37(5):1520-1529.
    [2]姜建军,刘建伟,张进德,等.我国矿产资源开发的环境问题及对策探析[J].国土资源情报,2005,(8):22-26.
    [3]徐友宁.矿山地质环境调查研究现状及展望[J].地质通报,2008,27(8):1235-1244.
    [4]张进德,张德强,田磊.全国矿山地质环境调查与综合评估技术方法探讨[J].地质通报,2007,26(2):136-140.
    [5]中国地质调查局.全国矿山地质环境调查成果介绍.矿山地质环境保护和治理恢复方案编制培训课件,2009.
    [6]Fourie A, Brent A C. A project-based Mine Closure Model (MCM) for sustainable asset life cycle management[J]. Journal of Cleaner Production,2006,14:1085-1095.
    [7]Reid C, Becaert V, Aubertin M, et al. Life cycle assessment of mine tailings management in Canada[J]. Journal of Cleaner Production,2009,17:471-479.
    [8]Laurence D. Optimisation of the mine closure process[J]. Journal of Cleaner Production,2006, 14:285-298.
    [9]唐朝晖,柴波,罗超,等.矿山地质环境治理工程设计思路探讨——以广西凤山县石灰岩矿山为例[J].水文地质工程地质,2013,(2).
    [10]Brabb E E. Innovative approach to landslide risk mapping[J]. Proc.4th Int'1. Symp.On Landslides. Canad. Geotech.Soc. Toronto,1984.
    [11]Nilsen T H, Wright R H. Relative slope stability and land use planning in the SanFrancisco Bay region, California[J]. U.S.G.S. Prof. Paper,1979,994.
    [12]Kienholz H. Maps of geomorphology and natural hazards of Grindewald, Switzerland, scale 1:10,000[J]. Artic and Alpine Research,1978,10(2),169-184.
    [13]Varnes D J. Slope movement types and processes. Chapter 2:Landslide Analysis and Control, In:R.L. Schuster and R.J. Krizek (Editors) [J]. Transportation Research Board, N.R.C., National Academy of Sciences, Washington, DC,1978:11-33.
    [14]Varnes D J. Landslide hazard zonation:a review of principles and practice[J]. France:IAEG Monograph, UNESCO,1984.
    [15]Fell R, Landslide risk assessment and acceptable risk[J]. Canadian Geotechnical Journal, 1994,31:261-272.
    [16]Whitman R V, Evaluating calculated risk in geotechnical engineering[J]. ASCE Journal of Geotechnical Engineering,1984,110(2):145-188.
    [17]Einstein H H. Special Lecture, Landslide risk assessment[J]. Proc.5th Int. Symp. On Landslides, Lausanne, Switzerland. A.A. Balkema, Rotterdam, the Netherlands,1988,2: 1075-1090.
    [18]Einstein H H. Landslide Risk-Systematic approaches to assessment and managementin Landslide Risk Assessment[J]. Cruden and Fell (eds.), Balkema, Rotterdam,1997:25-50.
    [19]Leroi E. Landslide hazard-Risk maps at different scales:objectives, tools and developments[M]. In Landslides, Proc. Int. Symp. On Landslides, Trondheim, (Ed. K. Senneset),1996,35-52.
    [20]Wu T H, Tang W H, Einstein H H. Landslide Hazard and Risk Assessment in Landslides Investigation and Mitigation[M]. Eds. K. Turner, R.L. Schuster. Transportation Research Board Special Report 247, Academy Press,1996.
    [21]Fell R, Hartford D. Landslide risk management[M]. In:Cruden, D., Fell, R. (Eds.), Landslide Risk Assessment. Balkema, Rotterdam,1997:51-109.
    [22]Lee E M, Jones DKC. Landslide risk assessment[J]. Thomas Telford, London,2004:454.
    [23]Nadim F, Kjekstad O, Peduzzi P, et al. Global landslide and avalanche hotspo[J]. Landslides,2006,3:159-173.
    [24]张业成,张梁.论地质灾害风险评价[J].地质灾害与环境保护,1996,7(3):1-6.
    [25]张梁,张业成,罗元华.:地质灾害灾情评估理论与实践[M].北京:地质出版社,1998.
    [26]殷坤龙,朱良峰.滑坡灾害空间区划及GIS应用研究[J].地学前缘,2001,8(2):279-284.
    [27]殷坤龙,张桂荣,陈丽霞,等.滑坡灾害风险分析[M].北京:科学出版社,2012.
    [28]向喜琼,黄润秋.地质灾害风险评价与风险管理[J].地质灾害与环境保护,2000,11(1):38-41.
    [29]刘希林,莫多闻,王小丹.区域泥石流易损性评价[J].中国地质灾害与防治学报,2001,12(2):7-12.
    [30]乔建平,赵宇.滑坡危险度区划研究述评[J].山地学报,2001,19(2):157-160.
    [31]唐川,张军,周春花,等.城市泥石流易损性评价[J].灾害学,2005,20(2):11-17.
    [32]吴树仁,石菊松,张春山,等.地质灾害风险评估技术指南初论[J].地质通报,2009,28(8):1753-1763.
    [33]吴树仁,石菊松,王涛,等.滑坡风险评估理论与技术[M].北京:科学出版社,2012.
    [34]刘传正.区域滑坡泥石流灾害预警理论与方法研究[J].水文地质工程地质,2004,31(3):1-6.
    [35]殷坤龙,张桂荣,龚日祥,等.基于Web-GIS的浙江省地质灾害实时预警预报系统设计[J].水文地质工程地质,2003,30(3):19-23.
    [36]张桂荣,殷坤龙,陈丽霞.浙江省永嘉县区域滑坡灾害人口易损性评价和伤亡风险预测[J].地质科技情报,2007,26(4):70-75.
    [37]Duzgun H S B. Analysis of roof fall hazards and risk assessment for Zonguldak coalbasin underground mines[J]. International Journal of Coal Geology,2005,64,104-115.
    [38]Heinrich H.Industrial Accident Prevention[M].5th Ed,New York:McGraw-Hill,1980.
    [39]James F V,MichaeI H R.Heavy metal contamination of soils around a Pb-Zn smelterin Bukowno,Polan[J].Applied Geochemistry,1996,11(1-2):11-16.
    [40]李静.重金属和氟的土壤环境质量评价及健康基准的研究[D].[学士学位论文].浙江:浙江大学,2006.
    [41]李泽琴,侯佳渝,王奖臻.矿山环境土壤重金属污染潜在生态风险评价模型探讨[J].地球科学进展,2008,23(5):509-516
    [42]侯佳渝.汉源唐家铅锌矿周边农田土壤重金属元素的环境地球化学研究与环境评价[D].成都:成都理工大学学位论文,2006
    [43]Duzgun H S B, Einstein H H. Assessment and management of roof fall risks in underground coal mines[J]. Safety Science,2004,42:23-41.
    [44]Palei S K, Das S K. Logistic regression model for prediction of roof fall risks in bord and pillar workings in coal mines:An approach[J]. Safety Science,2009,47:88-96
    [45]腾冲,金属矿山地质灾害评估系统及综合预测模型研究[D].[学士学位论文].湖南:中南大学,2007.
    [46]郭新华,郭文秀,田小玉。基于矿山工程特点的地质灾害危险性评估——以河南某石灰岩矿山为例[J].中国地质灾害与防治学报,2006,(1):113-118.
    [47]刘鹏刚,资源耗竭矿山风险演变机理及对策研究[D].[学士学位论文].西安:西安建筑科技大学,2009.
    [48]张兵,许正元.矿山危险源的监控与管理[J].金属矿山,2003,(10).
    [49]唐敏康,朱易春,刘辉.金属矿山重大危险源辨别与控制[J].金属矿山,2004,(10).
    [50]郭付三,袁巧红,殷坤龙,等.矿山小流域地质环境灾害链及系统治理技术研究—以豫西小秦岭地区金矿开采为例[J].金属矿山,2010,(4):146-158.
    [51]Voulvoulis N, Skolout J, Oates C J, et al. From chemical risk assessment to environmental resources management:the challenge for mining. Environ Sci Pollut Res,2013, DOI 10.1007/s11356-013-1785-8.
    [52]Kim J Y, Kim K W, Ahn J, et al. Investigation and risk assessment modeling of As and other heavy metals contamination around five abandoned metal mines in Korea[J]. Environ Geochem Health,2005,27:193-203.
    [53]Lee S W, Lee B T, Kim J Y, et al. Human risk assessment for heavy metals and as contamination in the abandoned metal mine areas, Korea[J]. Environ Monit Assess,2006, 119:233-244.
    [54]Granero S, Domingo J L. Levels of metals in soils of Alcalade Henares, Spain:human health risk[J]. Environ. Int,2002,28:159-164.
    [55]Hough R L, Breward N, Young S D, et al. Assessing potential risk of heavy metal exposure from consumption of home-produced vegetables by urban populations[J]. Environment Health Perspectition,2004,112:215-221.
    [56]Nadal M, Schuhmacher M, Domingo J L. Metal pollution of soils and vegetation in an area with petrochemical industry[J]. Sci. Total Environ.,2004,321:59-69.
    [57]Grasmuck D, Sholz R W. Risk perception of heavy metal soil contamination by high-exposed and low-exposed inhabitants:the role of knowledge and emotional concerns[J]. Risk. Anal.,2005,25:611-622.
    [58]Lim H S, Lee J S, Chon H T, et al. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea. J Geochem[J]. Explor., 2008,96:223-230.
    [59]Emese Sipter, Eniko Rozsa, Katalin Gruiz, et al. Site-specific risk assessment in contaminated vegetable gardens[J]. Chemosphere,2008,71:1301-1307.
    [60]Ji K, Kim J, Lee M, et. al. Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea[J]. Environ. Pollute.,2013,178: 322-328.
    [61]US EPA. Risk Assessment Guidance for Superfund:volume Ⅲ — part A, process for conducting probabilistic risk assessment. Washington, DC:US environmental protection agency,2001 [EPA 540-R-02-002].
    [62]US EPA. Risk Assessment Guidance for Superfund. Volume I:Human Health Evaluation Manual — part E, supplemental guidance for dermal risk assessment.Washington, DC: Office of superfund remediation and technology innovation,2004 [EPA/540/R/99/005. OSWER 9285.7-02EPPB99-963312].
    [63]US EPA. Exposure factors handbook.2011 edition(Final),2011. http://cfpub.epa.gov/ ncea/risk/recordisplay.cfm?deid=236252.
    [64]Liu X, Song Q, Tang Y, et al. Human health risk assessment of heavy metals in soil-vegetable system:A multi-medium analysis[J]. Sci. Total Environ.,2013,463: 530-540.
    [65]Du Y, Gao B, Zhou H, Health risk assessment of heavy metals in road dusts in urban parks of Beijing, China[J]. Pro. Environ. Sci.,2013,18:299-309.
    [66]Eduardo M J, Concepcion G G, Ana L O, et al. Screening risk assessment tools for assessing the environmental impact in an abandoned pyritic mine in Spain[J]. Sci. Total Environ., 2011,409:692-703.
    [67]Huang S, Li X, Wang Y. A new model of geo-environmental impact assessment of mining:a multiple-criteria assessment method integrating Fuzzy-AHP with fuzzy synthetic ranking[J]. Environ Earth Sci,2012,66:275-284.
    [68]Canbulat I, Hoelle J, Emery J. Risk management in open cut coal mines[J]. Int. J. Mining Sci. &Techn.,2013,23:369-37.
    [69]Ecobalance. Life cycle assessment of nickel products[M]. Bethesda, USA; 2000.
    [70]Norgate T E, Rankin W J. Life cycle assessment of copper and nickel production.In: Proceedings of the international conference on minerals processing andextractive metallurgy[J], Minprex; 2000.
    [71]Stewart M. The application of life cycle assessment to mining, minerals andmetals[R]. Report of the MMSD workshop on life cycle assessment, New York; 2001.
    [72]Durucan S, Korre A, Munoz-Melendez G, Mining life cycle modelling:a cradle-to-gate approach to environmental management in the minerals industry[J]. Journal of Cleaner Production,2006,14:1057-70.
    [73]Mohan Y, Ranjith P G, Tharumarajah A. Life cycle assessment in the minerals and metals sector:a critical review of selected issues and challenges[J]. Int J life Cycle Assess,2009, 14:257-267.
    [74]Neri AC, Sanchez LE. A procedure to evaluate environmental rehabilitation in limestone quarries. Journal of Environmental Management,2010,91:2225-2237.
    [75]Maczkowiack R.I., Smith C.S., Slaughter G.J.,et al. Grazing as a post-mining land use:A conceptual model of the risk factors[J]. Agricultural Systems,2012,109:76-89
    [76]Cowan W. Mine Rehabilitation In Ontario,Canada:ten years of Progress[J]. Mining and the Environment Conference Proceedings,1999,1037-1043.
    [77]Clark A L. The new reality of mineral development:social and cultural issues in asia and pacific nations[J]. Resource policy,1999,25:189-196.
    [78]Bell L C.Establishment of native ecosystems after mining-Australian experience across diverse biogeographic zones[J]. Ecological Engineering,2001,17:179-186.
    [79]Hilson G. Pollution prevention and cleaner production in the mining industry:ananalysis of current issues[J]. Journal of cleaner production,2000,8:119-126.
    [80]何国清.矿山开采沉陷学[M].北京:中国矿业大学出版社,1991
    [81]武强.我国矿山环境地质问题类型划分研究.水文地质工程地质[J],2003,14(5):107-111
    [82]徐友宁.矿山环境地质与地质环境.西北地质[J],2005,38(4):108一112
    [83]杨建民.固体废弃物再生利用的有效运作方式[J].再生资源研究,2001,(6):3-6.
    [84]李福来,胡克,冯军,张洪岩.我国矿山固体废弃物现状与对策分析[J].国土资源科技管理,2005,(3):68-72.
    [85]李培良,马耀丽,常青法,等.我国矿山固体废弃物资源化状况分析[J].黄金,2004,25(10):48-51.
    [86]王湖坤,龚文琪,刘友章.有色金属矿山固体废物综合回收和利用分析[J].金属矿山,2005,12:70-72。
    [87]JEnsson J, JEnsson J, LEvgren L. Precipitation of secondary Fe(Ⅲ) minerals from acidmine drainage[J]. Applied Geochemistry,2006,21:437-445.
    [88]钟常明,许振良,方夕晖,等.超低压反渗透膜处理矿山酸性废水及回用[J].水处理技术,2007,33(6):77-80
    [89]彭容秋.重金属冶金工厂环境保护[M].长沙:中南大学出版社,2006:205-210
    [90]Eom T H, Lee C, Kim J, et al.Development of an ion exchange systemfor plating waste water treatment [J]. Desalination,2005,180:163-172.
    [91]Mohan D, Chander S. Removal and recovery of metal ions from acidmine drainage using lignite- A low cost sorbent [J]. Journal of Hazardous Materials,2006,137:1545-1553.
    [92]瞿建国.高浓度酸性含铁废水处理的试验研究[J].上海环境科学,2001,20(9):441-443.
    [93]Herrera S P, Uchiyama H, Igarashi T, et al.Acid mine drainage treatment through a two-step neutralization ferrite-formation process in northern Japan:Physical and chemical characterization of the sludge[J]. Minerals Engineering,2007,20:1309-1314.
    [94]Jong T, Parry D L. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale up flow anaerobic packed bed reactor runs[J]. Water Research,2003, 37(1):3379-3389
    [95]姚运先,王艺娟.人工湿地在矿山酸性废水处理中的应用[J].湖南有色金属,2005,21(4):26-29
    [96]Choi, West, et al. Application of MINTQA2 to the Evaluation of Apatite as a Precipitant for Acid Mine Drainage Treatment[J]. Environment &Engineering Geosicience,2002,3(2): 128-132.
    [97]任海,彭少麟.恢复生态学导论[M].北京:科学出版社,2001.
    [98]牛一乐,刘云国,路培,等.中国矿山生态破坏现状及治理技术研究进展[J].环境科学与管理.2005,30(5):59-61。
    [99]陈奇.矿山环境治理技术与治理模式研究[D].[博士学位论文].北京:中国矿业大学(北京),2009.
    [100]Grant C D, Campbell C J, Chamoek N R. Selection of species suitable for dereliet mine site rehabilitation in New South Wales, Australia[J]. Water, Air, &Soil Pollution,2002,139: 215-235.
    [101]张志权,束文圣,蓝崇钰,等.引入土壤种子库对铅锌尾矿废弃地恢复的作用[J].植物生态学报,2000,24(5):336-374.
    [102]Martinez-Ruiz C,Femandez-Santos B. Effect of substrate coarseness and exposure on plant succession in uranium-mining wastes [J]. Plant Ecology,2001,155(1):79-89.
    [103]Prakash K J,Suresh N,GoPinathan MC, etal. Suitability of rhizobia-inoeulated wild legumes Argyrolobium flaeeidum, Astragalus graveolens, Indigofera gangetiea and LesPedeza stenoearpa in Providing a vegetational cover in an unreclaimed limestone quarry[J]. Plant and soil,1995,177:139-149.
    [104]Lubke R A, Avis A M. A review of the concept sand application of rehabilitation following heavy mineral dune mining[J]. Marine pollution Bulletin,1999,37(8):546-557.
    [105]郭逍宇,张金屯,宫辉力,等.安太堡矿山恢复过程主要种生态位梯度变化研究[J].西北植物学报,2004,24(12):2329-2334。
    [106]胡振琪,凌海明.金属矿山污染土地修复技术及实例研究[J].金属矿山,2003,6:53-56.
    [107]李海英,顾尚义,吴志强.矿山废弃土地复垦技术研究进展[J].矿业工程,2007,5(2):43-46.
    [108]李小江,易艳红.清水塘地区土壤重金属污染现状及修复技术研究[J].环境科学与技术,2004,(5):61-63.
    [109]Davis J G, Weeks G, Parker M B. Use of deep tillage and liming to reduce zinc toxicity in peanuts grown on flue dust contaminated land[J]. Soil Technology,1995,8:85-95.
    [110]Mishraa A, Sharmaa S D, Khanb G H. Improvement in physical and chemical properties of sodic soil by 3,6 and9 years old plantation of Eucalyptus tereticornis Bio rejuvenation of sodic soil[J]. Forest Ecology and Management,2003,184:115-124.
    [111]王四巍,姜彤,刘汉东。中空注浆锚杆在加固碎裂边坡中应用试验研究[J].岩石力学与工程学报,2008,27:3963-3967.
    [112]Marin D. Bioengineering Techniuques for Streambank Restoration:A Review of Central European Practices[J]. Watershed Restoration Project Report,1995, (2):4-9.
    [113]Gray D H. Biotechnical and soil bioengineering slope stabilization:a practical guide for erosion control[M]. New York:Wiley-Interscience Publication,1996.
    [114]周德培,张俊云.植被护坡工程技术[M].北京:人民交通出版社,2003.
    [115]王志泰,包玉,李毅.石灰岩边坡植被建植两周年群落特征与土壤养分动态.草业学报,2012,(2):34-42.
    [116]吴琳琳.义马市矿山废弃地生态恢复探究[D].[学士学位论文].郑州:河南农业大学,2009.
    [117]王可丽,徐毅.浅谈我国矿山环境地质问题[J].煤炭技术,2004,23(6):94-96.
    [118]Parise M. The Impacts of Quarrying in the Apulian Karst (Italy). B. Andreo et al. (Eds.), Advances in Research in Karst Media[M],2010, DOl 10.1007/978-3-642-12486-0.
    [119]Eeckhaut M, Poesen J, Dusar M, et al. Sinkhole formation above underground limestone quarries:A case study in South Limburg (Belgium)[J]. Geomorphology,2007,91:19-37.
    [120]潘懋,李铁锋.灾害地质学[M].北京:北京大学出版社,2002.
    [121]陈丽霞.三峡水库库岸单体滑坡灾害风险预测研究[D].[博士学位论文],武汉:中国地质大学(武汉),2008.
    [122]Cardona O D. Disaster Risk and Vulnerability:Concepts and Measurement of Human and Environmental Insecurity[M]. H.G. Brauch et al. (eds.), Coping with Global Environmental Change, Disasters and Security, Hexagon Series on Human and Environmental Security and Peace 5,2011, DOl 10.1007/978-3-642-17776-7_3.
    [123]Australian Geomechanics Society. Landslide risk management concepts and guidelines[J]. Aust Geomech,2000,35:49-92
    [124]PRIEST S D, HUDSON J A. Estimation of discontinuity spacing trace length using scanline[J]. Int J Rock Mech Min Sci,1981,19(2):183-1
    [125]KULATILAKE P H S, WU T H. Estimation of mean trace length of discontinuities[J]. Rock Mechanics and Rock Engineering,1984,17(4):215-232
    [126]Leone F, Aste JP, Leroi E. L'evaluation de la vulnerability aux mouvements deterrain[J]. Revue de Geographie Alpine.1996,84(1):35-46
    [133]Heinimann HR. Risikoanalyse bei gravitativen Naturgefahren —Fallbeispiele und Daten. Umwelt-Materialen 107/1, Bern,1999.
    [127]Uzielli M, Nadim F, Lacasse S, Kaynia AM. A conceptual framework for quantitative estimation of physical vulnerability to landslides[J]. Eng Geol,2008,102:251-256
    [128]AGSO. Natural hazards and the risk they pose to South-East Queensland. AGSO Geoscience Australia. Digital report on CD-ROM.2001,389
    [129]Dai FC, Lee CF, Ngai YY. Landslide risk assessment and management:an overview[J]. Eng Geol,2002,64:65-87
    [130]Glade T, Jensen EH. Recommendations for landslide hazard assessments in Bolungarvik and Vesturbyggd, NW-Iceland. Icelandic Metereological Office, Reykjavik,2005
    [131]Sterlacchini S, Frigerio S, Giacomelli P, Brambilla M Landslide risk analysis:a multi-disciplinary methodological approach[J]. Nat Hazards Earth Syst Sci,2007, 7:657-675
    [132]Fuchs S, Heiss K, Hubl J.Towards an empirical vulnerability function for use in debris flow risk assessment[J]. Nat Hazards Earth Syst Sci,2007,7:495-506.
    [133]Sasani M, Kropelnicki J. Progressive collapse analysis of an RC structure[J]. Struct Des Tall Special Buildings,2008,17(4):1541-7794
    [134]Starossek U. Progressive collapse of bridges—aspects of analysis and design.Proc. of the International Symposium on Sea-Crossing Long-Span Bridges. Mokpo.Korea,2006.
    [135]Delhomme F. Etude du Comportement sous impact d'une structure pare-blocs en beton arme.Doctoral thesis, Universite de Savoie. Available at:http://tel.archives-ouvertes.fr/ tel-00009161/en/. Accessed on February 3,2010
    [136]DOE. DOE Standard 3014-96. Accident analysis for aircraft crash into hazardous facilities. October 1996. Reaffirmation May 2006. US Department of Energy, Washington
    [137]Remennikov AM, Kaewunruen S. Impact resistance of reinforced concrete columns: experimental studies and design considerations. Proc. of 19th Australasian Conference on the Mechanics of Structures and Materials.29 November-1 December 2006. Christchurch, New Zealand, pp 817-824
    [138]Sezen H Shear deformation model for reinforced concrete columns[J]. J Struct Eng Mechanics,2008,28(1):39-52
    [139]陈俊,框架柱对结构抗倒塌能力的影响研究[D].[学士学位论文].武汉:华中科技大学,2012
    [140]Bojo, J. The costs of land degradation in Sub-Saharan Africa. Ecol[J]. Econ. 16,1996,161-173.
    [141]Toy,TJ, Daniels, WL. Reclamation of disturbed lands. In:Encyclopedia of Environmental Analysis and Remediation. New York:John Wiley and Sons,2000, pp.1-24.
    [142]Alday JG, Marrs RH, Martinez-Ruiz C. The importance of topography and climate on short-term revegetation of coal wastes in Spain[J]. Ecological Engineering,2010,36: 579-585.
    [143]Vickers H, Gillespie M, Gravina A. Assessing the development of rehabilitated grasslands on post-mined landforms in north west Queensland, Australia[J]. Agriculture, Ecosystems and Environment,2012,163:72-84.
    [144]Menegaki M.E, Kaliampakos D.C. Evaluating mining landscape:A step forward. Ecological Engineering,2012,43 (2012):26-33.
    [145]Suding KN, Hobbs RJ. Threshold models in restoration and conservation:a developing framework. Trends Ecol Evol,2009,24:271-279.
    [146]Cullen, WR, Wheater, CP, Dunleavy, PJ. Establishment of species-rich vegetation on reclaimed limestone quarry faces in Derbyshire, UK. Biological Conservation,1998,84: 25-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700