共表达β-1,3-1,4-葡聚糖酶和β-1,4-木聚糖酶重组酿酒酵母的构建及其性能的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
啤酒酿造特别是纯生啤酒的酿造中,高分子物质β-葡聚糖、阿拉伯木聚糖、蛋白质等不仅增加了啤酒粘度还极易堵塞过滤装置,造成过滤困难,影响生产。啤酒酿造中,高分子化合物含量越高,助滤剂硅藻土的使用量就越大。全球啤酒行业每年消耗的硅藻土是惊人的,初步计算每年硅藻上的使用量在200万吨-300万吨之间,这不仅需要企业付出大量成本,也给环境带来大量的污染。因而,研究如何降低啤酒的粘度,改善啤酒的易滤性,已成为业界和相关科研工作者亟待解决的问题之一。现有的科学研究和生产实践已经证明,啤酒酿造工艺中添加β-1,3-1,4-葡聚糖酶和β-1,4-木聚糖酶可以降低啤酒中β-1,3-1,4-葡聚糖和阿拉伯木聚糖的含量,从而降低啤酒粘度,是改善啤酒易滤性的可行途径之一。
     本研究从改造发酵菌株出发,采用基因工程技术,构建表达β-1,3-1,4-葡聚糖酶和p-木聚糖酶的基因工程酵母,赋予重组酵母降解啤酒中葡聚糖和阿拉伯木聚糖的能力。尝试通过酿酒酵母在发酵过程中的作用改善啤酒过滤困难的问题。研究结果如下:
     第一,构建了组成型分泌表达β-1,3-1,4-葡聚糖酶(GluZ)和β-1,4-木聚糖酶(XylB)的酿酒酵母基因工程菌。通过对商品化酵母穿梭质粒YEplac181的改造,构建了组成型分泌表达葡聚糖酶和木聚糖酶的重组质粒载体,该载体的表达盒包含了克隆自酿酒酵母基因组的PGK1启动子、MFα1信号肽、ADH1终止子序列,以及来自PUG6质粒的遗传霉素G418抗性基因KanMX,构建了组成型启动了PGKl调控的酵母分泌表达载体YEplac181-PMAK。将全基因合成的β-1,4-木聚糖酶基因(XylB)和来自YEplac181-KPMBT质粒的β-1,3-1,4-葡聚糖酶基因(GluZ)克降到YEplac181-PMAK上,构建了分泌表达XylB的YEplac181-PMXAK质粒和分泌表达GluZ的YEplac181-PMGAK质粒。分别将重组质粒YEplac181-PMXAK和YEplac181-PMGAK转化S. cerevisiae WZ65,构建了分泌表达XylB和GluZ的酿酒酵母基因工程菌S. cerevisiae PMXAK和S. cerevisiae PMGAK;同时将重组质粒YEplac181-PMXAK和YEplac181-PMGAK共同转化S. cerevisiae WZ65,构建了共分泌表达XylB和GluZ的酿酒酵母基因工程菌S. cerevisiae PMG-XAK,经透明圈实验证实三株重组酵母均可以分泌表达有活性的重组酶XylB和GluZ。摇瓶培养60h测得三株重组酵母的发酵液中酶活力分别为:S.cerevisiae PMXAK产XylB酶活为45.4U/mL; S. cerevisiae PMGAK产GluZ酶活为17.9U/mL; S. cerevisiae PMG-XAK共表达XylB和GluZ的酶活分别为21.7U/mL和8.7U/mL。
     第二,构建了组成型展示表达XylB和GluZ的酿酒酵母基因工程菌。以YEplac181-PMAK为出发质粒,分别克隆了XylB、GluZ以及凝集素C端320个aa的锚定序列,构建了展示表达XylB和GluZ的表达载体YEplac181-PMXAAK和YEplac181-PMGAAK。分别将重组质粒YEplac181-PMXAAK和YEplac181-PMGAAK转化S. cerevisiae WZ65,构建了展示表达XylB和GluZ的酿酒酵母基因工程菌S. cerevisiae PMXAAK和S. cerevisiae PMGAAK;同时将重组质粒YEplac181-PMXAAK和YEplac181-PMGAAK转化S. cerevisiae WZ65,构建了共展示表达XylB和GluZ的酿酒酵母基因工程菌S. cerevisiae PMG-XAAK,经透明圈实验证实在三株重组酵母中两种酶均为有活性的展示表达。摇瓶培养60h测得三株重组酵母的发酵液中XylB和GluZ的活力分别为:S. cerevisiae PMXAAK产XylB酶活为8.9U/mL; S. cerevisiae PMGAAK产GluZ酶活为4.1U/mL; S. cerevisiae PMG-XAAK共表达XylB和GluZ的酶活分别为4.2U/mL和2.3U/mL。
     第三,构建了诱导型展示表达XylB和GluZ的酿酒酵母基因工程菌。以YEplac181-PMGAAK和YEplac181-PMXAAK为出发质粒,克隆了源自酵母基因组的GAL1启动子,构建了诱导型启动子GALI控制的展示表达载体YEplac181-PMGAAK和YEplac181-PMXAAK。分别将重组质粒YEplac181-GMXAAK和YEplac181-GMGAAK转化S. cerevisiaeWZ65,构建了展示表达XylB和GluZ的酿酒酵母基因工程菌S. cerevisiae GMXAAK和S. cerevisiae GMGAAK;同时将重组质粒YEplac181-GMXAAK和YEplac181-GMGAAK转化S. cerevisiae WZ65,构建了共展示表达XylB和GluZ的酿酒酵母基因工和菌S. cerevisiae GMG-XAAK,经透明圈实验证实三株重组酵母均可以展示表达有活性的重组酶XylB和GluZ。摇瓶培养60h测得三株重组酵母的发酵液中酶活力分别为:S. cerevisiae GMXAAK产XylB酶活为15.6U/mL; S. cerevisiae GMGAAK产GluZ酶活为7.3U/mL; S. cerevisiae GMG-XAAK共表达XylB和GluZ酶活公别为7.6U/mL和3.4U/mL。
     第四,本文对重组酵母分泌表达和展示表达的XylB和GluZ的酶学性质进行了研究。结果表明:(1)重组酶XylB具有专一的水解β-1,4-木糖糖苷键活力,GluZ具有专一的水解β-1,3-1,4-葡葡糖糖苷键活力。(2)重组酵母菌株S. cerevisiae PMXAK、S. cerevisiae PMXAAK和S. cerevisiae GMXAAK所产XylB的最适反应温度均为50℃;重组酵母菌株S. cerevisiae PMGAAK和S. cerevisiae GMGAAK展示表达的GluZ最适反应温度是50℃;S. cerevisiae PMGAK分泌表达的GluZ最适反应温度是40℃。上述6种重组酶在10℃-50℃时都具有较高的的热稳定性,在最适反应湿度下保温1h后仍可保持70%以上的活力(3)重组酵母菌株S. cerevisiae PMXAK、S. cerevisiae PMXAAK和S. cerevisiae GMXAAK所产XylB最适反应pH为5.0;重组菌株S. cerevisiae PMGAK、S. cerevisiae PMGAAK和S. cerevisiae GMGAAK所产GluZ最适反应pH为6.0。上述6种重组酶在偏酸性环境中(pH3.0和pH4.0)时具有较好的稳定性。
     第五,本文对重组酵母的发酵性能和发酵中降低啤酒发酵液粘度的效果进行了研究。结果表明(1)重组菌与出发菌株相比较,生长性能略有下降,但是对啤酒的的表观发酵度和相实发酵度影响不大。(2)重组菌精酶液具有较好的降解麦汁葡聚糖和木聚糖的能力,麦汁粘度随葡聚糖或木聚糖含量的降低而下降。(3)三株共表达葡聚糖酶和木聚糖酶的重组菌在主发酵过程中都能不同程度的降低麦汁的粘度,其中分泌表达菌株降解能力最好,诱导型展示表达菌株降解能力最差。
     第六,为考察酿酒酵母基因工程菌株的生产性能进行了实验室小规模酿酒试验。重组菌株酿造的啤酒口味纯正,各项理化指标均达到啤酒国家标准。重组酿酒酵母在啤酒主发发酵和后发酵中使麦汁中的β-葡聚糖和阿拉伯木聚糖含量降低了60%-70%,与对照组S. cerevisiaeWZ65相比,啤酒粘度下降27%以上,麦汁中β-葡聚糖从312mg/L降至106mg/L和121mg/L,达到了管敦仪等人提出的啤酒在膜过滤除菌前β-葡聚糖含量应低于150mg/L的要求。
In beer brewing industry, especially for draft beer, macromolecular compounds such as β-glucan, araboxylan, protein are not only to increases the viscosity of beer but also to block filter set, causing filter difficulties and affecting production. Macromolecular compounds can also cause non-biological stability of beer in storage. The global beer industry consumes about2-3million tons diatomite a year, which bringing lots of environment pollution. And during the filter process of beer, the higher content of macromolecular compound, the more diatomite consumed. Therefore, studying how to reduce the viscosity of beer to make it filtrating easier has become one of the problems which need to be solved in beer industry. Now scientific research and production practice has proved that adding β-1,3-1,4-glucanase and β-1,4-xylanase in brewing process can reduce the content of0-1,3-1,4-glucan and araboxylan and decrease the viscosity of beer. So it is one of the feasible ways to make beer filtration easier.
     This study aims to resolve the beer filtration problem from modifying fermentation strain with genetic engineering technology. In this study several recombinant saccharomyces cerevisiae strains were constructed which can express β-1,3-1,4-glucanase and β-1,4-xylanase and be able to degrade the β-1,3-1,4-glucan and raboxylan. In this way, through fermentation the viscosity of beer can be decreased and the filtration problem can be solved without extra enzyme added. The results are as follows.
     First, the recombinant yeast with the ability of constitutive secretion expression of β-1,4-xylanase (Xy1B) and β-1,3-1,4-glucanase (GluZ) were constructed. Through the modification of commercialization yeast shuttle plasmid YEplac181, recombinant plasmids were constructed. The expression plasmid YEplac181-PMAK contains PGK1promoter, MFal signal peptide, ADH1terminator which from S. cerevisiae genome, and G418resistance gene KanMX which from PUG6plasmid. Xy1B from gene synthesis and GluZ from plasmid YEplac181-KPMBT were cloned to construct plasmid YEplac181-PMXAK and YEplac181-PMGAK. Then, the recombinant plasmids YEplac181-PMXAK and YEplac181-PMGAK were transformed into S. cerevisiae WZ65. Recombinant yeast strains S. cerevisiae PMXAK and S. cerevisiae PMGAK were created with the ability of secretory expression Xy1B and GluZ respectively. Furthermore, the recombinant plasmids YEplac181-PMXAK and YEplac181-PMGAK were transformed into S. cerevisiae WZ65together to construct a recombinant yeast named as S. cerevisiae PMG-XAK which can produce Xy1B and GluZ through transparent circle experiment confirmed. The maximum enzyme activities were reached after60h shaking flask cultivation. The activity of GluZ of S. cerevisiae PMGAK and S. cerevisiae PMG-XAK is45.4U/mL and21.7U/mL and the activity of XylB of S. cerevisiae PMXAK and S. cerevisiae PMG-XAK is17.9U/mL and8.7U/mL.
     Second, the recombinant yeasts with the ability of constitutive surface display expression of XylB and GluZ were constructed. The a-agglutinin gene containing the3'half of the region encoding320amino acids and a238-bp flanking region and XylB were cloned to plasmid YEplac181-PMAK to create a surface display plasmid YEplac181-PMXAAK. Based on YEplac181-PMXAAK plasmid, the GluZ was cloned to replace Xy1B to construct another display plasmid YEplac181-PMGAAK. The320C-terminal amino acids of α-agglutinin were used as an anchor to link the enzyme to cell surface of yeast. Then, the recombinant plasmids YEplac181-PMXAAK and YEplac181-PMGAAK were transformed into S. cerevisiae WZ65respectively to construct recombinant S. cerevisiae PMXAAK and S. cerevisiae PMGAAK with the ability of displaying expression XylB and GluZ. Furthermore, the recombinant plasmids YEplac181-PMXAK and YEplac181-PMGAK were transformed into S. cerevisiae WZ65to construct a new recombinant S. cerevisiae PMG-XAAK which can produce XylB and GluZ together through transparent circle experiment. The maximum enzyme activities were reached after60h shaking flask cultivation. The GluZ of S. cerevisiae PMGAAK and S. cerevisiae PMG-XAAK is4.1U/mL and2.3U/mL and the XylB of S. cerevisiae PMXAAK and S. cerevisiae PMG-XAAK is8.9U/mL and4.2U/mL.
     Third, the recombinant yeasts with the ability of induced surface display expression of Xy1B and GluZ were constructed. The GAL1promoter gene was cloned to plasmid YEplac181-PMGAAK and YEplac181-PMXAAK to instead of the PGK1promoter. New plasmids were transformed into S. cerevisiae WZ65respectively to construct S. cerevisiae GMXAAK and S. cerevisiae GMGAAK with the ability of displaying expression Xy1B and GluZ. Furthermore, the recombinant plasmids were transformed into S. cerevisiae WZ65together to construct S. cerevisiae GMG-XAAK which can produce XylB and GluZ together through transparent circle experiment confirmed. The maximum enzyme activities were reached after60h shaking flask cultivation. The GluZ of S. cerevisiae GMGAAK and S. cerevisiae GMG-XAAK is7.6U/mL and3.4U/mL and the Xy1B of S. cerevisiae PMXAK and S. cerevisiae PMG-XAK is15.6U/mL and7.3U/mL.
     Fourth, in this paper, the properties of XylB and GluZ were investigated which were produced by recombinant yeasts with secretory expression and cell surface display expression. The results are as follows. Xy1B and GluZ are specific hydrolase to hydrolyze β-1,3-1,4-glucan and β-1,4-xylan respectively. The optimum temperature of the recombinant enzymes is50℃, except the GluZ produced by S. cerevisiae PMGAK which is40℃. The recombinant enzymes are stable at10℃to50℃. The optimum pH of recombinant XylB and GluZ is5.0and6.0respectively. All types of the recombinant enzymes are stable under acidic condition around pH3.
     Fifth, the performance of fermentation and degradation of beer viscosity in beer were studied. The results are as follows. Comparing with the original strain, the growth performance of recombinant yeasts reduces slightly, but both apparent fermentation degree and real fermentation degree of original and recombinant strains are very close to one another. The0-1,3-1,4-glucan, araboxylan and wort viscosity were reduced through treatment with the fermentation broth or yeasts cell which containing Xy1B and GluZ. All three recombinant yeasts which can produce Xy1B and GluZ can lower beer viscosity during fermentation. The result showed that the secretory expression strain was most effective and the induced surface display strain effect is worst.
引文
Aehle, W. Enzymes in Industry:Production and Applications. Wiley-VCH:3rd Revised edition,2007
    Ahmed, S., Riaz, S. and Jamil, A. Molecular cloning of fungal xylanases:an overview. Appl. Microbiol. Biotechnol.,2009,84:19-35
    Anderson, I. W, Dickenson, C. J. and Anderson, R. G. β-glucan in production malting. In:Proc. Congr. Eur. Brew. Conv. Zurich.,1989,22:213-220. IRL Press at Oxford University Press, Oxford, UK.
    Andersson, S. and Kurland, C. G. Codon Preferences in Free-Living Microorganisms. Microbiol. Rev., 1990,54:198-210
    Andres, I., Gallardo, O., Parascandola, P., et al. Use of the Cell Wall Protein Pir4 as a Fusion Partner for the Expression of Bacillus sp. BP-7 Xylanase A in Saccharomyces cerevisiae. Biotechnol. Bioeng.,2005, 89 (6):690-697
    Annison, G. and Choct, M. Antinutritive activities of cereal nonstarch Polysaccharides in broilor diets and strategies for minimizing their effects. World. Poultry Sci. J.,1991,47(3):232-242
    Annison, G., Geraert, P. A., Uzu, G., et al. Factors affecting non-starch polysaccharide digestibility in poultry. In:Moran d-Feh r P. (ed.). Feed manufacturing in Southern Europe:New challenges. Zaragoza:CIHEAM,1997:125-134
    Anu, K., Hamalainen, J. J., Stenholm, K., et al. A model for the prediction of beta-glucanase activity and beta-glucan concentration during mashing. J. Food Eng.,1996,29(2):185-200
    Balance, G. M. and Manners, D. J. Structural analysis and enzyme solubilization of barley endosperm cell walls. Carbohydrates Research.1978,61:107-118
    Bamforth, C. W, Moore, J., McKillop, D., et al. Enzymes from barley which solubilize β-glucan. Proc. Congr. Eur. Brew. Conv. Maastricht.1997,26:75-82. IRL Press at Oxford University Press, Oxford, U. K.
    Barber, M. G., Jackson, E. A. and Smith. D. B. Total and individual barley (1-3),(1-4)-beta-D-glucanase activities in some green and kilned malts. J. Inst. Brew.,1994,100(2):91-97
    Barnforth, C. W. β-Glucan and β-glucanases in malting and brewing:Practical aspects. Brew. Dig., 1994,69(5),12-16
    Bathgate, G. N., Palmer, G. H. and Wilson, G. The action of endo-β-glucanases on barley and malt β-glucans. J. Inst. Brew.,1974,80(3):278-285
    Bedford, M. K. Mechanism of action and potential environmental benefits from the use of feed enzymes. Animal. Feed. Sci. Tech.,1995,53B:145-155
    Bedford, M. R. and Partridge, G. G. Enzymes in Farm Animal Nutrition (2nd edition). CAB International, Wallingford, UK,2010
    Beg, Q., Kapoor, M., Mahajan, L., et al. Microbial xylanases and their industrial applications:a review. Appl. Microbiol. Biot.,2001,56(3-4):326-338
    Bengtsson, S., Andemson, R., Westedund, E., et al. Content, structure and viscosity of soluble arabinoxylans in rye grain from several countries. J. Sci. Food Agr.,1992,58:331-337
    Berrin, J. G., Williamson, G., Puigserver, A., et al. High-level production of recombinant fungal endo-beta-1,4-xylanase in the methylotrophic yeast Pichia pastoris. Protein Expr. Purif.,2000,19 (1): 179-187
    Besgtsson, S. and Aman, P. Isolation and chemical characterization of water- soluble arabino -xylans in rye grain. Carbohyd. Polym.,1990,12:267-277
    Bony, M., Thines-Sempoux, D., Barre, P., et al. Localization and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flolp. J. Bacteriol.,1997,179:4929-4936
    Borriss, R. and Zemek, J. Beta-1,3-1,4-glucanase in spore forming microorganisms IV. Properties of some Bacillus β-glucan-hydrolases. Zentralbl Bakteriol Naturwiss,1981,136(1):63-69
    Botstein, D. and Fink, G. R. Yeast:an experimental organism for modern biology. Science,1988, 240(4858):1439-1443
    Briggs D. E. Barley germination:biochemical changes and hormonal control. In:Shewry PR, editor. Barley:genetics, biochemistry, molecular biology and Biotechnology. Wallingford, UK:CAB International.1992:369-341
    Cai, H-Y., Shi, P-J., Bai, Y-G., et al. A novel thermoacidophilic family 10 xylanase from Penicillium pinophilum C1. Process Biochem.,2011,46(12):2341-2346
    Campbell, G. L. and Bedford, M. R. Enzyme applications for monogastric feeds:A review. Can. J. Anim. Sci.,1992,72(3):449-466
    Canteell, B. A. and Mcconnell, D. J. Molecular cloning and expression of a Bacillus subtilis β-glucanase gene in Escherichia coli. Gene,1983,23(2):211-219
    Cantwell, B. A., Brazil, G., Murphy, N. et al. Comparison of expression of the endo-β-1,3-1,4-glucanase gene from Bacillus subtilis in Saccharomyces cerevisiae from the CYC1 and ADH1 promoters [J]. Curr. Genet.1986.11(1):65-70
    Celestino, S., Cunha, R. K., Ricardo B., et al. Characterization of a beta-glucanase produced by Rhizopus microsporus var. microsporus, and its potential for application in the brewing industry. BMC Biochemistry,2006,7(23):1-9
    Chandel, K. A. and Silva, S. S. Sustainable Degradation of Lignocellulosic Biomass-Techniques, Applications and Commercialization (Chapter 10) F. L. Motta, C. C. P. Andrade. A Review of Xylanase Production by the Fermentation of Xylan:Classification, Characterization and Applications. Publisher:InTech,2013
    Chen, J-L., Tsai, L-CH., Wen, T-N., et al. Directed mutagenesis of specific active site residues on Fibrobacter succinogenes 1,3-1,4-β-D-glucanase significantly affects catalysis and enzyme structural stability. The Journal of Biological Chemistry,2001,276(21):17895-17901
    Choct, M. Enzymes for the feed industry:past, present and future. World. Poultry Sci. J.,2006,62 (1): 5-16
    Collins, T., Gerday, C. and Feller, G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev.,2005,29(1):3-23
    Courtin, M. C., Broekaert, F. W. and Swennen, K. Occurrence of Arabinoxylo- oligosaccharides and Arabinogalactan Peptides in Beer. J. Am. Soc. Brew. Chem.,2009,67(2):112-117
    Deng, S. P. and Tabatabai, M. A. Colorimetric determination of reducing sugars in soils. Soil Biol. Biochem.,1994,26(4):473-477
    Dhiman, S. S., Garg, G., Sharma, J., et al. Characterization of statistically produced xylanase for enrichment of fruit juice clarification process. New Biotechnol.,2011,28:746-756
    Douglas, S. G. A rapid method for the determination of pentosans in wheat flour. Food Chem.,1981,7: 139-145
    Dustin, M. L., Selvaraj, P., Mattaliano, R. J., et al. Anchoring mechanisms for LFA-3 cell adhesion glycoprotein at membrane surface. Nature,1987,329(6142):846-848
    Eyben D., Duthoy J. E. The filterability of wort and beer. MBAA Tech.1979,16:135-141 Feldhaus, M., Siegel, R. Flow cytometric screening of yeast surface display libraries. Methods Mol. Biol.,2004,263:311-332
    Fincher, G. B. and Stone B. A. Advances in Cereal Science and Technology [M]. St. Paul:AACC,1986, 8:207-295
    Flint, H. J., Mcpherson, E. C. and Bisset, J. Molecular cloning of genes from Ruminococcus flavefaciens encoding xylanase and β(1,3-1,4)glucanase activities. Appl. Environ. Microbiol.,1989,55:1230-1233 Fogarty, M. W. and Kelly, T. C. Microbial enzymes and biotechnology, Kluwer Academic Publishers: 2nd Revised edition,1990
    Fu, L-L., Xu, Z-R., Shuai, J-B., et al. High-Level secretion of a chimeric thermostable lichenase from Bacillus subtilis by screening of site-mutated signal peptides with structural alterations. Curr. Microbiol., 2008,56:287-292
    Fujita, Y., Takahashi, S., Ueda, M., et al. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl. Environ. Microbiol.,2002,68(10): 5136-5141
    Fujita, Y., Katahira, S., Ueda, M., et al. Construction of whole-cell biocatalyst for xylan degradation through cell-surface xylanase display in Saccharomyces cerevisiae. J. Mol. Catal. B-Enzym.,2002,17, 189-195
    Fujita, Y., Ito, J., Ueda, M., et al. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl. Environ. Microbiol.,2004,70(2):1207-1212
    Fukuda, H., Kondo, A., Tamalampudi, S. Bioenergy:sustainable fuels from biomass by yeast and fungal whole-cell biocatalysts. Biochem. Eng. J.,2009,44:2-12 Gai, S. A. and Wittrup, K. D. Yeast surface display for protein engineering and characterization. Curr. Opin. Struct. Biol.,2007,17(4):467-473
    Galante, Y. M, Conti D. A. and Monteverdi, R. Application of Trichoderma Enzymes in Food and Feed Industries. In:Trichoderma and Giocladium-Enzymes, Biological Control and Commercial Application, Harman, G.F. and C.P. Kubicek (Eds.).Vol.2. Taylor and Francis, CRC Press, London, USA,1998
    Garcia, E., Johnston, D., Whitaker, J. R., et al. Assessment of endo-1,4-beta-D-glucanase activity by a rapid colorimetric assay using disodium 2,2'-bicinchoninate. J. Food Biochem.,1993,17(3):135-145
    Gastebois, A., Mouyna, I., Simenel, C., et al. Characterization of a new β-(1,3)-glucan branching activity of Aspergillus fumigatus. Biol. Chem.,2010,285(4):2386-2396
    Gorgens, J. F., Planas, J., van Zyl, W. H., et al. Comparison of three expression systems for heterologous xylanase production by S. cerevisiae in defined medium. Yeast,2004,21(14):1205-1217
    Guo, B., Chen, X-L., Sun, C-Y., et al. Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-β-1,4-xylanase from marine Glaciecola mesophila KMM241. Appl. Microbiol. Biotechnol.,2009,84:1107-1115
    Guo, Q., Zhang, W., Ma. L. L. et al. A food-grade industrial arming yeast expressing beta-1,3-1,4-glucanase with enhanced thermal stability. J. Zhejiang Univ. Sci. B,2010,11(1):41-51
    Gruppen, H., nattier, R. J. and Voragen, A. G. J. Water-unextractable cell wall material from wheat flour.2.Fraction of alkali extractable polymers and comparison with water-extractable arabinoxylan. J. Cereal Sci.,1992,16:53-67
    Han, J. Y., Schwarz, P. B. Arabinoxylan composition in barley, malt, and beer. J. Am. Soc. Brew. Chem.,1996,54(4):216-220
    Haros, M., Rosell, C.M. and Benedito, C. Effect of different carbohydrases on fresh bread texture and bread staling. Eur. Food Res. Technol.,2002,215:425-430 Henry, R. J. A comparison of the non-starch carbohydrates in cereal grains. J. Sci. Food. Agric.,1985, 36:1243-1253
    Henry, R. J. Pentosan and (1-3),(1-4)-beta-glucan concentration in endosperm and whole grain of wheat, barley, oats and rye. J. Cereal Sci.,1987,6:253-258 Hetlanda, H., Chocta, M. and Svihusa, B. Role of insoluble non-starch polysaccharides in poultry nutrition. World. Poultry Sci. J.,2004,60(4):415-422 Hinchliffe, E. and Box, W. G. Expression of the cloned endo-1,3-1,4-β-glucanase gene of Bacillus
    subtilis in Saccharomyces cerevisiae. Curr. Genet.,1984.8(6):471-475 Hovarth, H., Huang, J., Wong, O., et al. The production of recombinant proteins in transgenic barley grains. PNAS,2000,97:1914-1919
    Hrmova, M., Banik, M., Harvey, A. J., et al. Polysaccharide hydrolases in germinated barley and their role in the deploymerization of plant and fungal cell walls. International Journal of Biological Macromolecules,1997,21(1):67-72
    Huang, H-Q., Yang, P-L., Luo, H-Y., et al. High-level expression of a truncated 1,3-1,4-β-D-glucanase from Fibrobacter succinogenes in Pichia pastoris by optimization of codons and fermentation. Appl. Microbiol. Biot.,2008,78:95-103
    Ichikawa, S. and Takinami, M. Microbiological control for sterile filtration and aseptic packaging. Proc. Inst. Brew.,1992,22:175-182
    Ivanen, D. R., Rongjina, N. L., Shishlyannikov, S. M., et al. Novel precipitated fluorescent substrates for the screening of cellulolytic microorganisms. J. Microbiol. Methods,2009,76(3):295-300
    Jiang, Z-Q., Kobayashi, A., Ahsan, M. M., et al. Characterization of a thermostable family 10 endo-xylanase (xynB) from Thermotoga maritima that cleaves p-nitropheny-1 beta-D-xyloside. J. Biosci. Bioeng.,2001,92(5):423-428
    Jiang, Z-Q., Cong, Q-Q.and Yan, Q-J., et al. Characterization of a thermostable xylanase from Chaetomium sp. and its application in Chinese steamed bread. Food Chem.,2010,120:457-462
    Jin, Y. L. Effect of β-glucan and environmental factors on the physical and chemical properties of wort and beer. Ph. D. thesis. Dalhousie University, Halifax, NS, Canada.2002
    Jin,Y. L., Speers, R. A. and Paulson A. T. Effect of beta-Glucans and Process Conditions on the Membrane Filtration Performance of Beer. J. Am. Soc. Brew. Chem.,2004,62(3):117-124
    Johnston, M. and Davis, R. W. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol.,1984,4(8):1440-1448
    Karmakar, M. and Ray, R. R. Current Trends in Research and Application of Microbial Cellulases. Res. J. Microbiol.,2011,6(1):41-53
    Katahira, S., Fujita, Y., Mizuike, A., et al. Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl. Environ. Microbiol.,2004,70(9):5407-5414
    Khaw, T., Katakura, Y., Koh, J., et al. Evaluation of performance of different surface-engineered yeast strains for direct ethanol production from raw starch. Appl. Microbiol. Biotechnol.,2006,70(5): 573-579
    Khaw, T. S., Katakura, Y, Ninomiya, K., et al. Enhancement of ethanol production by promoting surface contact between starch granules and arming yeast in direct ethanol fermentation. J. Biosci. Bioeng.,2007,103(1):95-97
    Kondo, A., Shigechi, H., Uyama, M. A. K., et al. High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase. Appl. Microbiol. Biotechnol.,2002,58(3):291-296
    Kondo, A. and Ueda, M. Yeast cell-surface display-applications of molecular display. Appl. Microbiol. Biotechnol.,2004.64(1):28-40
    Kongruang, S, Han, M. J., Breton, C. I. G., et al. Quantitative analysis of cellulose-reducing ends. Appl. Biochem. Biotechnol.,2004,113-116:213-231
    Krisana, A., Rutchadaporn, S., Jarupan G., et al. Endo-1,4-β-xylanase from Aspergillus cf. niger BCC14405 isolated in Thailand:purification, characterization and gene isolation. J. Biochem. Mol. Biol.,2005,38(1):17-23
    Kulkarni, N., Shendye, A. and Rao, M. Molecular and biotechnological aspects of xylanase. FEMS Microbiol. Rev.,1999,23:411-456
    Kurland, C. G. Codon Bias and Gene-Expression. FEBS Lett,1991,285:165-169
    Lee, S. Y., Choi, J. H. and Xu, Z. Microbial cell-surface display. Trends Biotechnol.,2003,21(1):45-52
    Lee, C.C., Kibblewhite-Accinelli, R. E., Wagschal, K., et al. Cloning and characterization of a cold-active xylanase enzyme from an environmental DNA library. Extremophiles,2006,10(4):295-300
    Lever, M. A new reaction for colorimetric determination of carbohydrates. Anal. Biochem.,1972,47(1): 273-279
    Li, L., Shen, S., Jiang, P., et al. Usage of an intronic promoter for stable gene expression in Saccharomyces cerevisiae. Lett. Appl. Microbiol.,2005.40(5):347-352
    Li, Y., Lu, J., Gu, G-X., et al. Studies on water-extractable arabinoxylans during malting and brewing. Food Chem.,2005,93(1):33-38
    Lifts, C. J., Simmons, R. C., Karrer, E. E., et al. The isolation and characterization of a barley 1,3-1,4-β-glucanase gene. European Journal of Biochemistry,1990,194(3):831-838
    Lloberas, J., Querol, E. and Bernues, J. Purification and characterization of endo-β-1,3-glucanase activity from Bacillus licheniformis. Appl. Microbiol. Biot.,1988,29:32-38
    Lu, C. F., Kurjan, J. and Lipke, P. N. A pathway for cell wall anchorage of Saccharomyces cerevisiae alpha-agglutinin. Mol. Cell Biol.,1994,14(7):4825-4833
    Lu, J., Li, Y., Gu, G-X et al. Effects of Molecular Weight and Concentration of Arabino-xylans on the Membrane Plugging. J. Agric. Food Chem.,2005,53:4996-5002
    Lu, Y., Wang, T. H. and Ding, X. L. Induction of production and secretion beta(1-> 4) glucanase with Saccharomyces cerevesiae by replacing the MET10 gene with egll gene from Trichoderma reesei. Letters in Applied Microbiology,2009,49(6):702-707
    Luchsinger, W. W. The role of barley and malt gums in brewing. Brew. Dig.,1967,42:56-63 Schwarz, P. B., Hart, J. Y. Arabinoxylan content of commericial beers. J. Am. Soc. Brew. Chem.,1995, 53:157-159
    Lusk, L. T., Kay, S. B., Navarro, A., et al. Barley beta-glucan and beer foam stability. J. Am. Soc. Brew. Chem.,2001,59(4):183-186
    Malet, C., Valles, J., Bou, J., et al. A specific chromophoric substrate for activity assays of 1,3-1,4-β-glucan4-glucanohydrolases. J. Biotechnol.,1996,48(3):209-219
    Martin-Cuadrado, A. B. M., Fontaine, T., Esteban, P. F., et al. Characterization of the endo-β-1,3-glucanase activity of S. cerevisiae Eng2 and other members of the GH81 family. Fungal Genet. Biol., 2008,45(4):542-553
    Mateo, C., Palomo, J. M., Fernandez-Lorente, G., et al. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol.,2007,40(6):1451-1463
    Matsumoto, T., Fukuda, H., Ueda, M., et al. Construction of yeast st rains with high cell surface lipase activity by using novel display systems based on the Flolp flocculation functional domain. Appl. Environ. Microbiol.,2002,68:4517-4522
    Mcclearyb, V..A. Soluble chromogenic substrate for the assay of (1-3)(1-4)-D-glucanase (lichenase). Carbohyd. Polym.,1986,6(4):307-318
    Meldgaard, M. and Svendsen, I. Different effects of N-glycosylation on the thermostability of highly homologous bacterial(1,3-1,4)-beta-glucanases secreted from yeast. Microbiology,1994,140(1):159-166
    Mikyska, A, Prokes, J, Haskova, D. Influence of the species and cultivation area on the pentosan and beta-glucan content in barley, malt and wort. Monatsschrift Fur Brauwissenschaft,2002, 55(5-6):88-95
    Miller, G. I. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem.,1959, 31(3):426-428
    Molina-Cano J. L. and Conde J. Genetic and environmental variation of gum content in barley. J. Inst. Brew.1982.88:30-33
    Morall, P. and Briggs, D. E. Changes in cell wall polysaccharides of germinating barley grains. Phytochemistry,1978,11:1495-1502
    Muller, R. Factors influencing the stability of barley malt beta-glucanase during mashing. J. Am. Soc. Brew. Chem.,1995,53(3):136-140
    Miiller, J. J., Thomsen, K. K. and Heinemann, U. Crystal Structure of Barley 1,3-1,4-beta-Glucanase at 2.0-A Resolution and Comparison with Bacillus 1,3-1,4-beta-Glucanase J. Biol. Chem.,1998,273: 3438-3446
    Munir, K. and Maqsood, S. A review on role of exogenous enzyme supplementation in poultry production. Emirates Journal of Food and Agriculture,2013,25(1):66-80
    Murai, T., Ueda, M., Yamamura, M., et al. Construction of a starch-utilizing yeast by cell surface engineering. Appl. Environ. Microbiol.,1997,63(4):1362-1366
    Murai, T., Ueda, M., Atomi, H., et al. Genetic immobilization of cellulase on the cell surface of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol.,1997,48(4):499-503
    Murphy, N., McConnell, D. J. and Cantwell, B. A. The DNA sequence of the gene and genetic control sites for the excreted B. subtilis enzyme beta-glucanase. Nucleic Acids Res.,1984,12(13):5355-5367 Nelson, N. A photometric adaptation of the Somogyi method for the determination of glucose. Biol. Chem.,1944,153:375-380
    Ogasawara, H., Takahashi, K., Iitsuka, K., et al. Contribution of hemicellulase in Shochu koji to the resolution of barleyinthe Shochu Mash. J. Brew. Soc. Japan.,1991,86(4):304-307
    Olsen, O., Borriss, R., Simon, O., et al. Hybrid Bacillus (1-3,1-4)-beta-glucanases:engineering thermostable enzymes by construction of hybrid genes. Mol. Genet. Genomics,1991,225:177-185
    Park, K. S. and Kim, J. S. Engineering of GAL1 promoter-driven expression system with artificial transcription factors. Biochem. Biophys. Res. Commun.,2006.351(2):412-417 Perlin, A. S. Isolation and composition of the soluble pentosans of wheat flours. Cereal Chem.,1951,28:370-381
    Park, S., Xu, Y., Stowell, X. F., et al. Limitations of yeast surface display in engineering proteins of high thermostability. Protein Eng. Des. Sel.,2006,19(5):211-217
    Piruzian, E. S., Monzav-iKarbassi, B., Darbinian, N. S., et al. The use of a thermostable β-glucanase gene from Clostridium thermocellum as a reporter gene in plants. Mol. Gen. Genet.,1998,257:561-567
    Pitson, S. M., Seviour, R. J. and Mcdougall, B. M. Noncellulolytic fungal β-glucanases:their physiology and regulation. Enzyme Microb. Tech.,1993,15(3):178-192
    Planas, A. Bacterial 1,3-1,4-β-glucanases:structure, function and protein engineering. Biochimicaet
    Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,2000,1543(2):361-382
    Polizeli, M. L. T. M., Rizzatti, A. C. S., Monti, R., et al. Xylanases from fungi:properties and industrial applications. Appl. Microbiol. Biot.,2005,67(5):577-591
    Puigbo, P., Guzman, E., Romeu, A., et al. OPTIMIZER:a web server for optimizing the codon usage of DMA sequences. Nucleic Acids Res.,2007,35(suppl 2):126-131
    Qiao, J., Dong, B., Li, Y., et al. Cloning of a β-1,3-1,4-glucanase gene from Bacillus subtilis MA 139 and its functional expression in Escherichia coli. Appl. Biochem. Biotechnol.2009,152:334-342 Romanos, M. A., Scorer, C. A. and Clare, J. J. Foreign gene expression in yeast:a review. Yeast,1992, 8(6):423-488
    Roy, A., Lu, C. F., Marykwas, D. L., et al. The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin. Mol. Cell. Biol.,1991,11(8): 4196-4206
    Sadosky, P., Schwarz, P. B., Horsley, R. D. Effect of arabinoxylans, beta-glucans, and dextrins on the viscosity and membrane filterability of a beer model solution. J. Am. Soc. Brew. Chem.,2002,60(4): 153-162
    Sa-Pereira, P., Paveia, H., Costa-Ferreira, M., et al. A new look at xylanase. Mol. Biotechnol.,2003,24 (3):257-281
    Sato, N., Matsumoto, T., Ueda, M., et al. A Long anchor using Flol protein enhances reactivity of cell surface-displayed glucoamylase to polymer substrates. Appl. Microbiol. Biotechnol.,2002,60:469-474 Schmitt, R. and Wise, L. M. Barley and Oat β-Glucan Content Measured by Calcofluor Fluorescence in a Microplate Assay. Cereal Chem,2009,86(2):187-190
    Sengupta, S., Jana, M. L., Sengupta, D., et al. A note on the estimation of microbial glycosidase activities by dinitrosalicylic acid reagent. Appl Microbiol Biotechnol,2000,53(6):732-735
    Shaw, K. J., Frommer, B. R., Anagnost, J.A., et al. Regulated secretion of MuGM-CSF in Saccharomyces cerevisiae via GAL1:MF alpha 1 prepro sequences. DNA.1988,7(2):117-26
    Shibasaki, S., Maeda, H. and Ueda, M. Molecular display technology using yeast-arming technology. Anal. Sci..2009,25:41-49
    Shigechi, H., Uyama, K., Fujita, Y., et al. Efficient ethanol production from starch through development of novel flocculent yeast strains displaying glucoamylase and co-displaying or secreting a-amylase. J. Mol. Catal. B-Enzym.,2002,17(3-5):179-187
    Shigechi, H., Koh, J., Fujita, Y., et al. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and a-amylase. Appl. Environ. Microbiol.,2004,70(8):5037-5040
    Shigechi, H., Fujita, Y., Koh, J., et al. Energy-saving direct ethanol production from low-temperaturecooked corn starch using a cell-surface engineered yeast strain co-displaying glucoamylase and α-amylase. Biochem. Eng. J.,2004,18(2):149-153
    Shimoi H, Kitagaki H, Ohmori H, et al. Sed1p is a major cell wall protein of saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance. J. Bacteio.,1998,180(13):3381-3387
    Shuhei, Y., Ryosuke, Y., Shohei. K., et al. Ethanol production from cellulosic materials using cellulase-expressing yeast. Biotechnol. J.,2010,5(5):449-455
    Shuvaeva. G. P. and Sysoeva, M. G. Xylanase of the Micromycete Rhizopus var. microsporum 595: Preparation, Structural and Functional Characteristics, and Application. Appl. Biochem. Micro.,2010, 46(6):641-647
    Smith, G. P. Filamentous fusion phage novel expression vectors that display cloned antigens on the virion surface. Science,1985,228(4705):1315-317
    Smits, G. J., Schenkman, L. R., Brul, S., et al. Role of cell cycle-regulated expression in the localized incorporation of cell wall proteins in yeast. Mol. Biol. Cell,2006,17(7):3267-3280
    Somogyi, M. A new reagent for the determination of sugars. BioChem.,1945,160:61-68
    Su, G-D., Zhang, X. and Lin, Y. Surface display of active lipase in Pichia pastoris using Sedl as an anchor protein. Biotechnol Lett,2010,32(8):1131-1136
    Subramaniyan, S. and Prema. P. Biotechnology of Microbial Xylanases:Enzymology, Molecular Biology, and Application. Crit. Rev. Biotechnol.,2002,22(1):33-64
    Sun, Y. and Cheng, J-Y. Hydrolysis of lignocellulosic materials for ethanol production:a review, Bioresource Technol.,2002,83(1):1-11
    Sunna, A. and Antranikian, G. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol., 1997,17(1):39-67
    Tanino, T., Fukuda, H. and Kondo, A. Construction of a Pichia pastoris cell-surface display system using Flolp anchor system. Biotechnol. Progr.,2006,22(4):989-993
    Teng, D., Fan, Y., Yang, Y-L., et al. Codon optimization of Bacillus licheniform is β-1,3-1,4-glucanase gene and its expression in Pichia pastoris. Appl. Microbiol. Biot.,2007,74(5):1074-1083
    Thompson, J..R., Register, E., Curotto, J., et al. An improved protocol for the preparation of yeast cells for transformation by electroporation. Yeast,1998,14 (6):565-571
    Ueda, M. and Tanaka, A. Cell surface engineering of yeast:Construction of arming yeast with biocatalyst. J. Biosci. Bioeng.,2000.90(2):125-136
    Vaart, J. M. V. D., Biesebeke, R. T., Chapman, J. W., et al. Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins. Appl. Environ. Microbiol.,1997,63(2):615-620
    Vahjen, W., Glaser, K., Froeck, M., et al. Non-starch polysaccharide hydrolyzing enzymes as feed additives:detection of enzyme activities and problems encountered with quantitative determination in complex samples. Arch. Anim Nutr.,1997,50(4):331-345
    Van Nierop S. N. E., Cameron-Clarke A., and Axcell B. C. Enzymatic Generation of Factors from Malt Responsible for Premature Yeast Flocculation. J. Am. Soc. Brew. Chem.,2004,62(3):108-116
    Vernhet A., Cartalade, D. and Moutounet, M. Contribution to the understanding of fouling build-up during microfiltration of wines. J. Memberane. Sci.,2003,211:357-370
    Walsh, D. J. and Bergquist, P. L. Expression and secretion of a thermostable bact erial xylanase in Kluyveromyces lactis. Appl. Environ. Microbiol.,1997,63,3297-3300
    Wen, T-N., Chen, J-L, Lee, S-H., et al. A truncated Fibrobacter succinogenes 1,3-1,4-p-D-glucanase with improved enzymatic activity and thermotolerance. Biochemistry,2005,44:9197-9205
    Wirth, S. J. and Wolf, G. A. Micro-plate colourimetric assay for endo-acting cellulose, xylanase, chitinase,β-1,3-glucanase and amylase extracted from forest soil horizons. Soil Biol. Biochem.,1992, 24(6):511-519
    Wojciechowicz, D. and Lipke, P. N. alpha-Agglutinin expression in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun.,1989,161(1):46-51
    Wojciechowicz, D., Lu, C. F., Kurjan, J. and Lipke, P. N. Cell surface anchorage and ligand-binding domains of the Saccharomyces cerevisiae cell adhesion protein alpha-agglutinin, a member of the immunoglobulin superfamily. Mol. Cell Biol.,1993,13(4):2554-2563
    Wood, P. J. The use of dye-polysaccharide interactions in β-D-glucanase assay[J]. Carbohyd. Res.,1981, 94:c19-c23
    Wood, P. and Weisz, J. Detection and assay of (1→4)-β-D-glucanase, (1→3)-p-D-glucanase, (1→3)(1→4)-β-D-glucanase and xylanase based on complex formation of substrate with congo red. Cereal Chem.,1987.64:8-15
    Yamada, R., Bito, Y., Adachi, T., et al. Efficient production of ethanol from raw starch by a mated diploid Saccharomyces cerevisiae with integrated a-amylase and glucoamylase genes. Enzyme Microb. Technol.,2009,44(5):344-349
    Yang, S-Q., Yan, Q-J., Jiang Z-Q., et al. Biochemical Characterization of a Novel Thermostable β-1,3-1,4-Glucanase (Lichenase) from Paecilomyces thermophila. J. Agric. Food Chem.,2008,56 (13): 5345-5351
    Yang S-L., Liu Zh-S., Chi Sh-Z., et al. Production of Beer with a Genetically Engineered Strain of S. cerevisiae with Modified beta-Glucanase Expression. J. I. Brewing,2009,115(4):361-367
    Zhang, W-G., Han, S-Y., Wei, D-Z., et al. Functional display of Rhizomucor miehei lipase on surface of Saccharomyces cerevisiae with higher activity and its practical properties. J. Chem. Technol. Biotechnol.,2008,83(3):329-335
    Zhang, Q., Chen, Q-H., Fu, M-L., et al. Construction of recombinant industrial Saccharomyces cerevisiae strain with bglS gene insertion into PEP4 locus by homologous recombination. Journal of Zhejiang University-Science B,2008,9(7):527-535
    ZM, S., Li, W., Jeremy, P., K., et al. Delineation of functional regions within the subunits of the Saccharomyces cerevisiae cell adhesion molecule a-agglutinin. J. Biol. Chem.,2001,276(19): 15768-15775
    Zverlov, V. V., Fuchs, K. P., Schwarz W. H., et al. Purification and cellulosomal localization of Clostridium thermocellum mixed linkage β-glucanase LicB (1,3-1,4-β-D-glucanase). Biotechnol. Lett., 1994,16(1):29-34
    D.C.安伯格等.酵母遗传学方法实验指南.北京:科学出版社,2009
    陈璐菲,杜红丽,林影,等.热带假丝酵母木糖还原酶在酿酒酵母细胞表面展示.食品与发酵工业,2008,34(5):29-34
    陈涛,李琳,乔降华.浅谈麦汁β-葡聚糖含量的影响因素.啤酒科技,2010,10:48-49
    程殿林,曲辉.啤酒生产技术(第二版).北京:化学工业出版社,2010
    崔云前.微型啤酒酿造技术.北京:化学工业出版社,2008
    付水广,王自蕊,游金明等.复合酶制剂对断奶仔猪生长性能和养分消化率的影响研究.饲料工业,2010,31(7):40-42
    顾国贤.酿造酒工艺学.北京:中国轻工业出版社,1996
    谷桐彦.浅谈啤酒过滤.酿酒,2004,31(2):61-62
    管敦仪.啤酒工业手册.北京:中国轻工业出版社,2009
    郭钦.食品级酿酒酵母高效分泌/展示表达系统构建.[博士学位论文],浙江:浙江大学.2009
    郭营新,周世水.啤酒与健康.华南理工大学出版社,2010
    韩永奇.中国啤酒将向何处去—我国啤酒行业发展趋势述评.啤酒科技,2010,12(156):3-5
    何德功.中国啤酒产量全球第-占世界总产量四分之一.人民网,2012,http://mnc.people.com. cn/n/2012/0809/c54816-18701946.html
    何国庆,郑晓冬,吴金鹏等.β-葡聚糖对啤酒易滤性影响的研究.浙江农业大学学报.1992(2):105-109
    何国庆,张秀艳,陈启和,阮辉,汤兴俊.枯草芽孢杆菌ZJF-1A5 β-葡聚糖酶基因的克隆、序列分析和表达.农业生物技术学报,2006,14(1):147-148
    侯进,沈煜,鲍晓明.木糖异构酶在酿酒酵母表面表达及对木糖代谢影响的初步研究.生物加工过程,2006,4(1):30-34
    桓明辉,陈飞,吴红艳等.一株优良酿酒酵母菌的筛选及性能检测.微生物学杂志.2005,25(6):104-105
    黄登峰,潘志友,林影,韩双艳,郑穗平.酿酒酵母表面展示南极假丝酵母脂肪酶B的酶学性质研究.现代食品科技.2008.24(7):627-630
    蒋爱英.β-葡聚糖对啤酒质量的影响.啤酒科技,2007,5:40-41
    康永璞,张蔚,董建军等.GB/T4928-2008啤酒分析方法.北京:中国标准出版社,2008
    昆策 W.啤酒工艺实用技术(译).北京中国轻工业出版社2008
    李春磊,任海霞,王瑞明等.产β-葡聚糖酶高产菌株的驯化及筛选.现代食品科技,2006,22(1):22-24
    李里特,李秀婷,江正强等.嗜热真菌耐热木聚糖酶对面包品质的改善.中国粮油学报,2004,19(5):11-15
    李琰.方贵权-中国纯生啤酒之父.新华网,2012, http://news.xinhuanet.com/classad/2009-08/18 /content_1190 3561.html
    李胤,陆健,顾国贤.阿拉伯木聚糖研究进展。酿酒,2002,6:59-62
    李胤,周广勇,陆健等.Douglas法快速测定啤酒中的戊聚糖.酿酒,2003,4:60-63
    李胤,陆健,顾国贤.啤酒中阿拉伯木聚糖的溶解降解及堵塞膜机制的研究.啤酒科技,2005,5:19-32
    李胤.阿拉伯木聚糖溶解、降解机制的研究及酸性木聚糖酶基因的克隆、表达[博士学位论文].无锡:江南大学,2006
    李永仙,顾国贤,俞中.耐高温β-葡聚糖酶在啤酒糖化中的应用研究.酿酒,2002,29(2):81-83
    李卫芬:孙建义;许梓荣等.浸麻芽孢杆菌(Bacillus macerans) β-1,3-1,4-葡聚糖酶特性及其基因克隆.中国兽医学报,2004,24(4):411-413
    梁海燕.β-葡聚糖在啤酒酿造过程中的变化及其影响.啤酒科技,2007,12:44-45
    林建芳.浅谈膜过滤技术在啤酒过滤中的应用.啤洒科技,2009,6:54-55
    刘春华,沈仕伟.啤酒出现悬浮物和沉淀的因素及解决措施.啤酒科技,2006,7:40
    刘海生,孙琳琳.啤酒中阿拉伯木聚糖的含最.啤酒科技,2004,12:69-70
    刘晓明.浅谈预测啤酒过滤性能的方法及改进措施.啤酒科技,2002,4:29-30
    逯家富,彭欣莉.啤酒生产使用技术.北京:科学出版社,2010
    陆健,曹钰,陈坚.运用定点突变提高重组木聚糖酶在毕赤氏酵母中的表达.微生物学报,2002,42(2):425-430
    陆健,曹珏,陈坚,顾国贤.木聚糖酶的产生性质和应用.酿酒,2001,(11):30-34
    陆文清,李德发,张丽英等.饲料添加剂β-葡聚糖酶活力的测定-分光光度法.北京:中国农业出版社,2005
    陆文清,曹云鹤,刘兴海等.饲料添加剂中木聚糖酶活力的测定-分光光度法GB/T 23874-2009.北京:中国标准出版社,2009
    吕佰胜.啤酒杀菌后出现悬浮物原因的探讨.啤酒科技,2003,4:37-38
    吕丽丽,王瑞宾,王家林.高效β-葡聚糖酶对麦汁过滤速度的影响.酿酒科技,2010,189(3):75-77
    吕文平;许梓荣;孙建义等.短小芽孢杆菌β-1,3-1,4-葡聚糖酶基因克隆、表达及其酶特性研究.浙江大学学报(农业与生命科学版),2004,30(6):679-683
    吕文平;许梓荣;杜文理等.地衣芽孢杆菌β-1,3-1,4葡聚糖酶基因的克隆和表达.农业生物技术学报,2004,12(4):446-449
    吕文平;许梓荣;李卫芬等.淀粉液化芽孢杆菌β-1,3-1,4葡聚糖酶基因的克隆和表达.中国兽医学报,,2005,25(3):253-255
    聂聪,田洪波,崔云前.纯生啤酒生产过程中应注意的问题.啤酒科技,2003,7:18-21
    聂国兴:王俊丽;朱命炜等.小麦基础饲料添加木聚糖酶对尼罗罗非鱼肠道食糜粘度和绒毛、微绒毛发育的影响.水产学报,2007,31(1):54-61
    牛竹叶,刘福柱,吴艳丽.小麦型日粮中添加酶制剂对肉仔鸡生产性能的影响.2008,23(2):155-159
    曲音波.木质纤维素降解酶与生物炼制.北京:化学工业出版社.2011
    J.萨姆布鲁克(Sambrook.J.), D.W.拉塞尔.分了克隆实验指南(第3版).北京:科学出版社,2008
    施永泰,朱睦元.大麦β-葡聚糖酶的研究和展望.大麦科学,2001,1:5-8
    宋大新;张胜妹;黄兴奇等.β-1,3-1,4葡聚糖酶基因在大肠杆菌中的克隆和表达.复旦学报(自然科学版),1989,28(4):386-392
    宋连喜,周丽荣.复合酶制剂对产蛋鸡生产性能的影响.家畜生态学报,2005,26(3):31-33
    孙琳琳,李胤.麦芽中引起酵母过早沉降因子的研究.啤酒科技,2005,8:49-55
    田国林,黄春燕.降低啤酒中β-葡聚糖含量的措施.啤酒科技,2007,119(11):23-28
    陶兴无.发酵工艺与设备.北京:化学工业出版社,2011
    汪海波,刘大川,谢笔钧等.改进荧光法测定p-葡聚糖含量研究.中国粮油学报,2004,19(1):70-74
    王海英,呙于明,袁建敏.小麦口粮中添加木聚糖酶对肉仔鸡生产性能的影响.饲料研究,2003,12:1-5
    王咪庆,王蓓,钱博群等.p-葡聚糖酶高产菌株的诱变育种和酶学特性的研究.科技通报,2005,21(3):272-274
    王庆刚,杨国霞.啤酒过滤机的组合方式.啤酒科技,2002,12:46
    王素雅,王璋.酶法生产澄清型香蕉汁的研究.食品科技,2002,7:44-46
    王亚楠,肖冬光.快速测定啤洒酒精度和真止发酵度的方法.酿酒.2002.29(6):84-86
    魏小昆,李文福,李琰.木瓜蛋白酶对啤酒过滤影响的研究.齐齐哈尔大学学报,1999,15(3):9-12
    吴根福.发酵工程实验指导.北京:高等教育出版社,2006
    向阳,李胤.β-葡聚糖和工艺条件对啤酒膜过滤效能的影响.啤酒科技,2007,12:55-60
    肖玉明.影响啤酒过滤速度的因素及改进措施.啤酒科技,2003,12:47-48
    亚当斯.A,戈特斯林.D.E,凯泽.C.A,斯特恩斯.T.酵母遗传学方法实验指南[M].北京:科学出版社,2000
    杨观中.真菌木聚糖酶在小麦啤酒中的作用.酿酒,2007,3(1):51-53
    杨汝德.基因工程[M],广州:华南理工大学出版社,2003
    余有贵,蒋盛岩,梁莲花等.非淀粉多糖酶改善麦汁品质的研究.酿酒科技,2005,130(4):65-67
    袁巧灵,张美丽.木聚糖酶对仔猪生长性能的影响.河套大学学报,2008,5(2):46-48
    张强.同源重组技术构建蛋白酶A低表达且能产p-葡聚糖酶的酿酒酵母菌株及其性能研究[博士学位论文],浙江:浙江大学,2008
    张荣水,李红.膜过滤技术在啤酒与生物工程中的应用.啤酒科技,2003,5:49
    张永勤.强制渗透法制备水溶性壳聚糖及其固定化酶解方法与产物研究[博士论文].青岛:中国海洋大学,2005
    张永勤,薛长湖,汤浩源,等.还原糖的可见分光光度法研究进展.食品与发酵工业,2007,33(5):97-104
    赵黎明.膜分离技术在食品发酵工业中的应用.北京:中国纺织出版社,2011
    郑翔鹏,王国川,林海峰等.木聚糖酶在啤酒中的应用研究.啤酒科技,2008,9:27-36
    周广田.啤酒酵母与工厂卫生.北京:化学工业出版社,2008