p型多重网格间断有限元及其在燃机冷却系统中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数值计算方法是燃气轮机研究的一种重要手段,空间离散精度对数值计算结果的准确性及可信度意义重大。为适应燃气轮机内部复杂冷却结构,本文基于在非结构网格上可实现任意高阶精度的间断有限元方法发展了一套高精度数值计算工具,并采用该程序探讨了间断有限元方法在燃气轮机冷却系统中的应用效果。
     本文发展的数值计算工具基于非结构网格,低阶精度计算采用MUSCL重构的有限体积离散方法,高阶精度采用间断有限元离散方法。其中低阶精度有限体积求解器采用隐式求解,计算稳定性强、计算效率高;高阶精度求解器采用显式求解,具备实现任意高阶精度的计算能力。该计算工具兼容Roe,HLLC,AUSM+等多种通量格式,包含SA,SST,SST-γ-Reθ多种湍流模型,可用于定常/非定常,可压/不可压,高Ma数/低Ma数,流动/导热/流热耦合等问题的并行计算。
     为提高数值计算工具的实用性:本文推导了高计算效率、矩阵形式的Modal型间断有限元离散公式,通过对虚拟时间项离散进行合理简化,提出了一种可减少计算量及内存的实现方法;将预处理矩阵方法引入间断有限元框架,数值算例表明预处理矩阵+间断有限元的实现方法可用于三维粘性低Ma数流动及不可压流动的计算,能保持间断有限元的离散精度,且收敛速度几乎与Ma数无关;在间断有限元框架引入Wang修正的Venkatakrishnan限制器,有效改善了BJ限制器收敛滞止现象;提出了一种利用低阶精度虚网格边界值在边界进行限制的限制器边界处理方法,一定程度可避免壁面附近的不合理限制。本文采用高阶精度显式求解、一阶精度隐式求解的p型多重网格,该方法可避免高阶精度隐式计算的大内存开销并对本文算例达到8左右的加速比。此外本文还对p型多重网格方法进行了傅立叶线性稳定性分析,分析结果表明:低阶精度隐式迭代算子在二阶精度计算中能总体改善计算稳定性,向前Euler方法在p型多重网格计算中条件稳定。
     对MarkII流热耦合问题、轴向通流旋转盘腔热浮升力驱动流动、转静腔室流动计算结果表明:采用DG+γ-Reθ转捩模型对MarkII及盘腔的传热预测结果与实验吻合较好;DG+SST模型对转静腔室计算的传热误差在10%以内。这较好的检验了本文程序的准确性及实用性,并展现了DG方法在燃气轮机叶片冷却及二次空气系统中广阔的应用前景。
Nowadays CFD is one of the most important methods for gas turbine investigation,the accuracy of the spatial discretisation methods exerts fundamental influence on theaccuracy and credibility of the numerical results. To adapt the complex geometry'scalculation of the gas turbine, a parallel discontinuous finite element numericalcomputational tool, which can fulfill any high-order accuracy on the unstructured grid,was developed in this thesis; furthermore, this newly developed tool had been applied tothe calculation of the cooling flow of gas turbine to test its efficiency and credibility.
     The finite volume method with MUSCL Reconstruction was adopted for thelow-order accuracy calculations, while the discontinuous galerkin method was used forthe high-order accuracy calculations in the in-house unstructured numerical tool. TheLow-order FV Solver is much more robust and efficient than the High-order DG Solver,as the numerical dissipation of the former is much higher and the implicit schemes forthe discretisation in time are applied. However, the High-order DG Solver can realizeany order accuracy. Moreover, this tool is compatible with Roe, HLLC, AUSM+andother numerical inviscid flux schemes, and contains SA, SST, SST-γ-Reθturbulencemodels, and can be used for the calculation of steady/unsteady, compressible/incompressible, high Ma number/low Ma number,flow/heat conduction/conjugate heattransfer problems.
     To improve the practical performance of the numerical tool developed, some workhas been accomplished on the discontinuous galerkin method: a matrix formula aboutmodal type discontinuous finite element's discrete equation with highercomputational efficiency was derived, a reasonable simplification was carried outon a discretization of virtual time derivative term, and an implementationmethod was proposed to reduce the requirement on memory and CPU time. Thefinite volume preconditioning method was introduced to the discontinuous finiteelement method for three-dimensional viscid low Mach number flows. The testcases verified that the preconditioning discontinuous finite element method wassuitable for viscid low Mach number flow, and at meantime retained the originaldiscrete accuracy of the discontinuous finite element method, and also indicated that the converge was independent of the Mach number. To avoid convergencestall phenomenon of the BJ Limiter, Wang's modified type Venkatakrishnanslope limiter was introduced to the discontinuous finite element method. Toavoid the stability problems caused by unreasonable slope limiter on boundaryelements, a method making use of the virtual mesh's boundary value wasproposed, and the boundary value at virtual mesh was calculated by FV methodto limit the boundary elements. In this thesis, p-multigrid method, which solvehigh-order DG discrete equation by explicit method and low-order FV Discreteequation by implicit method, was adopted to accelerate the convergence, and thetime cost can reduce to1/8of the original one. Besides, the linear waveequation's Fourier analysis of p-multigrid method was carried out. And theresults showed the p-multigrid method would be more stable than the originalone, and the forward Euler time scheme was conditionally stable when it wasused with p-multigrid
     In this thesis, the MarkII conjugate heat transfer problem, the bouyancy-inducedflow in axial through-flow rotating cavity, and the flow in rotor-stator cavity wereapplied to verify the performance of DG method on gas turbine's simulation. The resultusing γ-Reθtransition model agreed well with the experimental data for MarkII androtating cavity, and the error of heat transfer coefficient was less than10%for therotate-stator cavity. These cases validated our numerical tool and showed that the DGmethod could be suitable for blade cooling and flow of secondary air system in gasturbine.
引文
[1]韩介勤,杜塔.桑地普,斯瑞纳斯.艾卡德.燃气轮机传热和冷却技术.西安:西安交通大学出版社,2005.
    [2]阎超.计算流体力学方法及应用.北京:北京航空航天大学出版社,2006.
    [3]阎超,于剑,徐晶磊,等. CFD模拟方法的发展成就与展望.力学进展,2011,41(05):562-589.
    [4] Horlock J H, Denton J D. A review of some early design practice using computational fluiddynamics and a current perspective. Transactions of the ASME-T-Journal of Turbomachinery,2005,127(1):5-13.
    [5] Wu C. A General Though-Flow Theory of Fluid Flow With Subsonic or Supersonic Velocity inTurbomachines of Arbitrary Hub and Casing Shapes[R].DTIC Document,1951.
    [6] Denton J D. Some limitations of turbomachinery CFD[C]. ASME Paper No. GT2010-22540,2010.
    [7] Langtry R B, Menter F R. Transition modeling for general CFD applications in aeronautics. AIAApaper,2005,522:2005.
    [8] Bohn D, Ren J, Kusterer K. Cooling performance of the steam-cooled vane in a steam turbinecascade[C]. ASME Paper No. GT2005-68148,2005.
    [9] Chew J W, Hills N J. Computational fluid dynamics for turbomachinery internal air systems.Philosophical Transactions of the Royal Society A: Mathematical, Physical and EngineeringSciences,2007,365(1859):2587-2611.
    [10]曹玉璋.航空发动机传热学.北京:北京航空航天大学出版社,2005.
    [11] Phadke U P, Owen J M. Aerodynamic aspects of the sealing of gas-turbine rotor-stator systems:Part3: The effect of nonaxisymmetric external flow on seal performance. International journal ofheat and fluid flow,1988,9(2):113-117.
    [12] Phadke U P, Owen J M. Aerodynamic aspects of the sealing of gas-turbine rotor-stator systems:Part2: The performance of simple seals in a quasi-axisymmetric external flow. Internationaljournal of heat and fluid flow,1988,9(2):106-112.
    [13] Phadke U P, Owen J M. Aerodynamic aspects of the sealing of gas-turbine rotor-stator systems:Part1: The behavior of simple shrouded rotating-disk systems in a quiescent environment.International journal of heat and fluid flow,1988,9(2):98-105.
    [14]蒋洪德.重型燃气轮机的现状和发展趋势.热力透平,2012,41(02):83-88.
    [15]陈懋章.粘性流体动力学基础.北京:高等教育出版社,2004.
    [16]张兆顺,崔桂香,许春晓.湍流理论与模拟.北京:清华大学出版社,2005.
    [17] Shoeybi M, Sv rd M, Ham F E, et al. An adaptive implicit-explicit scheme for the DNS and LESof compressible flows on unstructured grids. Journal of Computational Physics,2010,229(17):5944-5965.
    [18] Landmann B. A parallel discontinuous Galerkin code for the Navier-Stokes equations andReynolds-averaged Navier-Stokes equations. PHD thesis, Stuttgart University,2008.
    [19]王勖成,邵敏,王勖成.有限单元法基本原理与数值方法.北京:清华大学出版社,1988.
    [20]刘儒勋,舒其望.计算流体力学的若干新方法.北京:科学出版社,2003.
    [21] Reed W H., Hill T R. Triangular mesh methods for the neutron transport equation. TechnicalReport LA-UR-73-479, Los Alamos Scientific Laboratory,1973.
    [22] Cockburn B, Karniadakis G E, Shu C W. The development of discontinuous Galerkin methods.Springer Berlin Heidelberg,2000.
    [23] Lesaint P, Ravivart P A. On a finite element method for solving the neutron transport equation,Mathematical aspects of finite elements in partial differential equations. Academic Press,1974.
    [24] Johnson C, Pitk ranta J. An analysis of the discontinuous Galerkin method for a scalar hyperbolicequation. Math. Comput,1986,46(173):1-26.
    [25] Chavent G, Salzano G. A finite-element method for the1-D water flooding problem with gravity.Journal of Computational Physics,1982,45(3):307-344.
    [26] Chavent G, Cockburn B, Chavent G, et al. The Local Projection P0-P1-Discontinuous GalerkinFinite element method for scalar conservation laws. RAIRO-MATHEMATICAL MODELLINGAND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQ,1989,23(4):565-592.
    [27] Cockburn B, Shu C. The Runge-Kutta local projection P1-discontinuous Galerkin finite elementmethod for scalar conservation laws. RAIRO Modél. Math. Anal. Numér,1991,25(3):337-361.
    [28] Cockburn B, Lin S, Shu C. TVB Runge-Kutta local projection discontinuous Galerkin finiteelement method for conservation laws III: one-dimensional systems. Journal of ComputationalPhysics,1989,84(1):90-113.
    [29] Cockburn B, Hou S, Shu C. The Runge-Kutta local projection discontinuous Galerkin finiteelement method for conservation laws IV: the multidimensional case. Math. Comp,1990,54(190):545-581.
    [30] Cockburn B, Shu C. The Runge–Kutta discontinuous Galerkin method for conservation laws V:multidimensional systems. Journal of Computational Physics,1998,141(2):199-224.
    [31] Klaij C M, van Raalte M H, van der Ven H, et al. h-Multigrid for space-time discontinuousGalerkin discretizations of the compressible Navier–Stokes equations. Journal of ComputationalPhysics,2007,227(2):1024-1045.
    [32] Van der Vegt J J W, Van der Ven H. Space–time discontinuous Galerkin finite element methodwith dynamic grid motion for inviscid compressible flows: I. General formulation. Journal ofComputational Physics,2002,182(2):546-585.
    [33] Bassi F, Rebay S. GMRES discontinuous Galerkin solution of the compressible Navier-Stokesequations//Discontinuous Galerkin Methods. Springer Berlin Heidelberg,2000:197-208.
    [34] Bassi F, Rebay S. A high-order accurate discontinuous finite element method for the numericalsolution of the compressible Navier–Stokes equations. Journal of Computational Physics,1997,131(2):267-279.
    [35] Cockburn B, Shu C. The local discontinuous Galerkin method for time-dependentconvection-diffusion systems. SIAM Journal on Numerical Analysis,1998,35(6):2440-2463.
    [36] Liu J, Shu C. A high-order discontinuous Galerkin method for2D incompressible flows. Journalof Computational Physics,2000,160(2):577-596.
    [37] Cockburn B, Kanschat G, Sch tzau D. The local discontinuous Galerkin method for linearizedincompressible fluid flow: a review. Computers&fluids,2005,34(4):491-506.
    [38] Cockburn B, Kanschat G, Sch tzau D, et al. Local discontinuous Galerkin methods for the Stokessystem. SIAM Journal on Numerical Analysis,2002,40(1):319-343.
    [39] Bassi F, De Bartolo C, Hartmann R, et al. A discontinuous Galerkin method for inviscid low Machnumber flows. Journal of Computational Physics,2009,228(11):3996-4011.
    [40] Nigro A, De Bartolo C, Hartmann R, et al. Discontinuous Galerkin solution of preconditionedEuler equations for very low Mach number flows. INTERNATIONAL JOURNAL FORNUMERICAL METHODS IN FLUIDS,2010,63(4):449-467.
    [41] Bassi F, Crivellini A, Rebay S, et al. Discontinuous Galerkin solution of the Reynolds-averagedNavier-Stokes and k-ω turbulence model equations. Computers&Fluids,2005,34(4):507-540.
    [42] Nguyen N C, Persson P, Peraire J. RANS solutions using high order discontinuous Galerkinmethods. AIAA Paper,2007,914:2007.
    [43] Sengupta K, Mashayek F, Jacobs G B. Large-eddy simulation using a discontinuous Galerkinspectral element method. AIAA Paper,2007,402:2007.
    [44]郝增荣,任晓栋,宋寅,等.基于间断Galerkin方法的局部化转捩模式在透平气热耦合问题中的应用研究:工程热物理年会热机气动热力学分会,哈尔滨,2012[C].
    [45]贺立新,张来平,张涵信,等.间断Galerkin有限元和有限体积混合计算方法研究.力学学报,2007,39(1):15-22.
    [46] Lu Y, Yuan X, Dawes W N. INVESTIGATION OF3D INTERNAL FLOW USING NEWFLUX-RECONSTRUCTION HIGH ORDER METHOD: Proceedings of ASME Turbo Expo2012[C]. ASME Paper No. GT2012-69270,2012.
    [47]卢义,袁新.隐式间断有限元方法的参数化边界修正.工程热物理学报,2009,30(7):1116-1118.
    [48]于剑,阎超. Navier-Stokes方程间断Galerkin有限元方法研究.力学学报,2010,42(5):962-970.
    [49]吴迪,蔚喜军.自适应间断有限元方法求解三维欧拉方程.计算物理,2010,27(4):492-500.
    [50]吴迪,蔚喜军,徐云.局部时间步长间断有限元方法求解三维欧拉方程.计算物理,2011,28(1):1-9.
    [51]奉凡,顾春伟,李雪松,等.间断Galerkin算法求解三维RANS方程.清华大学学报:自然科学版,2010(11):1834-1837.
    [52]奉凡,郝增荣,顾春伟,等.间断Galerkin方法求解跨音压气机转子流场.工程热物理学报,2012,33(1):39-42.
    [53]郝海兵,杨永,李喜乐. p型多重网格间断Galekin有限元方法研究.空气动力学学报,2010,28(6):715-719.
    [54]郝海兵,杨永,李喜乐.高阶精度间断Galerkin有限元方法研究.航空计算技术,2010,40(4):35-38.
    [55]郝海兵,杨永,左岁寒,等.间断探测器在间断Galerkin方法中的应用.航空计算技术,2011,41(1):14-18.
    [56]王刚,许和勇,叶正寅,等.高阶间断有限元方法求解Euler方程时的数值积分问题研究.西北工业大学学报,2011,29(1):137-141.
    [57] Atkins H L, Shu C W. Quadrature-free implementation of discontinuous Galerkin method forhyperbolic equations. AIAA journal,1998,36(5):775-782.
    [58] Crivellini A, Bassi F. An implicit matrix-free Discontinuous Galerkin solver for viscous andturbulent aerodynamic simulations. Computers&Fluids,2011,50(1):81-93.
    [59] Fidkowski K J, Oliver T A, Lu J, et al. p-Multigrid solution of high-order discontinuous Galerkindiscretizations of the compressible Navier–Stokes equations. Journal of Computational Physics,2005,207(1):92-113.
    [60] Helenbrook B T, Atkins H L. Application of p-multigrid to discontinuous Galerkin formulations ofthe Poisson equation. AIAA journal,2006,44(3):566-575.
    [61] Luo H, Baum J D, L hner R. Fast p-Multigrid Discontinuous Galerkin Method for CompressibleFlows at All Speeds. AIAA Journal,2008,46(3):635-652.
    [62] Mascarenhas B S, Helenbrook B T, Atkins H L. Application of p-multigrid to discontinuousGalerkin formulations of the Euler equations. AIAA journal,2009,47(5):1200-1208.
    [63] Nastase C R, Mavriplis D J. High-order discontinuous Galerkin methods using an hp-multigridapproach. Journal of Computational Physics,2006,213(1):330-357.
    [64] Hartmann R, Houston P. Adaptive discontinuous Galerkin finite element methods for thecompressible Euler equations. Journal of Computational Physics,2002,183(2):508-532.
    [65] Cockburn B, Shu C. TVB Runge-Kutta local projection discontinuous Galerkin finite elementmethod for conservation laws II: general framework. Math. Comp,1989,52(186):411-435.
    [66] Qiu J, Shu C. Hermite WENO schemes and their application as limiters for Runge–Kuttadiscontinuous Galerkin method II: Two dimensional case. Computers&fluids,2005,34(6):642-663.
    [67] Qiu J, Shu C. Hermite WENO schemes and their application as limiters for Runge–Kuttadiscontinuous Galerkin method: one-dimensional case. Journal of Computational Physics,2004,193(1):115-135.
    [68] Qiu J, Shu C. Runge--Kutta Discontinuous Galerkin Method Using WENO Limiters. SIAMJournal on Scientific Computing,2005,26(3):907-929.
    [69] Zhu J, Qiu J. Hermite WENO schemes and their application as limiters for Runge-Kuttadiscontinuous Galerkin method, III: unstructured meshes. Journal of Scientific Computing,2009,39(2):293-321.
    [70] Kuzmin D. A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkinmethods. Journal of computational and applied mathematics,2010,233(12):3077-3085.
    [71]任晓栋,顾春伟.基于间断有限元方法的紧致限制器研究:工程热物理年会热机气动热力学分会,哈尔滨,2012[C].
    [72] Persson P, Peraire J. Sub-cell shock capturing for discontinuous Galerkin methods. AIAA paper,2006,112:2006.
    [73] Zingan V N. Discontinuous Galerkin Finite Element Method for the Nonlinear HyperbolicProblems with Entropy-Based Artificial Viscosity Stabilization. PHD thesis, TEXAS A&MUNIVERSITY,2012.
    [74] Krivodonova L, Xin J, Remacle J F, et al. Shock detection and limiting with discontinuousGalerkin methods for hyperbolic conservation laws. Applied Numerical Mathematics,2004,48(3):323-338.
    [75] Spalart P R, Allmaras S R, Spalart P R, et al. A One-Equation Turbulence Model for AerodynamicFlows. Recherche Aerospatiale,1994,1:5-21.
    [76] Menter F R, Menter F R. Two-equation eddy-viscosity turbulence models for engineeringapplications. AIAA Journal,1994,32(8):1598-1605.
    [77] Menter F R, Langtry R B, Likki S R, et al. A correlation-based transition model using localvariables-Part I: Model formulation. Journal of Turbomachinery,2006,128(3):413-422.
    [78] Langtry R B, Menter F R, Langtry R B, et al. Correlation-based transition modeling forunstructured parallelized computational fluid dynamics codes. AIAA Journal,2009,47(12):2894-2906.
    [79] Spalding D B. Calculation of turbulent heat transfer in cluttered spaces: Proc.10th Int. HeatTransfer Conference, Brighton, UK,1994.
    [80] Fares E, Schr der W. A differential equation for approximate wall distance. International journalfor numerical methods in fluids,2002,39(8):743-762.
    [81]徐晶磊,阎超,范晶晶,等.通过求解输运方程计算壁面距离.应用数学和力学,2011,32(2):135-143.
    [82] Li B Q. Discontinuous finite elements in fluid dynamics and heat transfer. Surrey, London:Springer-Verlag,2006.
    [83] Castonguay P, Williams D M, Vincent P E, et al. On the development of a high-order, multi-GPUenabled, compressible viscous flow solver for mixed unstructured grids: Twentieth AIAAComputational Fluid Dynamics Conference. AIAA paper,2011,3229:2011.
    [84] Hesthaven J S, Warburton T. Nodal discontinuous Galerkin methods: algorithms, analysis, andapplications. New York: Springerverlag New York,2008.
    [85] Blazek J, Blazek J. Computational fluid dynamics principles and applications. New YorkAmsterdam: Elsevier,2001.
    [86] Lee S. Effects of condition number on preconditioning for low Mach number flows. Journal ofComputational Physics,2012,231(10):4001-4014.
    [87] Li X, Gu C. An all-speed Roe-type scheme and its asymptotic analysis of low Mach numberbehaviour. Journal of Computational Physics,2008,227(10):5144-5159.
    [88] Li X, Gu C. The momentum interpolation method based on the time-marching algorithm forAll-Speed flows. Journal of Computational Physics,2010,229(20):7806-7818.
    [89] Li X, Gu C, Xu J. Development of Roe-type scheme for all-speed flows based on preconditioningmethod. Computers&Fluids,2009,38(4):810-817.
    [90]韩忠华,宋文萍,乔志德.一种隐式预处理方法及其在定常和非定常流动数值模拟中的应用.计算物理,2009,26(05):679-684.
    [91] Turkel E. Preconditioning techniques in computational fluid dynamics. Annual Review of FluidMechanics,1999,31(1):385-416.
    [92] Weiss J M, Smith W A. Preconditioning applied to variable and constant density flows. AIAAJournal,1995,33(11):2050.
    [93] Choi Y H, Merkle C L, Choi Y H, et al. The application of preconditioning in viscous flows.Journal of Computational Physics,1993,105(2):207-223.
    [94] Luo H, Baum J D, Lohner R, et al. Extension of Harten-Lax-van Leer scheme for flows at allspeeds. AIAA Journal,2005,43(6):1160-1166.
    [95] Liou M. A sequel to AUSM, Part II: AUSM+-up for all speeds. Journal of Computational Physics,2006,214(1):137-170.
    [96]苏欣荣.叶轮机械非定常流动数值算法研究[博士学位论文].北京:清华大学,2010.
    [97] Fidkowski K J. A high-order discontinuous Galerkin multigrid solver for aerodynamic applications.Massachusetts Institute of Technology,2004.
    [98] Oliver T A, Fidkowski K J, Darmofal D L. Multigrid solution for high-order discontinuousGalerkin discretizations of the compressible Navier-Stokes equations. Springer Berlin Heidelberg,2006.
    [99] Vincent P E, Castonguay P, Jameson A. Insights from von Neumann analysis of high-order fluxreconstruction schemes. Journal of Computational Physics,2011,230(22):8134-8154.
    [100] Barth T J, Jespersen D C. The design and application of upwind schemes on unstructured meshes.AIAA paper,1989,0366:1989.
    [101] Venkatakrishnan V. On the accuracy of limiters and convergence to steady state solutions. AIAApaper,1993,0880:1993.
    [102] Wang Z J. A fast nested multi-grid viscous flow solver for adaptive Cartesian/quad grids.International Journal for Numerical Methods in Fluids,2000,33(5):657-680.
    [103] Woodward P, Colella P. The numerical simulation of two-dimensional fluid flow with strongshocks. Journal of Computational Physics,1984,54(1):115-173.
    [104] Brown D L, Brown D L. Performance of Under-resolved Two-Dimensional Incompressible FlowSimulations, II. Journal of Computational Physics,1997,138(2):734-765.
    [105] Ghia U, Ghia K N, Shin C T. High-Re solutions for incompressible flow using the Navier-Stokesequations and a multigrid method. Journal of computational physics,1982,48(3):387-411.
    [106] Driver D M, Seegmiller H L. Features of a reattaching turbulent shear layer in divergentchannelflow. AIAA journal,1985,23(2):163-171.
    [107] Krist S L, Biedron R T, Rumsey C L. CFL3D user's manual (version5.0). Citeseer,1998.
    [108] Hylton L D, Mihelc M S, Turner E R, et al. Analytical and experimental evaluation of the heattransfer distribution over the surfaces of turbine vanes: AAS/Division of Dynamical AstronomyMeeting,1983[C].
    [109]董平.航空发动机气冷涡轮叶片的气热耦合数值模拟研究[博士学位论文].黑龙江:哈尔滨工业大学,2009.
    [110] Farthing P R, Long C A, Owen J M, et al. Rotating cavity with axial throughflow of cooling air:flow structure. Journal of Turbomachinery,1992,114(1):237.
    [111] Farthing P R, Long C A, Owen J M, et al. Rotating cavity with axial throughflow of coolingair-Heat transfer[C]//ASME,35th International Gas Turbine and Aeroengine Congress andExposition.1990(1).
    [112] King M, Wilson M. Free convective heat transfer within rotating annuli. HEAT TRANSFER,2002,2:465-470.
    [113] King M P, Wilson M, Owen J M. Rayleigh-Benard convection in open and closed rotating cavities.Journal of engineering for gas turbines and power,2007,129(2):305-311.
    [114] Owen J M, Powell J. Buoyancy-induced flow in a heated rotating cavity. Journal of Engineeringfor Gas Turbines and Power(Transactions of the ASME),2006,128(1):128-134.
    [115] Tian S, Tao Z, Ding S, et al. Investigation of flow and heat transfer instabilities in a rotating cavitywith axial throughflow of cooling air[C]. ASME Paper No. GT2004-53535,2004.
    [116]田淑青,陶智,丁水汀,等.轴向通流旋转盘腔内流动不稳定性研究.北京航空航天大学学报,2005,31(4):393-396.
    [117] de Vahl Davis, G. and I.P. Jones, NATURAL CONVECTION IN SQUARE CAVITY: ACOMPARISON EXERCISE. International Journal for Numerical Methods in Fluids,1983.3(3): p.227-248.
    [118] de Vahl Davis, G., NATURAL CONVECTION OF AIR IN A SQUARE CAVITY: A BENCHMARK NUMERICAL SOLUTION. International Journal for Numerical Methods in Fluids,1983.3(3): p.249-264.
    [119] Bohn D, Deutsch G, Simon B, et al. Flow visualization in a rotating cavity with axial throughflow:Proceedings of ASME Turbo Expo2000[C]. ASME Paper No. GT2000-280,2000.
    [120]谭勤学,任静,蒋洪德,等.轴向通流旋转盘腔中流动与传热数值研究.工程热物理学报,2009,30(7):1129-1131.
    [121] Sun Z, Kifoil A, Chew J W, et al. Numerical simulation of natural convection in stationary androtating cavities[C]. ASME Paper No. GT2004-53528,2004.
    [122] Tan Q, Ren J, Jiang H. Prediction of Flow Features in Rotating Cavities With Axial Throughflowby RANS and LES[C]. ASME Paper No. GT2009-59428,2009.
    [123] Owen J M, Abrahamsson H, Lindblad K. Buoyancy-induced flow in open rotating cavities.Journal of engineering for gas turbines and power,2007,129(4):893-900.
    [124] Huynh H T. A flux reconstruction approach to high-order schemes including discontinuousGalerkin methods. AIAA paper,2007,4079:2007.
    [125] Huynh H T. High-order methods including discontinuous Galerkin by reconstructions ontriangular meshes. AIAA Paper,2011,44:2011.
    [126] Liu Y, Vinokur M, Wang Z J. Spectral difference method for unstructured grids I: basicformulation. Journal of Computational Physics,2006,216(2):780-801.
    [127] Wang Z J, Liu Y, May G, et al. Spectral difference method for unstructured grids II: extension tothe Euler equations. Journal of Scientific Computing,2007,32(1):45-71.