用户名: 密码: 验证码:
永磁同步电机调速系统控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十世纪八十年代以来,永磁同步电机以其体积小、损耗低、可靠性高、维护方便等优点,被广泛应用于交流调速系统中。不断多样化和复杂化的应用场合,对交流调速系统的控制策略提出了更高的要求。本文通过对永磁同步电机调速系统的控制策略的深入研究,力图从多方向促进系统在高性能要求场合的应用。本文的主要工作和成果有:
     1、介绍了研究背景和基础。首先对交流调速系统控制策略的发展历程进行了综述,着重介绍了模糊控制、自抗扰控制和模型预测控制在交流调速系统中的研究和应用现状。其次描述了永磁同步电机的数学模型和两种基本控制系统,并对比了这两种系统的控制效果。
     2、详细分析了零矢量在模糊直接转矩控制系统中的作用原理和特点,改进了模糊直接转矩控制的模糊规则库、转矩隶属度函数和电压隶属度函数,保证了零矢量在模糊直接转矩控制中可以充分发挥保持电磁转矩的功能,有效减小了转矩脉动。仿真和实验结果验证了本文提出的包含零矢量的永磁同步电机模糊直接控制算法的有效性。
     3、针对近似离散最速反馈控制函数(fhan函数)作为自抗扰控制系统非线性控制算法时参数难于整定的问题,首先分析了fhan函数的控制机理,并据此提出了改进的自抗扰控制系统结构。这种结构明确了fhan函数中包含的可调参数的物理意义,从而为按照实际要求确定参数值提供了理论依据。当存在时滞或需要更大的稳定裕度时,只需对其中一个参数微调即可。因此,采用本文改进的自抗扰控制系统结构,大大简化了参数整定过程。仿真和实验结果验证了改进算法的有效性。
     4、针对传统模型预测控制计算量大、难以在采样周期较短的永磁同步电机调速系统中应用的难题,本文提出了递推模型预测控制策略。与传统模型预测控制中迭代求解操作变量不同,递推模型预测控制首先采用迭代学习算法求取操作变量第一项,随后采用递推Levenberg Marquardt算法求出操作变量其它项。分别计算了传统模型预测控制和递推模型预测控制的时间复杂度,并分析了递推模型预测控制的收敛性,从而理论上说明了提出算法的有效性。仿真结果表明本文提出的递推模型预测控制的计算量比传统模型预测控制大为减小,基于递推模型预测控制的永磁同步电机调速系统具有优良的动静态性能。
Permanent magnet synchronous motors (PMSMs) are widely used in speed control systems since1980s due to their excellent features such as small size, high efficiency, high reliability and easy maintenance. As the applications of PMSM speed control systems are more diverse and complex than before, control algorithms used by speed control systems need improving to meet higher performance requirement. Therefore, an in-depth study on control algorithms of PMSM speed control systems is completed in this paper, which is expected to promote and expand the high-performance applications of PMSM speed control systems. The main contents are listed as follows.
     1. The research background is provided. Firstly, the history of control algorithms of AC speed control system is presented. Among the algorithms, fuzzy logic control (FLC), active disturbance rejection control (ADRC) and model prective control (MPC) are highlighted and their latest research results are surveyed. Secondly, the PMSM model and two most-used PMSM control systems are introduced. After that, the performance of the two control systems is compared.
     2. The working principle and features of zero voltage space vectors in PMSM fuzzy direct torque control (DTC) systems are analysed, based on which the rule set, torque fuzzy sets and voltage fuzzy sets of fuzzy DTC are improved to give full play to hold torque feature of zero voltage space vectors. The effectiveness of proposed algorithm is verified by simulations and experiments.
     3. ADRC adopts discrete time-optimal control synthesis (fhan) function that includes three adjustable parameters as the nonlinear state feedback controller (NLSEF). To simplify parameters tuning procedure, the control mechanism of NLSEF in ADRC is analyzed based on the characteristics of fhan function, and then a modified ADRC structure is proposed. In this structure, the meaning of parameters is clear and so need not turning. When time delay exists or more stability margin is required, tune the value of only one parameter a little larger than its calculated value can get satisfactory results. The effectiveness of proposed algorithm is verified by simulations and experiments.
     4. An optimization problem is required to solve online in MPC, which has heavy computational burden. On the other hand, the sample interval of PMSM control system is too short for a MPC algorithm. To apply MPC in PMSM control system, a recursive MPC (RMPC) algorithm is proposed in this thesis. In RMPC, iterative learning control (ILC) is used to obtain the first term of manipulated variables, and then recursive Levenberg Marquardt algorithm (RLMA) is adopted to solve the online optimization problem. In this control algorithm, the first term can be used as an effective control input, and the other terms guarantee a positive effect of the input to future behaviors of the system. Furthermore, the convergency of RLMA is analysed. Then, to testify that RMPC has less computational burden, time complexity of MPC and RMPC are computed. Simulation results show the effectiveness of proposed method.
引文
[1]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2004.
    [2]陈伯时.矢量控制与直接转矩控制的理论基础与应用特色[J].电力电子,2004,2(1):5.
    [3]王成元,夏加宽,杨俊友,等.电机现代控制技术[M].北京:机械工业出版社,2008.
    [4]鲁文其,胡育文,梁骄雁,等.永磁同步电机伺服系统抗扰动自适应控制[J].中国电机工程学报,2011,35(3):75-81.
    [5]Mohamed Y.A.R.I. Adaptive self-tuning speed control for permanent-magnet synchronous motor drive with dead time[J]. Energy Conversion, IEEE Transactions on,2006,21(4):855-862.
    [6]Underwood S.J., Husain I. Online parameter estimation and adaptive control of permanent-magnet synchronous machines[J]. Industrial Electronics, IEEE Transactions on,2010,57(7):2435-2443.
    [7]张兴华.永磁同步电机的模型参考自适应反步控制[J].控制与决策,2008,23(3):341-345.
    [8]王礼鹏,张化光,刘秀翀.永磁同步电动机无速度传感器矢量调速系统的积分反步控制[J].控制理论与应用,2012,29(2):199-204.
    [9]Uddin M.N., Chy M.M.I. Online parameter-estimation-based speed control of PM AC motor drive in flux-weakening region[J]. Industry Applications, IEEE Transactions on,2008,44(5):1486-1494.
    [10]郑剑飞,冯勇,陆启良.永磁同步电机的高阶终端滑模控制方法[J].控制理论与应用,2009,26(6):697-700.
    [11]Chi S., Zhang Z., Xu L. Sliding-mode sensorless control of direct-drive PM synchronous motors for washing machine applications[J].Industry Applications, IEEE Transactions on,2009,45(2):582-590.
    [12]Sabanovic A. Variable structure systems with sliding modes in motion control ——A survey[J]. Industrial Informatics, IEEE Transactions on,2011,7(2): 212-223.
    [13]刘栋良,赵光宙.基于直接反馈线性化的永磁同步电机速度跟踪控制[J].电气传动和自动控制,2006,28(2):8-10.
    [14]刘贤兴,卜言柱,胡育文,等.基于精确线性化解耦的永磁同步电机空间矢量调制系统[J].中国电机工程学报,2007,27(30):55-59.
    [15]Bolognani S., Peretti L., Zigliotto M. Design and implementation of model predictive control for electrical motor drives[J]. Industrial Electronics, IEEE Transactions on,2009,56(6):1925-1936.
    [16]Errouissi R., Ouhrouche M., Chen W.H., et al. Robust cascaded nonlinear predictive control of a permanent magnet synchronous motor with antiwindup compensator[J]. Industrial Electronics, IEEE Transactions on, 2012,59(8):3078-3088.
    [17]邵立伟,廖晓钟,张宇河,等.自抗扰控制在永磁同步电机无速度传感器调速系统的应用[J].电工技术学报,2006,21(6):35-39.
    [18]文建平,曹秉刚.无速度传感器的内嵌式永磁同步电机自抗扰控制调速系统[J].中国电机工程学报,2009,29(30):58-62.
    [19]Zhang Y., Akujuobi C.M., Ali W.H., et al. Load disturbance resistance speed controller design for PMSM[J]. Industrial Electronics, IEEE Transactions on,2006,53(4):1198-1208.
    [20]Sant A.V., Rajagopal K.R. PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions[J]. Magnetics, IEEE Transactions on,2009,45(10):4672-4675.
    [21]Yi Y, Vilathgamuwa D.M., Rahman M.A. Implementation of an artificial-neural-network-based real-time adaptive controller for an interior permanent-magnet motor drive[J]. Industry Applications, IEEE Transactions on,2003,39(1):96-104.
    [22]Lin F.J., Shen P.H., Yang S.L., et al. Recurrent radial basis function network-based fuzzy neural network control for permanent-magnet linear synchronous motor servo drive[J]. Magnetics, IEEE Transactions on,2006,42(11):3694-3705.
    [23]裘君,赵光宙.永磁同步电机磁链自适应控制[J].电机与控制学报,2009,13(6):798-803.
    [24]裘君,赵光宙.基于反馈耗散方法的永磁同步电机最大转矩/电流控制[J].煤炭学报,2009,34(9):1285-1290.
    [25]王家军,赵光宙,齐冬莲.无速度传感器永磁同步电动机反推控制[J].控制理论与应用,2005,22(4):657-660.
    [26]Andreescu G.D., Pitic C.I., Blaabjerg F., et al. Combined flux observer with signal injection enhancement for wide speed range sensorless direct torque control of IPMSM drives[J]. Energy Conversion, IEEE Transactions on, 2008,23(2):393-402.
    [27]Jang J.H., Sul S.K., Ha J.I., et al. Sensorless drive of surface-mounted permanent-magnet motor by high-frequency signal injection based on magnetic saliency[J]. Industry Applications, IEEE Transactions on, 2003,39(4):1031-1039.
    [28]Raute R., Caruana C., Staines C.S., et al. Sensorless Control of Induction Machines at Low and Zero Speed by Using PWM Harmonics for Rotor-Bar Slotting Detection[J]. Industry Applications, IEEE Transactions on, 2010,46(5):1989-1998.
    [29]黄雷,赵光宙,年珩.基于扩展反电势估算的内插式永磁同步电动机无传感器控制[J].中国电机工程学报,2007,27(9):59-63.
    [30]贺益康,许大中.电机控制[M].杭州:浙江大学出版社,2010.
    [31]王秀和.永磁电机[M].北京:中国电力出版社,2007.
    [32]Mohamed Y.A.R.I. Design and implementation of a robust current-control scheme for a PMSM vector drive with a simple adaptive disturbance observer[J]. Industrial Electronics, IEEE Transactions on,2007,54(4): 1981-1988.
    [33]Rashed M., Macconnell P.F.A., Stronach A.F., et al. Sensorless indirect-rotor-field-orientation speed control of a permanent-magnet synchronous motor with stator-resistance estimation[J]. Industrial Electronics, IEEE Transactions on,2007,54(3):1664-1675.
    [34]Depenbrock M. Direct self-control (DSC) of inverter-fed induction machine[J]. Power Electronics, IEEE Transactions on,1988,3(4):420-429.
    [35]Zhong L., Rahman M.F., Hu W.Y., et al. Analysis of direct torque control in permanent magnet synchronous motor drives [J]. Power Electronics, IEEE Transactions on,1997,12(3):528-536.
    [36]Haque M.E., Zhong L., Rahman M.F. A sensorless initial rotor position estimation scheme for a direct torque controlled interior permanent magnet synchronous motor drive[J]. Power Electronics, IEEE Transactions on, 2003,18(6):1376-1383.
    [37]Haque M.E., Rahman M.F. A PI stator resistance compensator for a direct torque controlled interior permanent magnet synchronous motor drive; proceedings of the Power Electronics and Motion Control Conference,2000 Proceedings IPEMC 2000 The Third International,2000[C]. IEEE.
    [38]Bose B.K. Power electronics and motor drives recent progress and perspective[J]. Industrial Electronics, IEEE Transactions on,2009,56(2): 581-588.
    [39]廖晓钟,邵立伟.直接转矩控制的十二区段控制方法[J].中国电机工程学报,2006,26(6):166-173.
    [40]孙丹,贺益康.基于恒定开关频率空间矢量调制的永磁同步电机直接转矩控制[J].中国电机工程学报,2005,25(12):112-116.
    [41]Martins C.A., Roboam X., Meynard T.A., et al. Switching frequency imposition and ripple reduction in DTC drives by using a multilevel converter[J]. Power Electronics, IEEE Transactions on,2002,17(2):286-297.
    [42]孙丹.高性能永磁同步电机直接转矩控制[D].杭州:浙江大学,2004.
    [43]Astrom K.J., Wittenmark B.Adaptive control[M]. Addison-Wesley Longman Publishing Co., Inc.,1994.
    [44]吴宏鑫.全系数自适应控制理论及其应用[M].北京:国防工业出版社,1990.
    [45]Schauder C. Adaptive speed identification for vector control of induction motors without rotational transducers [J]. Industry applications, IEEE Transactions on,1992,28(5):1054-1061.
    [46]Lin F.J., Wai R.J., Kuo R.H., et al. A comparative study of sliding mode and model reference adaptive speed observers for induction motor drive [J]. Electric power systems research,1998,44(3):163-174.
    [47]夏长亮,郭培健,史婷娜.基于模糊遗传算法的无刷直流电机自适应控制[J].中国电机工程学报,2005,25(11):129-133.
    [48]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407-418.
    [49]高为炳.变结构控制的理论及其设计方法[M].北京:科学出版社,1996.
    [50]高为炳.离散时间系统的变结构控制[J].自动化学报,1995,21(2):154-160.
    [51]Yu X. Sliding-mode control with soft computing:A survey [J]. Industrial Electronics, IEEE Transactions on,2009,56(9):3275-3285.
    [52]Chen M.S., Hwang Y.R., Tomizuka M. A state-dependent boundary layer design for sliding mode control [J]. Automatic Control, IEEE Transactions on,2002,47(10):1677-1681.
    [53]史晓娟.基于复合滑模变结构控制的位置伺服系统的研究[J].电工技术学报,2003,18(3):64-66.
    [54]Wong L.K., Leung F.H.F., Tam P.K.S. A chattering elimination algorithm for sliding mode control of uncertain non-linear systems[J]. Mechatronics, 1998,8(7):765-775.
    [55]Kachroo P., Tomizuka M. Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems[J]. Automatic Control, IEEE Transactions on,1996,41(7):1063-1068.
    [56]Kokotovic P.V. The joy of feedback:nonlinear and adaptive[J]. Control Systems, IEEE,1992,12(3):7-17.
    [57]Krstic M., Kanellakopoulos I., Kokotovic P.V.Nonlinear and adaptive control design[M]. John Wiley & Sons New York,1995.
    [58]许力.智能控制与智能系统[M].北京:机械工业出版社,2006.
    [59]Fukuda T., Shibata T. Theory and applications of neural networks for industrial control systems[J]. Industrial Electronics, IEEE Transactions on, 1992,39(6):472-489.
    [60]Bose B.K. Neural network applications in power electronics and motor drives: an introduction and perspective[J]. Industrial Electronics, IEEE Transactions on,2007,54(1):14-33.
    [61]Gadoue S.M., Giaouris D., Finch J.W. Sensorless control of induction motor drives at very low and zero speeds using neural network flux observers[J]. Industrial Electronics, IEEE Transactions on,2009,56(8):3029-3039.
    [62]张春梅,刘贺平,王玉锋.基于径向基函数网络的永磁同步电机直接转矩控制[J].控制与决策,2005,20(7):803-806.
    [63]Ghate V.N., Dudul S.V. Cascade neural-network-based fault classifier for three-phase induction motor[J]. Industrial Electronics, IEEE Transactions on, 2011,58(5):1555-1563.
    [64]Rahman M.A., Hoque M.A. On-line adaptive artificial neural network based vector control of permanent magnet synchronous motors[J]. Energy Conversion, IEEE Transactions on,1998,13(4):311-318.
    [65]El-Sousy F.F.M. High-performance neural-network model-following speed controller for vector-controlled PMSM drive system; proceedings of the Industrial Technology,2004 IEEE ICIT'04 2004 IEEE International Conference on,2004[C]. IEEE.
    [66]Elbuluk M.E., Tong L., Husain I. Neural-network-based model reference adaptive systems for high-performance motor drives and motion controls[J]. Industry Applications, IEEE Transactions on,2002,38(3):879-886.
    [67]Batzel T.D., Lee K.Y. An approach to sensorless operation of the permanent-magnet synchronous motor using diagonally recurrent neural networks[J]. Energy Conversion, IEEE Transactions on,2003,18(1): 100-106.
    [68]李鸿儒,顾树生.基于神经网络的PMSM速度和位置自适应观测器的设计[J].中国电机工程学报,2002,22(12):32-35.
    [69]齐放,邓智泉,仇志坚,等.基于MRAS的永磁同步电机无速度传感器[J].电工技术学报,2007,22(4):53-58.
    [70]Schroedl M. Sensorless control of AC machines at low speed and standstill based on the "NFORM"method; proceedings of the Industry Applications Conference,1996 Thirty-First IAS Annual Meeting, IAS'96, Conference Record of the 1996 IEEE,1996[C]. IEEE.
    [71]梁艳,李永东.无传感器永磁同步电机矢量控制中转子初始位置的估算方法[J].电工技术学报,2003,18(2):10-13.
    [72]Wang L.X.A Course on Fuzzy Systems[M]. Prentice-Hall press, USA,1999.
    [73]Lin D.C., Yao J.S. Fuzzy economic production for production inventory[J]. Fuzzy sets and systems,2000,111(3):465-495.
    [74]李峰,李萍,赵虎,等.变风量空调系统的模糊控制[J].仪器仪表学报,2004,25(4):261-263.
    [75]Sugeno M., Nishida M. Fuzzy control of model car[J]. Fuzzy sets and systems,1985,16(2):103-113.
    [76]Bojadziev G, Bojadziev M., Zadeh L.A.Fuzzy logic for business, finance, and management[M]. World Scientific,2007.
    [77]陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2005.
    [78]龙英文,赵光宙.模糊滑模变结构控制在伺服系统中的应用[J].电气传动,2004,34(1):26-28.
    [79]Lin C.H., Lin C.P. Fuzzy neural network control for a permanent magnet synchronous motor drive system; proceedings of the Industrial Electronics and Applications,2009 ICIEA 2009 4th IEEE Conference on,2009[C]. IEEE.
    [80]Mir S., Elbuluk M.E., Zinger D.S. PI and fuzzy estimators for tuning the stator resistance in direct torque control of induction machines[J]. Power Electronics, IEEE Transactions on,1998,13(2):279-287.
    [81]Soliman H., Elbuluk M.E. Improving the torque ripple in DTC of PMSM using fuzzy logic; proceedings of the Industry Applications Society Annual Meeting,2008 IAS'08 IEEE,2008[C]. IEEE.
    [82]魏欣,陈大跃,赵春宇.基于模糊空间矢量调制的直接转矩控制方案[J].系统仿真学报,2007,19(6):1281-1283.
    [83]Lopez J.C., Romeral L., Arias A., et al. Novel fuzzy adaptive sensorless induction motor drive[J]. Industrial Electronics, IEEE Transactions on, 2006,53(4):1170-1178.
    [84]韩京清.自抗扰控制技术——估计补偿不确定因素的控制技术[M].北京:国防工业出版社,2008.
    [85]韩京清.从PID技术到“自抗扰控制技术”[J].控制工程,2002,9(3):13-18.
    [86]韩京清.反馈系统中的线性与非线性[J].控制与决策,1988,3(2):27-32.
    [87]韩京清.控制理论——模型论还是控制论[J].系统科学与数学,1989,9(4):328-335.
    [88]韩京清.非线性状态误差反馈控制律-NLSEF[J].控制与决策,1995,20(3):221-230.
    [89]黄一,张文革.自抗扰控制器的发展[J].控制理论与应用,2002,19(4): 485-492.
    [90]韩京清.跟踪-微分器的离散形式[J].系统科学与数学,1999,19(3):268-273.
    [91]Gao Z., Huang Y., Han J. An alternative paradigm for control system design; proceedings of the Decision and Control,2001 Proceedings of the 40th IEEE Conference on,2001 [C]. IEEE.
    [92]Han J. From PID to active disturbance rejection control[J].Industrial Electronics, IEEE transactions on,2009,56(3):900-906.
    [93]秦昌茂,齐乃明,朱凯.高超声速飞行器自抗扰姿态控制器设计[J].系统工程与电子技术,2011,33(7):1607-1610.
    [94]黄焕袍,武利强,韩京清,等.火电单元机组协调系统的自抗扰控制方案研究[J].中国电机工程学报,2004,24(10):168-173.
    [95]孙凯.自抗扰控制策略在永磁同步电机伺服系统中的应用研究与实现[D];天津大学,2007.
    [96]韩京清.自抗扰控制技术[J].前沿科学,2007,1(1):24-31.
    [97]刘和平,李壮举,王允建.一种基于反推技术和ESO补偿的解耦控制方法[J].控制与决策,2010,25(12):5.
    [98]Miklosovic R., Gao Z. A robust two-degree-of-freedom control design technique and its practical application; proceedings of the Industry Applications Conference,2004 39th IAS Annual Meeting Conference Record of the 2004 IEEE,2004[C]. IEEE.
    [99]Tian G., Gao Z. Frequency response analysis of active disturbance rejection based control system; proceedings of the Control Applications,2007 CCA 2007 IEEE International Conference on,2007[C]. IEEE.
    [100]王丽君,童朝南,彭开香.板宽板厚多变量系统的自抗扰控制及混沌优化[J].控制与决策,2007,22(3):304-308.
    [101]邓文浪,杨钰,文天祥,等.TSMC控制系统中ADRC参数的自适应优化[J].控制工程,2010,17(3):338-342.
    [102]Morari M., H Lee J. Model predictive control:past, present and future[J].Computers & Chemical Engineering,1999,23(4):667-682.
    [103]Holtz J., Stadtfeld S. A predictive controller for the stator current vector of ac machines fed from a switched voltage source; proceedings of the JIEE IPEC-Tokyo Conf,1983[C].
    [104]Mutschler P. A new speed-control method for induction motors; proceedings of the Conf Record of PCIM 98,1998[C].
    [105]王宏佳,徐殿国,杨明.永磁同步电机改进无差拍电流预测控制[J].电工 技术学报,2011,26(6):39-45.
    [106]席欲庚.预测控制[M].北京:国防工业出版社,1993.
    [107]丁宝苍.预测控制的理论与方法[M].北京:机械工业出版社,2008.
    [108]Qin S.J., Badgwell T.A. A survey of industrial model predictive control technology[J].Control engineering practice,2003,11(7):733-764.
    [109]Richalet J., Rault A., Testud J.L., et al. Model predictive heuristic control:: Applications to industrial processes[J].Automatica,1978,14(5):413-428.
    [110]王伟,杨建军.广义预测控制理论、算法与应用[J].控制理论与应用,1997,14(6):777-786.
    [111]Camacho E.F. Constrained generalized predictive control[J].Automatic Control, IEEE Transactions on,1993,38(2):327-332.
    [112]平续斌,丁宝苍,韩崇昭.动态输出反馈鲁棒模型预测控制[J].自动化学报,2012,38(1):31-37.
    [113]丁宝苍,杨鹏,孙鹤旭,等.离线鲁棒预测控制器综合方法的改进方案[J].控制与决策,2005,20(3):312-320.
    [114]De Santana E.S., Bim E., Do Amaral W.C. A predictive algorithm for controlling speed and rotor flux of induction motor[J].Industrial Electronics, IEEE Transactions on,2008,55(12):4398-4407.
    [115]Mariethoz S., Domahidi A., Morari M. Sensorless explicit model predictive control of permanent magnet synchronous motors,2009[C]. IEEE.
    [116]Geyer T., Papafotiou G, Morari M. Model predictive direct torque control part I:Concept, algorithm, and analysis[J].Industrial Electronics, IEEE Transactions on,2009,56(6):1894-1905.
    [117]Papafotiou G, Kley J., Papadopoulos K.G., et al. Model predictive direct torque control part II:Implementation and experimental evaluation[J]. Industrial Electronics, IEEE Transactions on,2009,56(6):1906-1915.
    [118]Cortes P., Wilson A., Kouro S., et al. Model predictive control of multilevel cascaded h-bridge inverters[J].Industrial Electronics, IEEE Transactions on,2011,57(8):2691-2699.
    [119]符晓,戴鹏,伍小杰,等.电励磁同步电动机模型预测控制[J].浙江大学学报(工学版),2011,45(5):815-817.
    [120]Morel F., Lin-Shi X., Retif J.M., et al. A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive[J].Industrial Electronics, IEEE Transactions on,2009,56(7):2715-2728.
    [121]Geyer T. A comparison of control and modulation schemes for medium-voltage drives:emerging predictive control concepts versus PWM-based schemes[J]. Industry Applications, IEEE Transactions on, 2011,99):1-1.
    [122]Cortes P., Rodriguez J., Silva C., et al. Delay Compensation in Model Predictive Current Control of a Three-Phase Inverter [J]. Industrial Electronics, IEEE Transactions on,2011,99):1-1.
    [123]莫会成.伺服电动机的时间常数分析[J].微电机,2006,39(1):3-12.
    [124]Morimoto S., Takeda Y., Hirasa T. Current phase control methods for permanent magnet synchronous motors[J]. Power Electronics, IEEE Transactions on,1990,5(2):133-139.
    [125]翁力,韩林,赵荣祥,等.空间矢量脉冲调制(SVPWM)扇区过渡的分析研究[J].机电工程,2003,20(3):49-51.
    [126]Bianchi N., Bolognani S. Parameters and volt-ampere ratings of a synchronous motor drive for flux-weakening applications [J]. Power Electronics, IEEE Transactions on,1997,12(5):895-903.
    [127]Mohamed Y.A.R.I., El-Saadany E.F. A current control scheme with an adaptive internal model for torque ripple minimization and robust current regulation in PMSM drive systems[J]. Energy Conversion, IEEE Transactions on,2008,23(1):92-100.
    [128]Zolghadri M.R., Guiraud J., Davoine J., et al. A DSP based direct torque controller for permanent magnet synchronous motor drives; proceedings of the Power Electronics Specialists Conference,1998 PESC 98 Record 29th Annual IEEE,1998[C]. IEEE.
    [129]Kung Y.S., Tsai M.H. FPGA-based speed control IC for PMSM drive with adaptive fuzzy control[J]. Power Electronics, IEEE Transactions on, 2007,22(6):2476-2486.
    [130]孙丹,贺益康,智大为.基于模糊逻辑的永磁同步电动机直接转矩控制[J].电工技术学报,2003,18(1):33-38.
    [131]刘军,刘丁,吴浦升,等.基于模糊控制调节电压矢量作用时间策略的永磁同步电机直接转矩控制仿真研究[J].中国电机工程学报,2004,24(10):148-152.
    [132]田淳,胡育文.永磁同步电机直接转矩控制系统理论及控制方案的研究[J].电工技术学报,2002,17(1):7-11.
    [133]盛义发,喻寿益,洪镇南,等.永磁同步电机直接转矩控制系统的开关频率优化及其模糊控制[M].第26届中国控制会议.张家界.2007.
    [134]Jiaqun X., Renyuan T., Minggao O. Improved direct torque control of permanent magnet synchronous motor in electric vehicle drive[C]. Proceedings of the Vehicle Power and Propulsion Conference,2008 VPPC'08 IEEE,2008. IEEE.
    [135]李勇,罗隆福,杨晨,等.基于模糊控制的永磁同步电动机直接转矩控制[J].微电机,2006,39(3):37-40.
    [136]孙彪,孙秀霞.离散系统最速控制综合函数[J].控制与决策,2010,25(3):5.
    [137]宋运忠,齐冬莲,赵光宙.电力系统混沌振荡的自适应补偿控制[J].电力系统及其自动化学报,2006,18(4):5-8.
    [138]韩京清,张荣.二阶扩张状态观测器的误差分析[J].系统科学与数学,1999,19(4):465-471.
    [139]Zheng Q., Gao L.Q., Gao Z. On estimation of plant dynamics and disturbance from input-output data in real time; proceedings of the Control Applications,2007 CCA 2007 IEEE International Conference on,2007[C]. IEEE.
    [140]Liu H., Li S. Speed control for PMSM servo system using predictive functional control and extended state observer[J].Industrial Electronics, IEEE Transactions on,2012,59(2):1171-1183.
    [141]夏长亮,刘均华,卫俞.,等.基于扩张状态观测器的永磁无刷直流电机滑模变结构控制[J].中国电机工程学报,2006,26(20):139-143.
    [142]陈国栋,贾培发.基于扩展状态观测器的机器人分散鲁棒跟踪控制[J].自动化学报,2008,34(7):828-832.
    [143]潘天红,李少远.基于即时学习的非线性系统自适应PID控制[J].控制理论与应用,2009,26(10):1180-1184.
    [144]韩京清.一种新型控制器——NLPID[J].控制与决策,1994,9(6):401-407.
    [145]Bahill A. A simple adaptive smith-predictor for controlling time-delay systems:A tutorial[J].Control Systems Magazine, IEEE,1983,3(2):16-22.
    [146]Hong K., Nam K. A load torque compensation scheme under the speed measurement delay [J].Industrial Electronics, IEEE Transactions on,1998,45(2):283-290.
    [147]Astrom K.J., Hang C.C., Lim B.C. A new Smith predictor for controlling a process with an integrator and long dead-time [J].Automatic Control, IEEE Transactions on,1994,39(2):343-345.
    [148]韩京清,张文革.大时滞系统的自抗扰控制[J].控制与决策,1999,14(4):354-358.
    [149]韩京清.时滞对象的自抗扰控制[J].控制工程,2008,15(s1):7-10.
    [150]Kim K.H., Youn M.J. A nonlinear speed control for a PM synchronous motor using a simple disturbance estimation technique [J].Industrial Electronics, IEEE Transactions on,2002,49(3):524-535.
    [151]Madsen K., Nielsen H., Tingleff O.Optimization with constraints[M]. Lyngby:IMM, Technical University of Denmark,2004.
    [152]Frandsen P.E., Jonasson K., Nielsen H.B., et al. Unconstrained optimization[M]. Lyngby:IMM, Technical University of Denmark,1999.
    [153]王伟,杨建军.广义预测控制:理论、算法与应用[J].控制理论与应用,1997,14(6):777-786.
    [154]Rodriguez J., Pontt J., Silva C.A., et al. Predictive current control of a voltage source inverter[J]. Industrial Electronics, IEEE Transactions on,2007,54(1):495-503.
    [155]Wang Y., Boyd S. Fast model predictive control using online optimization[J]. Control Systems Technology, IEEE Transactions on,2010,18(2):267-278.
    [156]Yildirim E.A., Wright S.J. Warm-start strategies in interior-point methods for linear programming [J]. SIAM Journal on Optimization,2002,12(3):782-810.
    [157]许建新,侯忠生.学习控制的现状与展望[J].自动化学报,2005,31(6):943-955.
    [158]孙明轩,黄宝健.迭代学习控制[M].北京:国防工业出版社,1999.
    [159]Mishra S., Topcu U., Tomizuka M. Iterative learning control with saturation constraints; proceedings of the American Control Conference,2009 ACC'09, 2009[C]. IEEE.
    [160]Chen W., Soh Y, Yin C. Technical note Iterative learning control for constrained nonlinear systems [J]. Internal Journal of systems science,1999, 30(6),659-664.
    [161]Gunnarsson S., Norrlof M. On the design of ILC algorithms using optimization[J]. Automatica,2001,37(12):2011-2016.
    [162]Bristow D.A., Tharayil M., Alleyne A.G A survey of iterative learning control[J]. Control Systems Magazine, IEEE,2006,26(3):96-114.
    [163]Ngia L.S.H., Sjoberg J. Efficient training of neural nets for nonlinear adaptive filtering using a recursive Levenberg-Marquardt algorithm[J]. Signal Processing, IEEE Transactions on,2000,48(7):1915-1927.
    [164]陈翰馥.递推辨识过程的收敛性和一致性[J].应用数学学报,1983,6(1):50-60.
    [165]陈增强,林茂琼,袁著祉.递推阻尼最小二乘法的收敛性与稳定性[J].应用数学和力学,2000,21(2):209-214.
    [166]Cao Y. A formulation of nonlinear model predictive control using automatic differentiation[J].Journal of Process Control,2005,15(8):851-858.
    [167]Cao Y, Chen W.H. Automatic differentiation based nonlinear model predictive control of satellites using magneto-torquers,2009[C]. IEEE.
    [168]Gao Z. Scaling and bandwidth-parameterization based controller tuning; proceedings of the Proceedings of the American Control Conference, 2006[C].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700