山东烟台地区土壤地球化学环境与优质苹果生产的适应性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地质和农业的关系非常密切。开展基于特定地质背景的特色农产品地球化学研究,不仅可以因地制宜发展特色农业,而且还可以为调整特色农产品的产业布局,扩大优质特色农产品的种植,加快标准化绿色农业的发展,提高农业的经济效益,增加农民收入,以及实现现代高效优势农业可持续发展等提供科学依据。
     山东烟台地区气候良好,四季分明,是中国主要苹果产区之一。本文以不同地质单元成十母质的种植区为研究对象,系统采集典型种植区岩石、土壤(根系土、剖面土)、水、苹果根、茎、叶、果等样品,结合研究区面上土壤地球化学调查结果,研究了苹果种植区地质背景及地球化学特征,查明了岩石-土壤-植物系统中元素的分布及迁移转化特征,采用层次分析法建立了研究区土壤肥力质量和环境质量的评价模型,并对研究区土壤质量进行评价,提出了基于苹果中有机营养组份为主体的聚类分析与层次分析法结合的苹果品质评价方法,建立了基于苹果中特征元素组合与土壤-植物体系的相关性的苹果种植适应性评价模型,获得了如下认识和成果:
     1、不同地质单元母岩化学组成差异明显,不同成土母质种植区的苹果品质差异显著。经过风化成壤作用,土壤中的元素含量有均匀化的趋势,不同地质单元母质土壤中元素含量差异程度较成土母岩有所降低。总体来看,研究区十壤的化学组成与中国东部平原土壤相比,富含Na、Se、Au、Sr等元素,而B、Mg、Ca等元素严重缺乏。四项重要的营养组分K、N、P、有机质在研究区表现为在表层土壤中含量较高,其中有机质表现最为明显。
     2、对元素有效态影响因素的研究表明:土壤中P、Ca、Cu、Mn等元素含量是其有效量的重要控制因素;土壤酸碱度对B、K、Fe、Ca有效度有显著影响;有机质含量高有利于B、K、Fe等元素的活化,从而增加其有效量;氧化还原电位与有效B和有效Fe呈现良好的正相关关系。对不同母质土壤剖面的研究表明,土壤中元素迁移受所属不同地质单元岩性所控制,不同母质深层土壤和表层土壤中的元素组成有所不同。
     3、运用单因子污染指数和内梅罗综合污染指数对研究区水化学及水质进行评价,表明区内水质优良,受重金属污染程度低。
     4、元素在岩石-土壤-植物系统的迁移规律研究表明:主量元素Fe203和MgO向土壤中迁移能力较强,CaO的迁移行为则与不同地质背景单元相关;重金属及B、Se等重要元素向十壤中的迁移十分明显,在表层(A层)中含量最高;元素在苹果根、茎、叶、果的分布为B、Ca、Mn、Cu、As、Pb表现为在叶中明显富集,从根部到茎到叶含量依次升高的趋势,果实中的含量最低;Na、Co、Mo和稀土元素表现为根部的明显富集。土壤-植物体系中砷的形态迁移规律为,植物的根部吸收十壤中的砷,并在根部发生了As(Ⅴ)→As(Ⅲ)的还原,主要是植物体内谷胱苷肽类的还原性硫醇类物质的脱硫反应将As(V)转化为As(Ⅲ);而砷由植物的根部向上迁移过程中,As(Ⅲ)的比例逐渐降低,这是由于植物的自我保护作用,尽量避免毒性较高的As(Ⅲ)在植物细胞及组织中的存在,而在植物的叶子中有一甲基砷(MMA),这是砷在向上运输过程中在植物叶子中发生了甲基化作用,植物的枝叶败死后落丁根系土,从而完成了土壤-植物体系中砷的循环与迁移。
     5、采用层次分析法建立了研究区十壤肥力质量和环境质量评价模型,评估结果表明:土壤肥力质量为丰富级别(评估得分值在0.7以上)的比例为19.2%,土壤肥力质量为适量级别(评估得分值在0.3~0.7之间)的比例为61.3%,土壤肥力质量为缺乏级别(评估得分值在0.3以下)的比例为19.6%。土壤环境质量为一级的比例为38.1%,二级的比例为26.1%,三级的比例为35.9%。综合土壤肥力质量和土壤环境质量对研究区地球化学的评估结果,表明:十壤综合评估为优质的比例为7.3%,优良的比例为45.0%,良好的比例为11.9%,中等的比例为28.2%,差等的比例为7.7%。
     6、基于苹果中有机营养组份,采用聚类分析与层次分析法结合,利用隶属函数进行计算,建立了苹果品质层次结构分析评价方法。结果表明:桃村、村里集、蛇窝泊苹果品质最佳(得分值在0.7以上):武宁、官道、臧家庄苹果品质良好(得分值在0.5至0.7之间);潮水、牟平、臧家庄大北桥种植区苹果品质一般(得分在0.5以下),研究结果与野外实地考察结果具有较好的一致性。
     7、以影响苹果品质特征为出发点,探讨苹果中特征元素组合与十壤-植物体系的相关性,建立了基于特征元素组合的评价模型,对研究区苹果种植适宜性进行评价。结果表明:研究区最适宜、适宜、一般适宜种植苹果的面积比例分别为42.6%、49.4%、8.0%。以砂岩、片麻岩、花岗岩为母质的壤土区是苹果种植的最适宜区,以灰岩、二云母片岩为母质的壤土区为苹果种植一般适宜区。总体上苹果适宜种植的土壤是砂十、麻砂棕壤,尤以十层厚、土壤质地疏松、持水保肥性好的砂质壤十为最佳,粘性过重或大量粗砂砾壤土则不适宜苹果种植。
An intimate relationship exists between Geology and agriculture. Geochemical investigation on specific geological backgrounds for the agricultural products not only can help develop characteristic agricultural products suitable for the local conditions, but also camprovide scientific references for industrial design of characteristic agriculture, enlarge the planting areas of high quality characteristic agricultural products, and facilitate the development of standardized green agriculture; thus we can improve the economic output of agriculture, increase peasant's income, and finally achieve an efficient, sustainable development of modern characteristic agriculture.
     Yantai area in Shandong province has a good climate, and four seasons are distinct. This area is one of the main apple producing areas in China. This study targeted the growing areas with different geological backgrounds, and related samples such as rocks, soils (the root system soils, profile soils), waters, the apple tree roots, stems, leaves and fruits were systematically collected. Based on the geochemical survey results of soils in study areas, we studied the geological background and geochemical characteristics of apple planting areas as well as the distribution of elements and their migration transformation in the rock-soil-plant system. Through analytic hierarchy processing, this study established an evaluation model for the soil fertility and environmental quality of the studying areas; furthermore, the study proposed an apple quality evaluation method which combined cluster analysis and analytic hierarchy processing with consideration of the organic nutrition components in apples as the main index. An evaluation model for apple planting adaptability was proposed based on the relevancy between characteristic elements in apples and soil-plant system. The main results were summarized as below:
     1. The chemical compositions of parent rocks in different geological units are significantly of difference. The quality of apples in different growing areas with different soils also is different. Because of the soil weathering and formation processes, the element concentration in soils tend to be homogenized, and the extents of difference in element concentrations in soils are smaller than those in their parent rocks. Overall, relative to the soils in China Eastern plain, the soils in study areas are rich in Na, Se, Au, Sr etc., and strongly lack in B, Mg, Ca etc. The most important nutritional components, K, N. P and organic matter are low in contents in the bottom soils but much higher in the surface soils(especially for the organic matter) in study areas.
     2. Investigation on active forms of elements suggests that the total contents of P, Ca, Cu, and Mn etc. in soils are important control factor for activity these elements. The pH of the soil has notable effect on the active forms of B, K. Fe and Ca. The high content of organic matter benefits the activation of B, K and Fe, accordingly in turn increasing the effective quantity. The redox potential has a positive correlation with the quantities of available B and Fe. Investigation on different parent soil profiles shows that the element migration in soils was controlled by lithology in the specific geological units, and the element compositions in deep soil and surface soil of different parent materials are different.
     3. By using single factor pollution index and Nemero index, this study evaluated the water chemistry and water quality in study areas. The results shows that the water quality in the areas is good, and the degree of heavy metal pollution is low.
     4. Investigation on the elemental migration in the rock-soil-plant system showed that the migration abilities of the major elements of Fe2O3and MgO to the soils are strong, and the migration behavior of CaO is associated with different geological background unit. The migration of heavy metals and other important elements, such as B and Se, to the soil is very obvious, and the highest concentration is in the surface layer (layer A). B, Ca, Mn, Cu, As and Pb were significantly enriched in the leaves with increasing tendency from the root to stem, to the leaf and the lowest content in the fruit. Na.Co,Mo and rare earth elements were significantly enriched in roots. Plant roots took arsenic from the soil, and in the roots As (V)→As (111) reduction occurred because of the desulfurization reaction of glutathione reducing thiols in the plants. In the migration of arsenic upward in plants, the proportion of As (Ⅲ) decreased due to plants' self-protection function, which tends to avoid the higher toxicity of As (Ⅲ) to the plant cells and tissues. However, there was existing monomethyl arsenic (MMA) in the plant leaves. This was due to the methylation during the upward transport process of arsenic. When dead leaves drop into the root soils the cycle and migration of arsenic in the soil-plant system are completed.
     5. By using analytic hierarchy processing, this study proposes an evaluation model for soil fertility and environmental quality. The assessment results show that the area ratio of soil fertility quality in rich level (assessment score value is above0.7) is19.2%. The area ratio of the quality of soil fertility in the moderate level (ranges from0.3to0.7) is61.3%. The proportion of soil fertility quality in poor level (<0.3) is19.6%. For soil environmental quality assessment, area ratios at first, second and third level are38.1%,26.1%. and35.9%, respectively. Combining the assessments of soil fertility quality and soil environmental quality, the geochemical study indicates that the soil areas in high, excellent, good, moderate and poor qualities are7.3%,45.0%,11.9%,28,2%and7.7%, respectively.
     6. Based on the organic nutrients in apple, by using cluster analysis and analytic hierarchy process and calculating the membership function, this study propose the hierarchy of apple quality analysis and evaluation. The results suggest that the apple quality for Taocun, Cunliji, and Shewopo villages (score value is above0.7) is the best; that for Wuning, Guandao, Zangjiazhuang villages (score value is between0.5and0.7) is good; for Chaoshui, Mouping, Zangjiazhuangbeidaqiao villages (score value is below0.5) is general. Research results are well consistent with field inspection results.
     7. By studying geochemical characteristics which affect apple quality, this study explored the correlation of characteristic elements in apple and the soil-plant system, and proposed an evaluation model based on the combination of characteristic elements, and the model was then used for evaluating the planting suitability of the study areas for apples. The results indicated that the42.6%,49.4%and8.0%areas are most suitable, suitable, generally suitable, respectively, for growing apples in study areas.Areas where the parent materials were sandstone, gneiss and granite are the most suitable for apple planting, while areas where the parent materials were limestone and mica schist are only generally suitable for apple planting. In general, the most appropriate planting soils for apple production are those from sand and Ma sand brown, and especially those with thick sandy loam, loose soil texture, and good property for holding water and fertilizer. Soils which are too sticky or contain massive coarse gravels are not suitable for apple production.
引文
[1]汪庆华,唐根年,李睿.浙江省特色农产品立地地质背景研究.北京:地质出版社:2007.
    [2]周宗尧,宋明义,李恒溪等.农业地质环境调查成果在农产品认证中的应用.地质通报,2006,25(5):621-625.
    [3]李瑞敏,侯春堂,王轶.农业地质研究进展及主要研究问题.水文地质工程地质,2004,31(2):110-113.
    [4]姜建军,侯春堂.中国农业地学研究新进展.北京:中国大地出版社:2003,6-9.
    [5]李正积.农业与地质.成都:四川科学技术出版社:1986.
    [6]周国华,董岩翔,张建明.浙江省农业地质环境调查评价方法技术.北京:地质出版社:2007.
    [7]庄文明,陈绍前,黄友义.农业地质调查研究的几个基本问题.广东地质,2000,15(3):73-76.
    [8]成官文,郭纯青,朱义年等.农业地质理论及其研究内容再探.桂林工学院学报,2004,24(4):431-434.
    [9]麻志周.地质学在农业上的拓展应用与展望.地域研究与开发,2007,26(3):91-94.
    [10]中国论文联盟,[生物工程]地质科学创新领域——生物地质环境学,http://www.lwlm.com/shengwuxuelunwen/200607/27163.htm.
    [11]吴鸣.苏联地球化学创始人维尔纳茨基.中国地质,1986,(06):114.
    [12]王恒旭,王志坤,胡永华等.农业地质概述及应用前景.安徽农业科学,2006,34(5):958-959.
    [13]易桂花.蒙顶山茶区生态地球化学评价[硕士学位论文].成都,成都理工大学,2008.
    [14]洪业汤.国际地圈—生物圈计划的由来和发展.地质地球化学,1990,5:1-6.
    [15]奚小环.生态地球化学:从调查实践到应用理论的系统工程.地学前缘,2008,15(5):1-8.
    [16]Nagaraju A, Karimulla S. Accumulation of elements in plants and soils in and around Nellore mica belt, Andhra Pradesh, India-a biogeochemical study. Environmental Geology,2002,41(7): 852-860.
    [17]Sterckeman T, Douay F, Proix N, et al. Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the North of France. Water Air and Soil Pollution, 2002,135(1-4):173-194.
    [18]Reimann C, Arnoldussen A, Boyd R, et al. Element contents in leaves of four plant species (birch, mountain ash, fern and spruce) along anthropogenic and geogenic concentration gradients. Science of the Total Environment,2007,377(2-3):416-433.
    [19]Galuszka A. A review of geochemical background concepts and an example using data from Poland. Environmental Geology,2007,52(5):861-870.
    [20]Cecillon L, Barthes B G, Gomez C, et al. Assessment and monitoring of soil quality using near-infrared reflectance spectroscopy (NIRS). European Journal of Soil Science,2009,60(5): 770-784.
    [21]Ande O T, Onajobi J. Assessment of effects of controlled land use types on soil quality using inferential method. African Journal of Biotechnology,2009,8(22):6267-6271.
    [22]Berthelot Y, Trottier B, Robidoux P Y. Assessment of soil quality using bioaccessibility-based models and a biomarker index. Environment International,2009,35(1):83-90.
    [23]Vrscaj B, Poggio L, Marsan F A. A method for soil environmental quality evaluation for management and planning in urban areas. Landscape and Urban Planning,2008,88(2-4):81-94.
    [24]Aboughalma H, Bi R, Schlaak M. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering,2008,43(8):926-933.
    [25]Nwachukwu O 1, Pulford 1 D. Comparative effectiveness of selected adsorbant materials as potential amendments for the remediation of lead-, copper-and zinc-contaminated soil. Soil Use and Management,2008,24(2):199-207.
    [26]Mariano A P, de Angelis D D, Pirollo M P S, et al. Investigation about the Efficiency of the Bioaugmentation Technique when Applied to Diesel Oil Contaminated Soils. Brazilian Archives of Biology and Technology,2009,52(5):1297-1312.
    [27]Avila-Chavez M A, Trejo A. Remediation of Soils Contaminated with Total Petroleum Hydrocarbons and Polycyclic Aromatic Hydrocarbons:Extraction with Supercritical Ethane. Industrial & Engineering Chemistry Research,2010,49(7):3342-3348.
    [28]Castelo-Grande T, Augusto P A, Monteiro P, et al. Remediation of soils contaminated with pesticides:a review. International Journal of Environmental Analytical Chemistry,2010,90(3-6): 438-467.
    [29]Iwai C B, Sujira H, Somparn A, et al. Monitoring Pesticides in the Paddy Field Ecosystem of North-Eastern Thailand for Environmental and Health Risks. In Rational Environmental Management of Agrochemicals:Risk Assessment, Monitoring, and Remedial Action, Kennedy 1 R,2007(966):259-273.
    [30]Kwonpongsagoon S, Waite TD, Moore SJ. Use of information from substance flux analysis for human health risk assessment at regional scales:Cadmium as a case study in Australia[J]. International Congress on Modelling and Simulation,2003, (1-4):983-988.
    [31]Lefevre-Witier P, Fernet P, Pascal R. Working conditions, life-style and health in agricultural communities around Toulouse (south western France)-A pluridisciplinary survey in epidemiology and human ecology to improve preventive medicine. Symposium on the Occasion of the Ⅶ International Congress of Ecology (INTECOL), RESEARCH 1N HUMAN ECOLOGY:AN INTERDISCIPLINARY OVERVIEW,1998:195-215.
    [32]李正积.试论农业地质背景与生态环境.地质科技管理,1989,1:86-90.
    [33]李正积.试论农业地质背景系统的作用.山西地质,1991,6(4):369-380.
    [34]李正积.地学与农结合前景产阔:农业地质背景系统简介.四川农业科技,1991,5:15-16.
    [35]李正积.时代前缘的全息探索—岩土植物大系统研究.地质论评,1996,42(4):369-372.
    [36]陈昌笃.全球生态学—生态学的新发展.生态学杂志,1990,9(4):38-40.
    [37]曾群望.农业地质背景研究中的几个问题.云南地质科技情报,1992,1:22-25.
    [38]冯群耀.广西沙田柚农业地质.广西地质,2001,14(1):47-50.
    [39]张宗祜.中国黄土——中国院士书系.石家庄:河北教育出版社:2003.
    [40]陈梦熊.中国水文地质环境地质问题研究.北京:地震出版社:1998.
    [41]陈德兴,胡国俊.湖北省优质柑桔林地质—地球化学背景.地球科学:中国地质大学学报,1994,19(3):364-374.
    [42]秦建成.土壤适宜性评价方法研究—以重庆市彭水县植烟土壤为例[博士学位论文].重庆,西南大学,2007.
    [43]张振平.中国优质烤烟生态地质背景区划研究[博士学位论文].杨凌,西北农林科技大学,2004.
    [44]段昌坪,符菊芬.滇西南蔗区农业地质背影与合理施肥.甘蔗糖业,1996,6:9-12.
    [45]彭福元.武陵山区宜茶的农业地质背景分析.湖南农业科学,2006,3:55-56.
    [46]王梅英.优质信阳毛尖茶叶的岩石学背景及其农业地质意义.华南地质与矿产,2008,4:70-76.
    [47]许卉,陈印平,赵丽萍.沾化冬枣种植区农业生态地质环境调查研究.安徽农业科学,2007,35(11):3347-3348.
    [48]刘宁,邱红绪,张毅功.沧州金丝小枣主产区气候及农业地质背景分析.安徽农业科学,2008,36(30):13112-13115.
    [49]啜云香.农业地质破译大地密码乐陵金丝小枣有“新家”.山东国土资源,2009,25(9):73-73.
    [50]尹念文,白昀.张义镇人参果农业地质环境分析.甘肃科技,2008,24(17):38-40.
    [51]王成斌.漳州水仙花农业地质背景初探.福建地质,2008,27(2):254-258.
    [52]中国地质调查局.1:250000区域地质调查技术要求(暂行)(DD2001-02)
    [53]中国地质调查局.多目标区域地球化学调查规范(1:250000)(DD-2005-01).
    [54]中国地质调查局.区域生态地球化学评价技术要求(试行)(DD2005-02)
    [55]中国地质调查局.生态地球化学评价样品分析技术要求(试行)(DD2005-03).
    [56]GB15618-1995.土壤环境质量标准.中国标准出版社,1996-03-01.
    [57]中国地质调查局.土壤质量地球化学评估技术要求(试行)(DD2008-06).
    [58]吴轩.多目标区域地球化学数据管理及生态环境评价方法研究与开发[硕士学位论文].北京,中国地质大学(北京),2006.
    [59]范振涛.广西壮族自治区青蒿生态适宜性等级区划研究[硕士学位论文].北京,首都师范大学,2008.
    [60]高晨光.吉林西部地区燕麦与小麦营养品质的评价[硕士学位论文].长春,东北师范大学,2006.
    [61]刘爽.吉林西部葵花种植区生态地球化学研究[硕士学位论文].长春,吉林大学,2007.
    [62]玄兆业.吉林延边优质苹果梨适生元素地球化学模型研究[硕士学位论文].长春,吉林大学,2008.
    [63]温丹.京东板栗农业地质环境适宜性评价研究[硕士学位论文].保定,河北农业大学,2006.
    [64]陈美君.农业地质环境调查、分析与评价——以浙江上虞市为例[硕士学位论文].上海,上海师范大学,2006.
    [65]彭俊生.三台县川产道地中药材麦冬的农业地质评价[硕士学位论文].成都,成都理工大学,2007.
    [66]刘超良.信阳茶叶种植区土壤适宜性评价研究[硕士学位论文].郑州,河南农业大学,2006.
    [67]刘树臣,张丽君,谭永杰.当代地质调查工作发展态势及我国对策.北京:地质出版社,2003.
    [68]孟翠鸣.我国农业地质调查战略布局.化工矿产地质,2004,26(2):96-96.
    [69]王军.我国农业地质学的研究现状及应用前景浅论.南都学坛:南阳师专学报,1995,15(6):69-70.
    [70]无.浙江与欧洲诸国农业地质环境调杳之比较.专家工作通讯,2006,6:44-47.
    [71]姚华军,颜世强.我国农业地质工作发展战略思考.中国国土资源经济,2007,20(2):37-39.
    [72]中国农经信息网.
    [73]NY/T856-2004.苹果产地环境技术条件.中国农业出版社,2005-6-1.
    [74]林大仪.土壤学.北京:中国林业出版社:2002,198-199.
    [75]GB5084-2005.农田灌溉水质标准.中国标准出版社,2006-11-01.
    [76]NY5013-2001.无公害食品 苹果产地环境技术条件.中国农业出版社,2001-10-01.
    [77]黄勇,杨忠芳.中国土地质量评价的研究现状及进展.地质通报,2008,27(2):207-211.
    [78]Chakraborty D, Garg R N, Tomar R K, et al. Soil Physical Quality as Influenced by Long-Term Application of Fertilizers and Manure Under Maize-Wheat System. Soil Science,2010,175(3): 128-136.
    [79]Dong Y W, Huang J L, Sun B L, et al. Determination of Soil Quality from Chinese Apple Plant Area by N1R Spectroscopy. Spectroscopy and Spectral Analysis,2009,29(8):2075-2078.
    [80]黄勇,杨忠芳.土壤质量评价国外研究进展.地质通报,2009,28(1):130-136.
    [81]张汪寿,李晓秀,黄文江等.不同土地利用条件下土壤质量综合评价方法.农业工程学报,2010,26(12):311-318.
    [82]潘峰,梁川等.基于层次分析法的物元模型在土壤质量评价中的应用.农业现代化研究,2002,23(2):93-97.
    [83]童新安,王云鹏.基于核主成分-聚类分析的土壤质量评价方法.安徽农业科学,2009,37(10):4355-4357.
    [84]万存绪,张效勇.模糊数学在土壤质量评价中的应用.应用科学学报,1991,9(4):359-365.
    [85]杜章留,高伟达,陈素英等.保护性耕作对太行山前、平原土壤质量的影响.中国生态农业学报,2011,19(5):1134-1142.
    [86]徐云霞,陈文德,彭培好.Gis技术支持下的土壤质最评价.四川林勘设计,2008,3:23-25.
    [87]迟清华,鄢明才.应用地球化学元素丰度数据手册.北京:地质出版社:2007.
    [88]陆景冈.土壤地质学.北京:地质出版社:2006.
    [89]刑光熹,朱建国.土壤微量元素和稀土元素化学.北京:科学出版社社:2003.
    [90]Krishna A. K., Mohan K. R., Murthy N. N., et al. Monitored natural attenuation as a remediation tool for heavy metal contamination in soils in an abandoned gold mine area. Current Science, 2010,99(5):628-635.
    [91]NY/T391-2000.绿色食品产地环境技术条件.中国农业出版社,2000-04-01.
    [92]GB/T18407.2-2001.农产品安全质量无公害水果产地环境要求.中国标准出版社,2001-10-01.
    [93]余涛.湖南洞庭湖地区土地质量地球化学评估[硕士学位论文].北京,中国地质大学(北京),2006.
    [94]黄勇.四川省罗江县土地质量地球化学评估与农用地分等结果整合研究[硕士学位论文].北京,中国地质大学(北京),2008.
    [95]张文彤,闫杰SPSS统计分析基础教程.北京:高等教育出版社:2004.
    [96]张宜华.精通SPSS.北京:清华大学出版社:2001,108-203.
    [97]Yuan C, Jiang G, He B. Evaluation of the extraction methods for arsenic speciation in rice straw, Oryza sativa L., and analysis by HPLC-HG-AFS. Journal of Analytical Atomic Spectrometry, 2005, (20):103-110.
    [98]Inoue Y, Kawabata K, Takahashi H. Determination of arsenic compounds using inductively coupoed plasma mass spectrometry with ion chromatography. Journal of Chromatography Analysis,1994,(675):149-154.
    [99]Mattusch J, Wennrich R. Determination of Anionic, Neutral, and Cationic Species of Arsenic by Ion Chromatography with ICP-MS Detection in Environmental Samples. Analytical Chemistry, 1998,70(17):3649-3655.
    [100]Ackley K L. Speciation of arsenic in fish tissue using microwave-assisted extraction followed by HPLC-ICP-MS. Journal of Analytical Atomic Spectrometry,1999, (14):845-850.
    [101]Madsen A D, Goessler W, Pedersen S N, et al. Characterization of an algal extract by HPLC-ICP-MS and LC-electrospray MS for use in arsenosugar speciation studies. Journal of Analytical Atomic Spectrometry,2000,15(6):657-662.
    [102]Bohari Y, Lobos G, Astruc A, et al. Speciation of arsenic in plants by HPLC-HG-AFS: extraction optimisation on CRM materials and application to cultivated samples. Journal of Environmental Monitoring,2002, (4):596-602.
    [103]Koji B, Tomohito A, Yuji M, et al. Arsenic Speciation in Rice and Soil Containing Related Compounds of Chemical Warfare Agents. Analytical Chemistry,2008,80(15):5768-5775.
    [104]Cao X, Hao C, Wang X, et al. Sequential extraction combined with HPLC-ICP-MS for As speciation in dry seafood products. Food Chemistry,2009, (113):720-726.
    [105]卢伢,邓天龙.植物样品中痕量砷的形态分析研究进展.广东微量元素科学,2006,13(4):7-13.
    [106]Kumaresan M, Riyazuddin P. Overview of speciation chemistry of arsenic. Current Science, 2001,80(7):837-846.
    [107]Marafante E, Bertoleroa F, Rade J, et al. Intracellular interaction and biotransformation of arsenite in rats and rabbits.1981,(18):1335-1341.
    [108]Zhang X, Cornelis R, De Kimpe J, et al. Arsenic speciation in serum of uraemic patients based on liquid. Analytica Chimica Acta,1996,(319):177-185.
    [109]Sadic M. Arsenic chemistry in soils-an overview of thermodynamic predictions and field observations. Water Air and Soil Pollution,1997, (93):117-136.
    [110]Benramdane L, Accominotti M, Fanton L, et al. Arsenic Speciation in Human Organs following Fatal Arsenic Trioxide Poisoning-A Case Report. Clinical Chemistry,1999,45(2):301-306.
    [111]Ventura-Lima J, Fattorini D, Regoli F, et al. Effects of different inorganic arsenic species in Cyprinus carpio (Cyprinide) tissues after short-time exposure Bioaccumulation, biotransformation and biological responses. Environmental Pollution,2009, (157):3479-3484.
    [112]Sun G, Williams P N, Zhu Y, et al. Survey of arsenic and its speciation in rice products such as breakfast cereals, rice cracker and Japanese rice condiments. Environment International,2009, (35):473-475.
    [113]Kim K, Bang S, Zhu Y, et al. Arsenic geochemistry, transport mechanism in the soil-plant system, human and animal health issues. Environment International,2009, (35):453-454.
    [114]Patel K S, Shrivas K, Brandt R, et al. Arsenic contamination in water, soil, sediment and rice of central India. Environmental Geochemistry and Health,2005, (27):131-145.
    [115]Barrachina C, Carbonell F B, Beneyto J M. Arsenic uptake, distribution, and accumulation in tomato plants:Effect of arsenite on plant growth and yield. Journal of Plant Nutrition,1995, 18(6):1237-1250.
    [116]薛培英,刘文菊,刘会玲等.中轻度砷污染土壤-水稻体系中砷迁移行为研究.土壤学报,2010,47(5):872-879.
    [117]吴锡,许丽英,张雪霞等.缺氧条件下土壤砷的形态转化与环境行为研究.环境科学,2012,33(1):273-279.
    [118]蒋成爱,吴启堂,陈杖榴.土壤中砷污染研究进展.土壤,2004,36(3):264-270.
    [119]Giovanna Armiento,Carlo Cremisini,Elisa Nardi et al.High geoehemical background of potentially harmful elements in soils and sediments:implications for the remediation of contaminated sites. Chemistry and Ecology,2011,27(1):131-141.
    [120]Joo Sung Ahn. Geochemical occurrences of arsenic and □uoride in bedrock ground water:a case study in Geumsan County, Korea. Environ Geochem Health,2012 (34):43-54.
    [121]Smith E, Naidu R, M A A. Arsenic in the soil environment:A review. Advance in Agronomy, 1998, (64):149-195.
    [122]和秋红.不同形态砷在土壤中的转化及生物效应研究[硕士学位论文].中国农业科学院,2009.
    [123]Tlustos P, Szakova J, Pavlikova D, et al. The accumulation of arsenic and cadmium by different species of vegetables. Proceedings of The ISHS Workshop Towards An Ecologically Sound Fertilisation Vegetable Production,2002, (571):217-224.
    [124]Smith E, Juhasz A L, Weber J, et al. As Arsenic uptake and speciation in rice plants grown under Greenhouse condition with As contaminated irrigation water. Science of The Total Environment,2008, (392):277-283.
    [125]Abedin M J, Feldmann J R, Meharg A A. Uptake Kinetics of Arsenic Species in Rice Plants. Plant Physiology,2002, (128):1120-1128.
    [126]董飞,卢瑛,王兴祥等.华南地区不同品系水稻积累砷特征及其影响因素.农业环境科学学报,2011,30(2):214-219.
    [127]阎秀兰,廖晓勇,于冰冰等.药用植物三七对土壤中砷的累积特征及其健康风险.环境科学,2011,32(3):880-885.
    [128]张国祥,杨居荣,华珞.土壤环境中的砷及其生态效应.土壤,1996,(2):64-68.
    [129]石荣,贾永锋,王承智.土壤矿物质吸附砷的研究进展.土壤通报,2007,38(3):584-589.
    [130]Lena O M, Komar K M, Tu C, et al. A hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature,2001, (409):579.
    [131]Castillo-Michel H, Parsons J G, Gardea-Torresdey J L, et al. Use of X-ray absorption spectroscopy and biochemical techniques to characterize arsenic uptake and reduction in pea(Pisum sativum) plants. Plant Physiology and Biochemistry,2007, (45):457-463.
    [132]Pickering I J, Prince R C, George M J, et al. Reduction and Coordination of Arsenic in Indian Mustard. Plant Physiology,2000, (122):1171-1177.
    [133]Scott N, Hatlelid K M, Mackenzie N E, et al. Reactions of Arsenic(III) and Arsenic(V) Species with Glutatione. Chemical Research in Toxicology,1993, (6):102-106.
    [134]Delnomdedieu M, Basti M M, Otvos J D. Transfer of arsenite from glutathione to dithiols:a model of interaction. Chemieal Research in Toxicology,1993,6:598-602
    [135]Zhang W, Cai Y, Tu C, et al. Arsenic speciation and distribution in an arsenic hyperaccumulating plant. The Science of the Total Environment,2002, (300):167-177.
    [136]Marin A R, Masscheleyn P H, Patrick W H. The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant and Soil,1992, (139): 175-183.
    [137]Naidu R, Bhattacharya P. Arsenic in the environment-risks and management Strategies. Environmental Geochemistry and Health,2009, (31):1-8.
    [138]Rahman M M, Naidu R, Bhattacharya P. Arsenic contamination in groundwater in the Southeast Asia region. Environmental Geochemistry and Health,2009, (31):9-21.
    [139]Li R, Ago Y, Zhao F, et al. The Rice Aquaporin Lsil Mediates Uptake of Methylated Arsenic Species. Plant Physiology,2009, (150):2071-2080.
    [140]Meharg A A, Jeanette H. Arsenic uptake and metabolism in arsenic resistant and nonrssistant plant species. New Phytologist,2002, (154):29-43.
    [141]Cullen W R, Reimer K J. Arsenic speciation in the environmen. Chemical Review,1989, (89): 713-764.
    [142]Gong Z, Lu X, Le X C, et al. Unstable trivalent arsenic metabolites, monomethylarsonous acid and dimethylarsinous acid. Journal of Analytical Atomic Spectrometry,2001, (16):1409-1413.
    [143]Mann M E. The Value of Multiple Proxies. Science,2002, (297):1481-1482.
    [144]刘学.砷在棕壤中的吸附-解吸行为及赋存形态研究[博十学位论文].沈阳农业大学,2009.
    [145]张广莉,宋光煜,赵红霞.磷影响下根际无机砷的形态分布及其对水稻生长的影响.土壤学报,2002,39(1):23-28.
    [146]GB/T10651-2008.鲜苹果.中国标准出版社,2008-10-01.
    [147]聂继云,刘凤之,李静等.制汁用苹果品质评价体系探讨.果树学报,2006,23(6):798-800.
    [148]魏钦平,程述汉.苹果品质评价因素的选择.中国果树,1997,4:14-15.
    [149]F Roger Harker, Eugene M Kupferman, Anna B. Marin.Eating quality standards for apples based on consumer preferences. Postharvest Biology and Technology,2008,50:70-78
    [150]E Hoehn, F Gasser, B Guggenbuhl, et al. Efficacy of instrumental measurements for determination of minimum requirements of firmness, soluble solids, and acidity of several apple varieties in comparison to consumer expectations. Postharvest Biology and Technology, 2007, (27):27-37
    [151]广沙沙,毕金峰,下沛等.基于主成分分析的苹果品质综合评价研究.食品科技,2012.37(1):54-57.
    [152]路超,下金政,薛晓敏等.山东苹果品质发育区域化特征及其与土壤和叶片养分状况的关系.山东农业科学,2009,5:79-84.