灵芝有效降糖组分的筛选及降血糖机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]传统中医即以灵芝为重要配伍组份用于内分泌、代谢紊乱相关疾病的治疗。本文以蛋白酪氨酸磷酸酶1B(PTP1B)为靶点从灵芝子实体中筛选具有有效降血糖效果的PTP1B抑制剂,并对该抑制剂进行理化性质及降血糖机理的研究。
     [方法]利用醇提、水提和碱提等手段结合醇沉、凝胶柱层析等技术从灵芝子实体中筛选有效降血糖组分;利用高效液相色谱,红外光谱,核磁共振光谱对提取物进行纯度和组成表征;利用分析单糖组成、氨基酸组成、多糖含量、蛋白含量等,建立这些参数与对PTP1B抑制能力的相关性,并研究对PTP1B抑制的动力学;利用链脲霉素(STZ)诱导2型糖尿病小鼠及大鼠,db/db基因型2型糖尿病小鼠对有效降糖提取物进行药效学研究,并与现用临床一线西药二甲双胍及罗格列酮相对照;同时进行了有效提取物的初步急性安全性试验;利用western blotting技术,免疫沉淀技术分析STZ致糖尿病大鼠及基因糖尿病小鼠给药前后肝和骨骼肌组织中PTP1B表达水平和活性的变化及胰岛素受体p亚基(IRβ)磷酸化水平的变化,从而分析有效降糖提取物在体内的降血糖机理;另外,用酶标仪、荧光光谱等研究提取物对a-葡萄糖苷酶、a-淀粉酶、自由基等抑制能力和动力学;此外,用试剂盒分析与糖尿病有关的代谢性疾病的体内血液生化指标。
     [结果]从灵芝中筛选出7种对PTP1B有抑制效果的组分,其中抑制最有效的组分IC50=5.12±0.05μm/mL,将该组分命名为FYGL;对FYGL组成分析表明,FYGL为分子量2.6×105的蛋白多糖,其中蛋白与多糖含量比为17:77。多糖部分主要由葡聚糖组成,蛋白部分含有19种常见氨基酸;对PTP1B抑制动力学分析表明,FYGL对PTP1B的抑制呈竞争性抑制,即与PTP1B的底物竞争相同的活性位点。动物药效学试验证明,FYGL能显著降低STZ致2型糖尿病模型小鼠及大鼠的血糖,并呈剂量和时间依赖性,且与二甲双胍及罗格列酮相当;同样,db/db基因型糖尿病小鼠药效学实验证明,FYGL亦显著降低小鼠血糖,且与临床一线西药相当;初步急性安全性试验表明,小鼠半致死量LD50=6g/kg,安全性很高;药理学试验证明,对于STZ致糖尿病大鼠,FYGL能降低骨骼肌PTP1B的表达水平和活性,进而调控IRp亚基的磷酸化水平;对于db/db基因型糖尿病小鼠,FYGL能显著降低肝脏和骨骼肌PTP1B的表达水平,降低骨骼肌PTP1B的活性,增加肝脏和骨骼肌IRp亚基的磷酸化水平。此外,STZ致糖尿病大鼠试验表明,FYGL不仅能显著降低血糖,而且能增加血清胰岛素浓度,降低胰岛素抵抗指数,增加胰岛素分泌指数,提示FYGL可能有修复胰岛细胞的功能;FYGL亦能降低db/db小鼠胰岛素抵抗指数,但不能促进胰岛素的分泌。另外,FYGL对a-葡萄糖苷酶、α-淀粉酶、自由基等亦有抑制能力,对α-葡萄糖苷酶亦呈竞争性抑制机理,提示FYGL可能具有多靶点降糖作用功能。同时,FYGL能有效改善STZ致2型糖尿病大鼠及db/db小鼠中与代谢紊乱综合症相关的血脂生化指标,如自由脂肪酸(FFA)、甘油三脂(TG)、总胆固醇(TC),低密度脂蛋白胆固醇(LDL-C)和高密度脂蛋白胆固醇(HDL-C)。
     [结论]FYGL有显著降低血糖能力,与临床一线西药二甲双胍及罗格列酮相当,且安全性高,其降血糖机理是通过降低体内肝脏和骨骼肌PTP1B表达水平,降低骨骼肌PTP1B活性,进而调控胰岛素受体p亚基的磷酸化水平,同时降低胰岛素抵抗指数。另外,FYGL可能具有多靶点降糖作用功能,同时改善与糖尿病代谢紊乱综合症相关的血脂生化指标。FYGL是一种新型胰岛素增敏剂,有望成为糖尿病治疗的候选新药。
Objectives:
     Ganoderma lucidum has traditionally been used for the treatment of endocrine-related diseases, metabolic disorders and diabetes. This work aimed to study the antihyperglycemic mechanism in vivo of a Ganoderma Lucidum extraction, FYGL, screened from the fruiting bodies of Ganoderma Lucidum (Fr.) Karst.
     Methods:
     PTP1B inhibitors were screened from the fruiting bodies of G. lucidum. The chemical components of the PTP1B inhibitor were characterized by the Infrared (IR) and Nuclear Magnetic Resonance (NMR) spectrum for the functional groups, anion-exchange chromatography for the monosaccharide contents, and the amino acid analyzer for the amino acid residues. The db/db mice and streptozotocin (STZ)-induced type2diabetic mellitus (T2DM) model mice and rats were treated with FYGL as well as metformin and rosiglitazone. The levels of plasma glucose and insulin were measured, and the expression and activity of the protein tyrosine phosphatase1B (PTP1B) and the tyrosine phosphorylation level of the insulin receptor (IR) β-subunit in the livers and skeletal muscles of the T2DM rats and db/db mice were analyzed by immunoprecipitation and Western blotting methods. In addition, the inhibity ability to a-glucosidase, a-amylase and free radical of FYGL was also investigated in vitro. At last, the levels of free fatty acid and serum lipid profile including triglyceride, total cholesterol, low density lipoprotein-cholesterol and high density lipoprotein-cholesterol were measured using commercial kits for those trailed rats.
     Results:
     A PTP1B activity inhibitor was screened from the fruiting bodies of G. lucidum. The inhibitor, named FYGL, has an efficient PTP1B inhibitory potency with IC50value of5.12±0.05μg/mL in a competitive inhibition kinetics mechanism. It was demonstrated that FYGL is a water soluble proteoglycan with protein to polysaccharide ratio of17:77, and a viscosity-average molecular weight of2.6×105.
     Treatment for the STZ-induced type2diabetes mice, rats and db/db mice with a dose of150,120and225mg/kg FYGL for4weeks,30days and4weeks significantly decreased the fasting plasma glucose level by40.7%(p<0.01),31.8%(p<0.01) and29.1%(p<0.01), respectively, compared to the diabetic control group without drug treatment. The decrease in the plasma glucose concentration for the FYGL treatment group is comparable with that for the250mg/kg metformin and3mg/kg rosiglitazone treatment group. The FYGL does lead to the dose-and time-dependent decrease in the fasting plasma glucose. FYGL could decrease the insulin insistant of T2DM rats and db/db mice and promote the insulin release of T2DM rats. During the toxicity trial, the toxicity of FYGL was preliminarily evaluated as LD50=6g/kg with95%confidence limits of4.8-7.4g/kg.
     FYGL decreased the PTP1B expression and activity in the skeletal muscles of T2DM rats, but not in the livers of T2DM rats, while decreased the PTP1B expression in the liver and skeletal muscles and decreased the PTP1B activity in the skeletal muscles of db/db mice, consequently, increased the tyrosine phosphorylation level of the IR β-subunit (p<0.05) in the skeletal muscles of T2DM rats and the tyrosine phosphorylation level of the IR p-subunit in the liver and skeletal muscles of db/db mice.
     In addition, FYGL can inhibite the activity of a-glucosidase, a-amylase and free radical in vitro, which suggesting that FYGL has the multiple target point function.
     At last, FYGL significantly decreased the levels of free fatty acid, triglyceride, total cholesterol and low density lipoprotein-cholesterol as well as increased the level of high density lipoprotein-cholesterol, which are the important plasma biochemistry indexes.
     Conclusions:
     FYGL decreases the plasma glucose level based on the mechanism of the inhibiting the PTP1B expression and activity, consequently, mediating the tyrosine phosphorylation level of the IR β-subunit; meanwhile it decrease the serum insulin insistant and maybe recover the pancreatic β-cells function. As those results, FYGL can also control the plasma biochemistry indexes relative to the type2diabetes with metabolic disorders. Therefore, FYGL is promising to be used as a drug candidate for the type2diabetes and their metabolic disorders.
引文
[1]田光辉,赖普辉,任柏林等.灵芝多糖提取工艺的优化[J].汉中师范学院学报.2000,18(1):53-55.
    [2]丰永红,于淑娟.一种生理活性物质灵芝多糖[J].武汉工业学院学报,2002,19(13):19-21.
    [3]Min BS, Gao JJ, Nakamutran, et al. Triterpenes from the spores of Ganoderma lucidum and their cytotoxicity against meth-A and LLC tumor cells [J]. Chem Pharm Bull (Tokyo),2000,48(7):1026-1033.
    [4]陈若云,于德泉.赤芝孢子粉三萜化学成分研究[J].药学学报,1991,26(4):257-263.
    [5]李平作,张克昌.灵芝发酵菌丝体中灵芝酸的分离纯化及生物活性检测[J].天然产物研究与开发,1999,11(4):67-70.
    [6]Ei-Mekkawy S, Meselhy MR, Nakamura N, Tezuka Y, Hattori M, Kakiuchi N, Shimotohno K, Kawahata T, Otake T. Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidium [J]. Phytochemistry,1998,49(6): 1651-1657.
    [7]王芳生,蔡辉,杨峻山,等.赤芝子实体中三萜化学成分的研究[J].药学学报,1996,31(3):200-204.
    [8]陈若云,于德泉.用二维核磁共振技术研究赤芝孢子内酯A和B的结构[J].药学学报,1991,26(6):430-436.
    [9]Hirotani M, Ino C, Furuyat, et al. Ganoderic acids T, S and R, new triterpenoids from the cultured mycelia of Ganoderma lucidum [J]. Chem Pharm Bull,1986, 34(5):2282-2285.
    [10]中国药学科学院药物研究所.中草药现代研究[M].北京:北京医科大学中国协和医院大学联合出版社.1996:301-302.
    [11]Chen RY, Wang YH, Yu DQ. Studies on the chemical constituents of the spores from Ganoderma lucidum. Journal of integrative plant biology,1991,33:65-68.
    [12]Lin CN, Tome WP. Novel cytotoxic principles of Formosan Ganoderma lucidum. J Nat Products,1991,54(4):998-1002.
    [13]商振华,于亿年,郭为,等.反相高效液相色谱-紫外吸收法测定灵芝中氨基酸的含量[J].药物分析杂志,1994,14(4):30-32.
    [14]张能荣,张秀云.灵芝孢子粉中氨基酸和微量元素的分析[J].天然产物研 究与开发,1996,8(4):33-35.
    [15]Sun J, He H, Xie BJ. Novel antioxidant peptides from fermented mushroom Ganoderma lucidum. J Agric Food Chem,2004,52(21):6646-6652.
    [16]Tanaka S, Ko K, Kino K, et al. Complete amino acid sequence of an immunomodulatory protein, Ling Zhi-8 (LZ-8) [J]. J Biol Chem,1989, 264(28):372-377.
    [17]Kino K, Yamashita A, Yamaoka K, et al. Isolation and characterazition of a new immunomodulatory protein, Ling Zhi-8 (LZ-8) from Ganoderma lucidum [J]. J Biol Chem,1989,264(1):472-478.
    [18]Kawagishi H, Mitsunaga SI, Yamawakj M, et al. A lectin from mycelia of the fungus Ganoderma lucidum [J]. Phytochemistry,1997,44(1):7-10.
    [19]余竞光,陈若云,姚志熙,等.灵芝凝集素分离纯化及部分性质研究[J].生物化学杂志,1993,9(1):125-128.
    [20]侯翠英,孙义廷,杨琳,等.灵芝(赤芝孢子粉)化学成分的研究再报[J].植物学报,1988,30(1):66-70.
    [21]杨东辉,魏璐雪.高效液相色谱法测定冬虫夏草和赤芝子实体中的腺苷的含量[J].北京中医药大学学报,1998,21(2):44-45.
    [22]魏华,杨荣鉴,谢俊杰,等.灵芝富锗培养研究[J].中国食用菌,1996,15(1):12-14.
    [23]高春义,尹进,徐贝力,等.富锗灵芝抗肿瘤作用与环核苷酸的关系[J].肿瘤,1995,15(5):411412.
    [24]牛建伟,谢平.灵芝多糖锗的抗肿瘤及免疫增强作用研究[J].中国生化药物杂志,2000,21(4):189-191.
    [25]Huang SQ, Ning ZX. Extraction of polysaccharide from Ganoderma lucidum and its immue enhancement activity [J]. International Journal of Biological Macromolecules,2010,47(3):336-341.
    [26]张罗修.灵芝对小鼠自然杀伤细胞活性的影响[A].朱世能.灵芝的研究.上海:上海医科大学出版社,1994:43-43.
    [27]Hsu MJ, Lee SS, Lin WW. Polysaccharide purified from Ganoderma lucidum inhibites spontaneous and Fas-mediated apoptosis in human neutrophilis through activation of the phos2phatidylino sitol 3 kinase/Akt signaling pathway [J]. J Leukocyte Biol,2002,72(1):207-216.
    [28]Chang YH, Yang JS, Yang JL, Wu CL, Chang SJ, Lu KW, Lin JJ, Hsia TC, Lin YT, Ho CC, Wood WG, Chung JG Ganoderma lucidum extracts inhibited leukemia WEHI-3 cells in BALB/c mice and promoted an immune response in vivo [J]. Bioscience Biotechnology and Biochemistry,2009,73(12):2589-2594.
    [29]Zhang JS, Tang QG, Zimmerman-kordmann, et al. Activation of B lymphocytes by GLIS, a bioactive proteoglycan from Ganoderma lucidum [J]. Life Science, 2002,71(6):623-628.
    [30]Jiang JH, Slivova V, Harvey K, et al. Ganoderma lucidum suppress growth of breast cancer cell through the inhibition of Akt/NF-kappa B signaling [J]. Nutr Cancer,2004,49(2):209-216.
    [31]Zhao LY, Dong YH, Chen GT, Hu QH. Extraction, purification, characterization and antitumor activity of polysaccharides from Ganoderma lucidum. Carbohydrate Polymers,2010,80(3):783-789.
    [32]Min BS, Gao JJ, Ahn EM, et al. New triterpene aldehydes, lucialdehydes A-C, from Ganoderma lucidum and their cyto toxicity against murine and human tumor cells [J]. Chem Phar Bull,2002,50(6):837-840.
    [33]Kimura Y, Taniguchi M, Baba K. Antitumor and antimetastatic effects on liver of triterpenoid fractions of Ganoderma lucidum:Mechanism of action and isolation of an active substance [J]. Anticancer Res,2002,22(6A):3309-3318.
    [34]Calivino E, Manjon JL, Sancho P, Tejedor MC, Herraez A, Diez JC. Ganoderma lucidum induced apoptosis in NB4 human leukemia cells:involvement of Akt and Erk [J]. Journal of Ethnopharmacology,2010,128(1):71-78.
    [35]Hu HB, Ahn NS, Yang XL. Ganoderma lucidum extract induces cell cycle arrest and apoptosis in MCF-7 human breast cancer cell [J]. Int J Cancer,2002,102(3): 250-253.
    [36]Mau JL, Lin HC, Chen CC, Antioxidant properties of several medicinal mushroom [J]. J Agric Food Chem,2002,50(21):6072-6077.
    [37]Hikino H, Mizuno T. Hypoglycemic actions of some heteroglycans of Ganoderma lucidum fruit bodies [J]. Planta Medica,1989,55(4):385-385.
    [38]Mohammed A, Adelaiye AB, Abubakar MS, Abdurahman EM. Effects of aqueous extract of Ganoderma lucidum on blood glucose levels of normoglycemic and alloxan-induced diabetic wistar rats [J]. Journal of Medicinal Plants Research,2007,1(2):34-37
    [39]Seto SW, Lam TY, Tam HL, Au ALS, Chan SW, Wu JH, Yu PHF, Leung GPH, Ngai SM, Yeung JHK, Leung PS, Lee SMY, Kwan YW. Novel hypoglycemic effects of Ganoderma lucidum water-extract in obese/diabetic (+db/+db) mice [J]. Phytomedicine,2009,16(5):426-436.
    [40]张慧娜,林志彬.灵芝多糖对大鼠胰岛细胞分泌胰岛素功能的影响[J].中国临床药理学与治疗学,2003,8(3):265-268.
    [41]郭功玲,李启燕,宋小莉.灵芝胶囊对药物性肾病模型大鼠的药效学研究[J].中国药学,2003,12(7):28-29.
    [42]Wachtel-Galor S, Wong WC, Choi SW, Benzie IFF. Antioxidant power and DNA repair effects of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.:Fr.) P. Karst. (Aphyllophoromycetideae), in human acute post-ingestion study [J]. International Journal of Medicinal Mushrooms,2010,12(4):359-366.
    [43]Liu W, Wang HY, Pang XB, Yao WB, Gao XD. Characterization and antioxidant activity of two low-molecular-weight polysaccharides purified from the fruiting bodies of Ganoderma lucidum [J]. International Journal of Biological Macromolecules,2010,46(4):451-457.
    [44]李怀义.灵芝对果蝇性活力和寿命的影响[A].朱世能.灵芝的研究(一)[C].上海上海医科大学出版社,1994:57-57.
    [45]李荣芷,何云庆.灵芝抗衰老机理与活性成分灵芝多糖的化学与构效研究[J].北京医科大学学报,1991,22(6):473-473.
    [46]Eo SK, Kim YS, Lee CK, Han SS. Antiviral activities of various water and methanol soluble substances isolated from Ganoderma lucidum [J]. Journal of Ethnopharmacology,1999,68(1):129-136.
    [47]Kim YS, Eo SK, Oh KW, et al. Antiherpetic activities of acidic protein bound polysaccharide isolated from Ganoderma lucidum alone and in combinations with interferons [J]. J Ethnopharmacol,2000,72(3):451-458.
    [48]吴保杰.中草药药理学[M].北京:人民卫生出版社,1983:1108-1108.
    [49]Zhang GL, Wang YH, Ni W, et al. Hepato protective role of Ganoderma lucidum polysaccharide against BCG-induced immune liver injury in mice [J]. World J Gastroenterol,2002,8(4):728-733.
    [50]林志彬.灵芝,第2版[M].北京:科学出版社,1985:55-55.
    [51]程彰华.灵芝对高血压伴高血脂和脑血栓后遗症患者血液流变学的观察[A].朱世能.灵芝得研究(一)[C].上海:上海医科大学出版社,1994:100-100.
    [52]金春花,姜秀莲,王英军,等.灵芝多糖活血化瘀作用实验研究[J].中草药,1998,29(7):470-472.
    [53]中国医科院药物所药理新药组.赤芝孢子粉和发酵培养的蒲树芝菌丝体的 一些药理作用[J].中华医学杂志,1997,57(10):607-607.
    [54]龚珊,单立冬,蒋星红.灵芝和针刺对小鼠学习记忆的影响[J].苏州大学学报(医学版),2003,23(4):396-398.
    [55]邵邻相,徐丽珊,王丹.灵芝对小鼠学习记忆和单胺类神经递质的影响[J].时珍国医国药,2002,13(2):68-69.
    [56]寿文虹,龚彬荣,方远书.灵芝颗粒剂对小鼠镇静催眠和免疫功能的影响[J].中国药业,2003,12(3):42-43.
    [57]Alonso A, Sasin J, Bottini N, Friedberg L, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T. Protein tyrosine phosphatases in the human genome [J]. Cell,2004,117(6):699-711.
    [58]Tonks NK. Protein tyrosine phosphatases:from genes, to function, to disease [J]. Nature Reviews Molecular Cell Biology,2006,7(11):833-846.
    [59]Anderson JN, Jansen PG, Echwald SM., Mortensen OH., Fukada T, Del-Vecchio R, Tonks NK, M(?)ller NPH. A genomic perspective on protein phosphatases: gene structure, pseudogenes, and genetic disease linkage [J]. FASEB J,2004, 18(1):8-30.
    [60]Alonso A, Rahmouni S, Williams S, Stipdonk MV, Jaroszewski L, Godzik A, Abraham RT, Schoenberger SP, Mustelin T. Tyrosine phosphorylation of VHR phosphatase by ZAP-70 [J]. Nat Immunol,2003,4(1):44-48.
    [61]Barford D, Flint AJ, Tonks NK. Crystal structure of human protein tyrosine phosphatase 1B [J]. Science,1994,263(5152):1397-1404.
    [62]Dadke S, Kusari J, Chernoff J. Down-regulation of insulin signaling by protein-tyrosine phosphatase 1B is mediated by an N-terminal binding region [J]. J Biol Chem,2000,275(31):23642-23647.
    [63]Liu F, Hill DE, Chernoff J. Direct binding of the proline-rich region of protein tyrosine phosphatase 1B to the src homology 3 domain of p130cas [J]. J Biol Chem,1996,271(49):31290-31295.
    [64]Tonks NK. PTP1B:From the sidelines to the front lines [J]! FEBS Letters,2003, 546(1):140-148.
    [65]Combs AP. Recent advances in the discovery of competitive protein tyrosine phosphatase 1B inhibitors for the treatment of diabetes, obesity, and cancer [J]. Journal of Medicinal Chemistry,2010,53(6):2333-2344.
    [66]White MF. Insulin signaling in health and disease [J]. Science,2003,302(5651): 1710-1711.
    [67]Leng Y, Karlsson HK, Zierath JR. Insulin signaling defects in type 2 diabetes [J]. Reviews in Endocrine and Metabolic Disorders,2004,5(2):111-117.
    [68]Saltiel AR. Diverse signaling pathways in the cellular actions of insulin [J]. American Journal of Physiology-Endocrinology and Metabolism,1996,33(3), E375-385.
    [69]White MF, Kahn CR. The insulin signaling system [J]. Journal of Biological Chemistry,1994,269(1):1-4.
    [70]Kahn BB, Flier JS. Obesity and insulin resistance [J]. Journal of Clinical Investigation,2000,106(4):473-481.
    [71]Newsholme EA, Dimitriadis G Integration of biochemical and physiologic effects of insulin on glucose metabolism [J]. Experimental and Clinical Endocrinology and Diabetes,2001,109, S122-134.
    [72]Saltiel AR. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes [J]. Cell,2001,104(4):517-529.
    [73]Sreejayan N, Lin Y, Hassid A. NO attenuate insulin signaling and motility in aortic smooth muscle cells via tyrosine phosphatase 1B-mediated mechanism [J]. Arterioscler Thromb Vasc Biol,2002,22(7):1086-1092.
    [74]Mahadev K, Zilbering A, Zhu L, Goldstein BJ. Insulin-stimulated hydrogen peroxide reversibly inhibits protein tyrosine phosphatase 1B in vivo and enhances the early insulin action cascade [J]. J Biol Chem,2001,276(24): 938-942
    [75]关子安.现代糖尿病学[M].天津:天津科学出版社,2000:41.
    [76]World Health Organization.10 facts about diabetes. Available from: http://www.who.int/features/factfiles/diabetes/10_en.html [Accessed June 15, 2008].
    [77]Elchebly M, Payette P, Michaliszyn E, Cromlish, W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J, Chan CC, Ramachandran C, Gresser MJ, Tremblay ML, Kennedy BP. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene [J]. Sciense, 1999,283(5407):1544-1548.
    [78]Klaman LD, Boss O, Peroni OD, Kim JK, Martino JL, Zabolotny JM, Moghal N, Lubkin M, Kim YB, Sharpe AH, Stricker-Krongrad A, Shulman GI, Neel BQ Kahn BB. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice [J]. Mol Cell Biol,2000,20(15):5479-5489.
    [79]Asano N, Nash RJ, Molyneux RJ, Fleet GWJ. Sugar-mimic glycosidase inhibitors:natural occurrence, biological activity and prospects for therapeutic application [J]. Tetrahedron:Asymmertry,2000,11(8):1645-1680.
    [80]Jenkins DJA, Wolever TMS, Taylor RH, Griffiths C. Kizeminska K, Lawrie JA, Bennett CM, Goff DV, Sarson DL, Bloom SR. Slow release dietary carbohydrate improves second meal tolerance [J]. Am J Clin Nutr,1982,35:1339-1346.
    [81]Bischoff H. The mechanism of a-glucosidase inhibition in the management of diabetes [J]. Clin Invest Med,1995,18(4):303-311.
    [82]颜光美.药理学[M].北京:高等教育出版社,2006:317-320.
    [83]张晓云,杨春清.灵芝的化学成分和药理作用[J].国外医药-植物药分册,2006,21(4):152-155.
    [84]Tokunaka K, Ohno N, Adachi Y, et al. Immunopharmacologicaland immunotoxicological activities of a water-soluble (1-3)-beta-D-glucan, CSBG from Candida spp [J]. Int J Immunopharmacol,2000,22(5):383-394.
    [85]李金峰,郭静文,黄信孚.猪苓多糖、香菇多糖和分枝杆菌多糖对淋巴因子活化杀伤细胞活性增强作用的研究[J].中国中西医结合杂志,1996,16(4):224-226.
    [86]Lin SB, Li CH, Lee SS, Kan LS. Triterpene-enriched extracts from, Ganoderma lucidum inhibit growth of hepatoma cells via suppressing protein kinase C, activating mitogen-activated protein kinases and G2-phase cell cycle arrest [J]. Life Sci,2003,72(21):2381-2390.
    [87]Nishitoba T, Sato H, Sakamura S. New terpenoids from Ganoderma lucidum and their bitterness [J]. Agric Biol Chem,1985,49(5):1547-1549.
    [88]Hung TM, Hoang DM, Kim JC, Jang HS, Ahn JS, Min BS. Protein tyrosine phosphatase 1B inhibitory by dammaranes from Vietnamese Giao-Co-Lam tea [J]. J Ethnopharmacol,2009,124(2):240-245.
    [89]黄勇其,陈龙珠.贵州五种南沙参药材中氨基酸含量的比较[J].中国药业,2002,11(4):62.
    [90]李良铸,李明晔.现代生化药物生产关键技术[M].北京:化学工业出版社,2004:114.
    [91]Andrew P. Recent advances in the discovery of competitive protein tyrosine phosphatase 1B inhibitors for the treatment of diabetes, obesity, and cancer [J]. Journal of Medicinal Chemistry,2010,53(6):2333-2344.
    [92]王镜岩,朱圣庚,徐长法.生物化学[M].北京,高等教育出版社,2007:60-61.
    [93]Yu J, Lai CY, Hung JT, Lin HH, Yu AL, Chen SH, Tsai YC, Shao LE, Yang WB. Immunomodulatory and adjuvant activities of a polysaccharide extract of Ganoderma lucidum in vivo and in vitro [J]. Vaccine,2010,28(31):4945-4954.
    [94]Rubel R, Dalla SHS, Bonatto SJR, Bello S, Fernande LC, Di Bernardi R, Gem J, Santos CAM, Soccol CR. Medicinal mushroom Ganoderma lucidum (Leyss:Fr) Karst. Triggers immunomodulatory effects and reduces nitric oxide synthesis in mice [J]. Journal of Medicinal Food,2010,13(1):142-148.
    [95]Shang DJ, Zhang JN, Wen L, Li Y, Cui Q. Preparation, characterization, and antiproliferative activities of the Se-containing polysaccharide SeGLP-2B-1 from Se-enriched Ganoderma lucidum [J]. Journal of Agricultural and Food Chemistry.2009,57(17):7737-7742.
    [96]Sun PL, He JZ, Shao P, Ni HD, Chai NJ. Study on the structure and constituents of polysaccharide from Ganoderma lucidum [J]. Spectroscopy and Spectral Analysis,2010,30(1):123-127.
    [97]Sun PL, He JL, Shao P, Men XH. Analysis of structural characteristics of polysaccharide from Ganoderma lucidum [J]. Chinese Journal of Analytical Chemistry,2010,38(3):372-376.
    [98]Huang SQ, Li JW, Wang Z, Pan HX, Chen JX, Ning ZX. Optimization of alkaline extraction of polysaccharides from Ganoderma lucidum and their effect on immune-function in mice [J]. Molecules,2010,15(5):3694-3708.
    [99]Zhang JS, Tang QJ, Zhou CY, Jia W, Da-Silva L, Nguyen LD, Reutter W, Fan H. GLIS, a bioavtive proteoglycan fraction from Ganoderma lucidum, display anti-tumor activity by increasing both humoral and cellular immune response [J]. Life Sciences,2010,87(20):628-637.
    [100]Ye LB, Zheng XL, Zhang JS, Yang Y, Meng YC, Li JR, Chen W, Li A, Pan YJ. Composition analysis and immunomodulatory capacity of peptidoglycan from ling zhi or reishi medicinal mushroom, Ganoderma lucidum (W. Curt.:Fr.) P. Karst. Strain 119 (Aphyllophoromycetideae) [J]. Internationa Journal of Medicinal Mushrom,2010,12(2):157-165.
    [101]Chernoff J, Schievella AR, Jost CA, Erikson RL, Neel BG. Cloning of a cDNA for a major human protein-tyrosine-phosphatase [J]. Proc Natl Acad Sci USA., 1990,87(7):2735-2739.
    [102]Hussain M, Ahmed V, Hill B, Ahmed Z, Taylor SD. A re-examination of the difluoromethylenesulfonic acid group as a phosphotyrosine mimic for PTP1B inhibition [J]. Bioorganic and Medicinal Chemistry,2008,16(14):6764-6777.
    [103]Seo C, Sohn JK, Oh H, Kim BY, Ahn JS. Isolation of the protein tyrosine phosphatase 1B inhibitory metabolite from the marine-derived fungus Cosmospora sp. SF-5060 [J]. Bioorganic and Medicinal Chemistry Letters,2009, 19(21):6095-6097.
    [104]Liu G, Xin ZL, Liang H, Abad-Zapatero C, Hajduk PJ, Janowick DA, Szczepankiewicz BG, Pei ZH, Hutchins CW, Ballaron SJ, Stashko MA, Lubben TH, Berg CE, Rondinone CM, Trevillyan JM, Jirousek MR. Selective protein tyrosine phosphatase 1B inhibitors:targeting the second phosphotyrosine bingding site with non-carboxylic acid-containing ligands [J]. J Med Chem,2003, 46(16):3437-3440.
    [105]Klopfenstein SR, Evdokimov AG, Colson AO, Fairweather NT, Neuman JJ, Maier MB, Gray JL, Gerwe GS, Stake GE, Howard BW, Farmer JA, Pokross ME, Downs TR, Kasibhatla B, Peters KG 1,2,3,4-Tetrahydroisoquinolinyl sulfamic acids as phoaphatase PTP1B inhibitors [J]. Bioorganic and Medicinal Chemistry Letters,2006,16(6):1574-1578.
    [106]Yang SH. The rapid calculation method of median lethal dose [J]. Health Res, 1974,36(6):73-78.
    [107]Wu JL, Mo X. New consideration on the relation of insulin resistance and type 2 diabetes [J]. Med Philoso Phy,2004,25:4-5.
    [108]Elsner M, Guldbakke B, Tiedge M, Munday R, Lenzen S. Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin [J]. Diabetologia,2000,43(12):1528-1533.
    [109]Saini KS, Thompson C, Winterford CM, et al. Streptozotocin at low doses induces apoptosis and at high doses causes necrosis in a murine pancreatic beta cell line, INS-1 [J]. Biochem Mol Biol Int,1996,39(6):1229-1236.
    [110]王芳,朱名安,胡清,等.链脲佐菌素对鼠胰腺病理学的影响[J].实用诊断与治疗杂志,2008,22(4):288-289.
    [111]Zhang X, Wang Z, Huang Y, Wang J. Effects of chronic administration of alogliptin on the development of diabetes and P-cell function in high fat diet/streptozotocin diabetic mice [J]. Diabetes Obesity and Metabolism,2011, 13(4):337-347.
    [112]Mahmoudzadeh-Sagheb H, Heidari Z, Bokaeian M, Moudi B. Antidiabetic effects of Eucalyptus globulus on pancreatic islets:a stereological study [J]. Folia Morphologica,2010,69(2):112-118.
    [113]Yeo JY, Kang YJ, Jeon SM, Jung UJ, Lee MK, Song H, Choi MS. Potential hypoglycemic effect of an ethanol extract of Gynostemma pentaphyllum in C57BL/KsJ-db/db Mice [J]. Journal of Medicinal Food,2008,11(4):709-716.
    [114]Shirwaikar A, Rajendran K, Barik R. Effect of aqueous bark extract of Garugapinnata Roxb in streptozotocin-nicotinamide induced type-II diabetes mellitus [J]. Journal of Ethnopharmacology,2006,107(2):285-290.
    [115]Nammi S, Sreemantula S, Roufogalis BD. Protective effects of ethanolic extract of Zingiber officinale Rhizome on the development of metabolic syndrome in high-fat diet-fed rats [J]. Basic and Clinical Pharmacology and Toxicology,2009, 104(5):366-373.
    [116]Tagami S, Sakaue S, Honda T, Yoshimura H, Homma H, Ohno K, Nishimura M, Ide H. Effects of troglitazone on skeletal muscle and liver protein tyrosine phosphatase activity in insulin-resistant Otsuka Long-EvansTokushima fatty rats [J]. Curr Ther Res Clin,2002,63(9):572-586.
    [117]Mcguire MC, Fields RM, Nyomba BL, Raz I, Bogardus C, TonksNK, Sommercorn J. Abnormal regulation of protein tyrosine phosphatase activities in skeletal muscle of insulin-resistant humans [J]. Diabetes,1991,40(7):939-942.
    [118]Ahmad F, Goldstein BJ. Increased abundance of specific skeletal muscle protein-tyrosine phosphatases in a genetic model of insulin-resistant obesity and diabetes mellitus [J]. Metabolism,1995,44(9):1175-1184.
    [119]Wu Y, Ou-Yang JP, Wu K, Wang Y, Zhou YF, Wen CY Hypoglycemic effect of Astragalus polysaccharide and its effect on PTP1B [J]. Acta Pharmacologica Sinica,2005,26(3):345-352.
    [120]Lu YX, Zhang Q, Li J, Sun YX, Wang LY, Cheng WM, Yang HX. Antidiabetic effects of total flavonoids from litsea coreana leve on fat-fed, streptozotocin-induced type 2 diabetic rats. The American Journal of Chinese Medicine,2010,38(4):713-725.
    [121]Wu Y, Ou-Yang JP, Wu K, Wang SS, Wen CY, Xia ZY Rosiglitazone ameliorates abnormal expression and activity of protein tyrosine phosphatase IB in the skeletal muscle of fat-fed, streptozotocin-treated diabetic rats [J]. British Journal of Pharmacology,2005,146(2):234-243.
    [122]Fukuda S, Ohta T, Sakata S, Morinaga H, Ito M, Nakagawa Y, Tanaka M, Matsushita M. Pharmacological profiles of a novel protein tyrosine phosphatase IB inhibitor, JT-551 [J]. Diabetes Obesity and Metabolism,2010,12(4): 299-306.
    [123]Seifarth C, Bergmann J, Hoist JJ. Prolonged and enhanced secretion of glucagon-likepeptide 1 (7-36 amide) after oral sucrose due to alpha-glucosidase inhibition (acarbose) in type 2 diabetic patients [J]. Diabet Med,1998,15(6): 485-491.
    [124]Fu Y, Hu BR, Tang Q, Fu Q, Zhang QY, Xiang JZ. Effect of jatrorrhizine, berberine, huanglian decoction and compound-mimic prescription on blood glucose in mice [J]. Chin Tradit Herb Drugs,2005,36:549-551.
    [125]Laube H. Acarbose-an update of its therapeutic use in diabetes treatment [J]. Clinical Drug Investigation,2002,22(3):141-156.
    [126]Chiasson JL, Josse RQ Leiter LA, Mihic M, Nathan DM, Palmason,Cohen RM, Wolever TMS. The effect of acarbose on insulin sensitivity in subjects with impaired glucose tolerance [J]. Diabetes Care,1996,19(11):1190-1193.
    [127]贾海燕,田浩明.糖苷酶抑制剂治疗糖耐量减低的循证医学研究与评价 [J].中国实用内科杂志,2005,25(4):296-298.
    [128]Kim SD, Mho HJ. Isolation and characterization of alpha-glucosidase inhibitor from the fungus Ganoderma lucidum [J]. Journal of Microbiology,2004,42(3): 223-227.
    [129]Matsuura H, Miyazaki H, Asakawa C, Amano M, Yoshihara T, Mizutani J. Isolation of a-glucosidase from hyssop (Hyssopus officinalis) [J]. Phytochemistry,2004,65(1):91-97.
    [130]郭宝荣,赵全霖,等.桑枝颗粒剂治疗2型糖尿病40例[J].山东中医药大学学报,1999,23(1):46-47.
    [131]Yishikawa M, Shimada H, Norihisa N, Li Y, Toguchida I, Yamahara J, Mastuda H. Antidiabetic principles of nature medicines aldose reductase an a-glucosidase inhibitors from brazilian natural medicine, the leaves of myrcia multiflora DC (myrtaceae) structures of yrciacitris Ⅰ and Ⅱ and myrciaphenones A and B [J]. Chem Pharm Bull Tokyo,1998,59:113-114.
    [132]Picton SF, Flatt PR, Wcclenghan NH. Differential acute and long term actions of succinic acid monomethyl ester exposure on insulin secreting BRAIN-BD 11 cells [J]. Int J Exp Diabetes Res,2001,2:19-27.
    [133]Evans JL, Goldfine ID, Maddux BA, et al. Are oxidative stress-activated signaling pathways mediators of insulim resistance and beta-cell dysfunction [J]. Diabetes,2003,52(1):1-8.
    [134]Bierman EL, Amaral JAP, Belknap BH. Hyperlipidemia and diabetes mellitus. Diabetes,1966,15:675-679.
    [135]Garber AJ. Attenuating CV risk factors in patients with diabetes:clinical evidence to clinical practice. Diabetes Obesity and Metabolism,2002,4(1): S5-S12.
    [136]Saenz A, Fernandez-Esteban I, Mataix A, Ausejo M, Roque M, Moher D. Metformin monotherapy for type 2 diabetes mellitus. Cochrane Database of Systematic Reviews,2005,20:3-3.
    [137]Miyazaki Y, DeFronzo RA. Rosiglitazone and pioglitazone similarly improve insulin sensitivity and secretion, glucose tolerance and adipocytokines in type 2 diabetic patients. Diabetes Obesity and Metabolism,2008,10(12):1204-1211.