用户名: 密码: 验证码:
基于纳米碳材料的新型光催化剂的构筑与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类社会的快速发展所带来的能源环境问题日益严峻,随着人们对半导体材料研究的不断深入,太阳能化学转化与储存研究成为解决当前社会发展面临的环境污染和能源危机问题的根本途径之一。近年来,在光催化降解有机污染物、太阳能燃料电池、光催化分解水制氢、光催化还原二氧化碳等方面得到了较为快速的发展。但是,现有研究结果对太阳光能利用率普遍相对较低,远未达到实际应用的要求。如何提高太阳能的利用率成为目前该领域研究的核心问题。
     针对上述光催化应用热点领域及光催化材料研究中亟待解决的问题,本文将研究目标定位于通过新型光催化剂的构筑,提高光催化还原二氧化碳以及光分解水产氢的催化反应效率研究。研究方法是基于多通道电子转移、多激子生成、载流子空间分离、延长活性中间体寿命等原理,通过选择廉价、易得,且具有良好的吸光性能和电子储存传输性能的纳米碳材料(碳纳米管及石墨烯),作为基本结构单元,与半导体材料组装,构建出能够实现光生电子的定向传输、有效提高其与空穴分离效率的微纳结构催化剂,用于提高光催化还原二氧化碳及光解水制氢的效率,为光催化反应的实际应用研究提供新的途径。本论文具体内容如下:
     第一章,简要介绍碳纳米管和石墨烯的制备、修饰、表征及其光催化应用等方面的研究概况。
     第二章,以碳纳米管(CNT)为电子受体及光催化活性中心,与对可见光响应的FeOOH半导体以及具有染料敏化作用的RuL2Cl22H2O进行共价组装,利用CNT本身的氧化羧基与RuL2Cl22H2O分子中的羧基在合适的环境中可形成氢键作用的性质,通过改变反应体系的溶剂环境,成功构筑了具有三电子转移通道的复合催化剂材料。并选择二氧化碳的光催化羧基化为模型反应对其光催化效果进行了评价,结合理论模拟计算分析,证实了该催化材料在非极性溶剂中三电子转移通道的形成。
     第三章,以氧化石墨烯(GO)为载体和电子传输体,利用其表面丰富的羧基,与经过氨基化修饰的PbS量子点通过酰胺键连接,构建了ZnO@PbS/GO复合材料。在该结构中,ZnO作为PbS量子点的载体及光电子传输桥梁,结合GO良好的电子传输性质,充分利用了PbS量子点的多激子产生(MEG)性质,有效解决了PbS量子点在光解水制氢体系中状态不稳定及电子传输差的问题,首次实现了PbS量子点的MEG性质在悬浮光解水制氢体系中的应用。实验结果表明,MEG效应可有效提高光催化制氢的效率。
     第四章,设计构建了ZnO/MOF/GO复合结构的光催化剂。其中,GO作为载体及电子传输体,将ZnO和MOF两种材料通过分步原位组装的方法共同负载在其表面上。在该结构中,ZnO作为良好的半导体材料提供光电子,光生电子通过石墨烯的电子传递作用顺利的传输到相邻的MOF上,与MOF中的氢离子作用产生氢自由基,进而生成氢气分子。该结构通过将活性位点与催化剂本体材料实现空间分离,避免了生成的氢自由基再次被ZnO中的空穴氧化而发生逆反应,另一方面,MOF对氢自由基的稳定作用也提高了其生成氢分子的几率,从而提高光还原水制氢的效率。
     第五章,分别选取CuCl22H2O、Cu(NO3)22H2O、Cu(OAc)2H2O为原料,利用溶剂热的方法制备了不同的对应产物,对其组成及光催化产氢效果进行了探讨,发现了一种新的配合物光催化产氢材料(Cu-DG)。在此基础上,通过引入GO,构建了(Cu-DG)/GO复合结构光催化剂,有效提高了Cu-DG配合物的光催化产氢效率。
     本文以碳纳米管和石墨烯为基本结构单元,分别针对增加光电子数目、提高电荷的空间分离效率、延长光催化自由基中间体寿命等几个关键问题,构筑了不同结构的新型光催化剂。通过光催化还原二氧化碳及光分解水制氢反应对其光催化效果进行了评价,结果表明,上述问题的解决有助于提高光催化剂的催化效率,本文的研究将在新型光催化剂的设计方面提供很好的借鉴作用。
With the deepening research of semiconductor materials for the serious energy andenvironmental crisis, it has got rapid development on chemical transfer and storage of solarenergy, which is the fundamental way to solve the problem of environmental pollution andenergy crisis in the development of human society. In recent years, the photocatalyticdegradation of organic pollutants, solar fuel cells, photocatalytic splitting of water andphotocatalytic carbon dioxide fixation have been developed rapidly. However, the existingstudies on the utilization of solar energy chemical conversion are very low, far short of therequirements of practical applications. How to improve the utilization of solar energy becomesthe core issue in this research field.
     Based on the popular research fields and problems need to be solved in photocatalyticapplication as mentioned above, the target of this paper focused on the construction of novelphotocatalysts to improve the photocatalytic efficiency of H2generation and CO2reduction.The strategy is to employ the nanocarbon materials as the basic unit and introduce themechanism of multiple electron transfer channels, multiple exciton generation, spatialseparation of carriers, extending the radical life into the construction of photocatalysts. In thenovel photocatalysts, nanocarbon materials serve as the electron acceptor and active sitesprovider as well as the supporting matrix to anchor nanoparticles, which could improve thephotocatalytic efficiency greatly.
     In the first section, the basic structure of the catalyst constructed in this paper, carbonnanotubes and graphene oxide were introduced briefly, including their synthesis,characterization, modification and applications.
     In the second chapter, a dye-sensitized photocatalyst with three electron transitionchannels was constructed, in which FeOOH and photosensitizer RuL2Cl22H2O were employed as the electron donor, carbon nanotubes were served as the electron traps/container. Thecatalytic results for carboxylation reaction of phenol by CO2and TD-DFT calculation resultsindicated the catalyst possessed three electron transition channels assisted by intermolecularhydrogen bonding interaction.
     In the third chapter, a novel ZnO@PbS/GO photocatalyst was constructed based onmultiple exciton generation effect and applied in hydrogen generation. The presence of multipleexciton generation process, which was confirmed by transient absorption spectrum andphotocurrent measurements, remarkably improves the photocatalytic efficiency of hydrogengeneration.
     In the fourth chapter, a ZnO/(Cu-BTC)MOF/GO structure was constructed, which realizedthe spatial separation of photoelectron and hydrogen radical for the introduction of(Cu-BTC)MOF. The spatial separation avoided the oxidation of radical by holes in ZnO andextended its life. On the other hand, the MOF effectively stabilized the hydrogen radical andimproved the chances of its generating hydrogen molecules, so as to improve the efficiency ofphotocatalytic hydrogen production.
     In the last section, the products of different copper salt in diethylene glycol wassynthesized with the existence of GO. And their influence on photocatalytic hydrogengeneration was investigated with the characterization of the products.
     The results reported in this research paper as mentioned above should be much helpful toconstruct a novel photocatalyst with the synergistic effect of photoelectron generation andseparation for the photocatalytic efficiency improvement.
引文
[1]朱成章.中外非化石能源统计分析的启示[J].中外能源,2011,16:34-39.
    [2]丛威,赖晓乐.“十二五”时期加快非化石能源发展的必要性及若干建议[J].华北电力技术,2011,7:35-39.
    [3]潘家华,禹湘.非化石能源发展的几个战略问题[J].开放导报,2011,1:13-19.
    [4] Gabriele Centi, Siglinda Perathoner. The Role of Nanostructure in Improving thePerformance of Electrodes for Energy Storage and Conversion [J]. Eur. J. Inorg. Chem.,2009,26:3851-3878.
    [5] Arunabha Ghosh, Young Hee Lee. Carbon-Based Electrochemical Capacitors [J].ChemSusChem,2012,5:480-499.
    [6] Yongye Liang, Hailiang Wang, Jigang Zhou, Yanguang Li, Jian Wang, Tom Regier, HongjieDai. Covalent Hybrid of Spinel Manganese–Cobalt Oxide and Graphene as Advanced OxygenReduction Electrocatalysts [J]. J. Am. Chem. Soc.,2012,134:3517-3523.
    [7] Saswata Bose, Tapas Kuila, Ananta Kumar Mishra, R. Rajasekar, Nam Hoon Kimc, JoongHee Lee. Carbon-based nanostructured materials and their composites as supercapacitorelectrodes [J]. J. Mater. Chem.,2012,22:767-784.
    [8] Susana Campuzano, Joseph Wang. Nanobioelectroanalysis Based on Carbon/InorganicHybrid Nanoarchitectures [J]. Electroanalysis,2011,23:1289-1300.
    [9] Xiulian Pan, Xinhe Bao. The Effects of Confinement inside Carbon Nanotubes on Catalysis[J]. Acc. Chem. Res.,2011,44:553-562.
    [10] Xiulian Pan, Xinhe Bao. Reactions over catalysts confined in carbon nanotubes [J]. Chem.Commun.,2008,47:6271-6281.
    [11] Fernand D. S. Marquis. Carbon nanotube nanostructured hybrid materials systems forrenewable energy applications [J]. JOM,2011,63:48-53.
    [12] Guerra, J., Herrero, M. A. Hybrid materials based on Pd nanoparticles on carbonnanostructures for environmentally benign C-C coupling chemistry [J]. Nanoscale,2010,2:1390-1400.
    [13] Dominik Eder. Carbon Nanotube-Inorganic Hybrids [J]. Chem. Rev.,2010,110:1348-1385.
    [14] Jun Wang, Werner J Blau. Inorganic and hybrid nanostructures for optical limiting [J]. J.Opt. A: Pure Appl. Opt.,2009,11:024001/1-16.
    [15] Samir Bensaid, Gabriele Centi, Edoardo Garrone, Siglinda Perathoner, Guido Saracco.Towards Artificial Leaves for Solar Hydrogen and Fuels from Carbon Dioxide [J].ChemSusChem,2012,5:500-521.
    [16] Patel, V. Nanowerk Spotlight [M].2013.
    [17]Qiang Zhang, Jia-Qi Huang, Meng-Qiang Zhao, Wei-Zhong Qian, Fei Wei. CarbonNanotube Mass Production: Principles and Processes [J]. ChemSusChem,2011,4:864-869.
    [18] Fei Wei, Qiang Zhang, Wei-Zhong Qian, Hao Yu, Yao Wang, Guo-Hua Luo, Guang-HuiXu, De-Zheng Wang. The mass production of carbon nanotubes using a nano-agglomeratefluidized bed reactor: A multiscale space-time analysis [J]. Powder Technol.,2008,183:10-20.
    [19] Mukul Kumar, Yoshinori Ando. Chemical Vapor Deposition of Carbon Nanotubes: AReview on Growth Mechanism and Mass Production [J]. J. Nanosci. Nanotechnol.,2010,10:3739-3758.
    [20] Harris, J. F. Carbon Nanotube Science [M].2011.
    [21] Jean-Philippe Tessonnier, Michael Becker, Wei Xia, Frank Girgsdies, Raoul Blume, LideYao, Dang Sheng Su, Martin Muhler, Robert Schl gl. Spinel-Type Cobalt–Manganese-BasedMixed Oxide as Sacrificial Catalyst for the High-Yield Production of Homogeneous CarbonNanotubes [J]. ChemCatChem,2010,2:1559-1561.
    [22] Nikolaev, P.; Bronikowski, M. J.; Bradley, R. K.; Rohmund, F.; Colbert, D. T.; Smith, K. A.;Smalley, R. E. Gas-phase catalytic growth of single-walled carbon nanotubes from carbonmonoxide [J]. Chem. Phys. Lett.,1999,313:91-97.
    [23] Jose E Herrera, Leandro Balzano, Armando Borgna, Walter E Alvarez, Daniel E Resasco.Relationship between the Structure/Composition of Co–Mo Catalysts and Their Ability toProduce Single-Walled Carbon Nanotubes by CO Disproportionation [J]. J. Catal.,2001,204:129-145.
    [24] Yong Lei, Kuan-Song Yeong, J. T. L. Thong, Wai-Kin Chim. Large-Scale Ordered CarbonNanotube Arrays Initiated from Highly Ordered Catalyst Arrays on Silicon Substrates [J]. Chem.Mater.,2004,16:2757-2761.
    [25] Shuangyin Wang, Eswaramoorthi Iyyamperuma, Ajit Roy, Yuhua Xue, Dingshan Yu,Liming Dai. Vertically Aligned BCN Nanotubes as Efficient Metal-Free Electrocatalysts for theOxygen Reduction Reaction: A Synergetic Effect by Co-Doping with Boron and Nitrogen [J].Angew. Chem., Int. Ed.,2011,50:11756-11760.
    [26]Naoki Ishigami, Hiroki Ago, Yukihiro Motoyama, Mikihiro Takasaki, Masashi Shinagawa,Kohji Takahashi, Tatsuya Ikuta Masaharu Tsuji. Microreactor utilizing a vertically-alignedcarbon nanotube array grown inside the channels [J]. Chem. Commun.,2007,16:1626-1628.
    [27]Izabela Janowska, Gauthier Winé, Marc-Jacques Ledoux, Cuong Pham-Huu. Structuredsilica reactor with aligned carbon nanotubes as catalyst support for liquid-phase reaction [J]. J.Mol. Catal. A: Chem.,2007,267:92-97.
    [28] P. Ayala, R. Arenal, M. Rümmeli, A. Rubio, T. Pichler. The doping of carbon nanotubeswith nitrogen and their potential applications [J]. Carbon,2010,48:575-586.
    [29] S. C. Lyu, J.H. Hanb, K.W. Shinb, J. H. Soka. Synthesis of boron-doped double-walledcarbon nanotubes by the catalytic decomposition of tetrahydrofuran and triisopropyl borate [J]Carbon,2011,49:1532-1541.
    [30] L. S. Panchakarla, A. Govindaraj, C. N. R. Rao. Nitrogen-and Boron-DopedDouble-Walled Carbon Nanotubes [J]. ACS Nano,2007,1:494-500.
    [31]Ileana Florea, Ovidiu Ersen, Raul Arenal, Dris Ihiawakrim, Cédric Messaoudi, KambizChizari, Izabela Janowska, Cuong Pham-Huu.3D Analysis of the Morphology and SpatialDistribution of Nitrogen in Nitrogen-Doped Carbon Nanotubes by Energy-FilteredTransmission Electron Microscopy Tomography [J]. J. Am. Chem. Soc.,2012,134:9672-9680.
    [32] O.Yu. Podyacheva, Z.R. Ismagilov, A.E. Shalagina, V.A. Ushakov, A.N. Shmakov, S.V.Tsybulya, V.V. Kriventsov, A.V. Ischenko. Structural changes in a nickel–copper catalyst duringgrowth of nitrogen-containing carbon nanofibers by ethylene/ammonia decomposition [J].Carbon,2010,48:2792-2801.
    [33]Anastasia E. Shalagina, Zinfer R. Ismagilov, Olga Yu. Podyacheva, Ren I. Kvon, VladimirA. Ushakov. Synthesis of nitrogen-containing carbon nanofibers by catalytic decomposition ofethylene/ammonia mixture [J]. Carbon.2007,45:1808-1821.
    [34] S. van Dommelea, A. Romero-Izquirdoa, R. Brydsonb, K.P. de Jonga, J.H. Bittera. Tuningnitrogen functionalities in catalytically grown nitrogen-containing carbon nanotubes [J]. Carbon,2008,46:138-148.
    [35]Mauricio Terrones, Philipp Redlich, Nicole Grobert, Susana Trasobares, Wen-Kuang Hsu,Humberto Terrones, Yan-Qiu Zhu, Jonathan P. Hare, Christopher L. Reeves, Anthony K.Cheetham, Manfred Rühle, Harold W. Kroto, David R. M. Walton. Carbon nitridenanocomposites: formation of aligned CxNy nanofibers [J]. Adv. Mater.,1999,11:655-658.
    [36] Terrones, M., Terrones, H., Grobert, N., Hsu, W. K., Zhu, Y. Q., Hare, J. P., Kroto, H. W.,Walton, D. R. M., Kohler-Redlich, P., Ruhle, M., Zhang, J. P., Cheetham, A. K. Efficient routeto large arrays of CNx nanofibers by pyrolysis of ferrocene/melamine mixtures [J]. Appl. Phys.Lett.,1999,75:3932-3934.
    [37] M. Terrones, R. Kamalakaran, T. Seeger, M. Rühle. Novel nanoscale gas containers:encapsulation of N2in CNx nanotubes [J]. Chem. Commun.,2000,1:2335-2336.
    [38] M. Glerup, M. Castignolles, M. Holzinger, G. Hug, A. Loiseau, P. Berniera. Synthesis ofhighly nitrogen-doped multi-walled carbon nanotubes [J]. Chem. Commun.,2003:2542-2543.
    [39] A. G. Kudashov, A. V. Okotrub, L. G. Bulusheva, I. P. Asanov, Yu. V. Shubin, N. F.Yudanov, L. I. Yudanova, V. S. Danilovich, O. G. Abrosimov. Influence of Ni Co CatalystComposition on Nitrogen Content in Carbon Nanotubes [J]. J. Phys. Chem. B,2004,108:9048-9053.
    [40] Rahul Sen, B. C. Satishkumar, A. Govindaraj, K. R. Harikumar, M. K. Renganathan, C. N.R. Rao. Nitrogen-containing carbon nanotubes [J]. J. Mater. Chem.,1997,7:2335-2337.
    [41] Dong Pyo Kim, C. L. Lin, T. Mihalisin, P. Heiney, M. M. Labes. Electronic properties ofnitrogen-doped graphite flakes [J]. Chem. Mater.,1991,3:686-692.
    [42] J. Liu, R. Czerw, D. L. Carroll. Large-scale synthesis of highly aligned nitrogen dopedcarbon nanotubes by injection chemical vapor deposition methods [J]. J. Mater. Res.,2005,20:538-543.
    [43] Jia-Qi Huang, Meng-Qiang Zhao, Qiang Zhang, Jing-Qi Nie, Li-De Yao, Dang Sheng Su,Fei Wei. Efficient synthesis of aligned nitrogen-doped carbon nanotubes in a fluidized-bedreactor [J]. Catal. Today,2012,186:83-92.
    [44] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.Grigorieva, A. A. Firsov. Electric Field Effect in Atomically Thin Carbon Films [J]. Science,2004,306:666-669.
    [45] P. Sutter, Epitaxial graphene: How silicon leaves the scene [J]. Nat. Mater.,2009,8:171-172.
    [46] Qingkai Yu, Jie Lian, Sujitra Siriponglert, Hao Li, Yong P. Chen, Shin-Shem Pei. Graphenesegregated on Ni surfaces and transferred to insulators [J]. Appl. Phys. Lett.,2008,93:113103/1-7.
    [47] Keun Soo Kim, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min Kim, Kwang S. Kim,Jong-Hyun Ahn, Philip Kim, Jae-Young Choi, Byung Hee Hong. Large-scale pattern growth ofgraphene films for stretchable transparent electrodes [J]. Nature,2009,457:706-710.
    [48] Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, RichardPiner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Colombo,Rodney S. Ruoff. Large-Area Synthesis of High-Quality and Uniform Graphene Films onCopper Foils [J]. Science,2009,324:1312-1314.
    [49] Sukang Bae, Hyeongkeun Kim, Youngbin Lee, Xiangfan Xu, Jae-Sung Park, Yi Zheng,Jayakumar Balakrishnan, Tian Lei, Hye Ri Kim, Young Il Song, Young-Jin Kim, Kwang S. Kim,Barbaros zyilmaz, Jong-Hyun Ahn, Byung Hee Hong, Sumio Iijima. Roll-to-roll productionof30-inch graphene films for transparent electrodes [J]. Nat. Nanotechnol.,2010,5:574-578.
    [50] Konstantin V. Emtsev, Aaron Bostwick, Karsten Horn, Johannes Jobst, Gary L. Kellogg,Lothar Ley, Jessica L. McChesney, Taisuke Ohta, Sergey A. Reshanov, Jonas R hrl, EliRotenberg, Andreas K. Schmid, Daniel Waldmann, Heiko B. Weber, Thomas Seyller. Towardswafer-size graphene layers by atmospheric pressure graphitization of silicon carbide [J]. Nat.Mater.,2009,8:203-207.
    [51] J. N. Coleman. Liquid-Phase Exfoliation of Nanotubes and Graphene [J]. Adv. Funct.Mater.,2009,19:3680-3695.
    [52] Sajini Vadukumpully, Jinu Paul, Suresh Valiyaveettil. Cationic surfactant mediatedexfoliation of graphite into graphene flakes [J]. Carbon,2009,47:3288-3294.
    [53] Umar Khan, Arlene O'Neill, Mustafa Lotya, Sukanta De, Jonathan N. Coleman.High-Concentration Solvent Exfoliation of Graphene [J]. Small,2010,6:864-871.
    [53] Zongping Chen, Wencai Ren, Libo Gao, Bilu Liu, Songfeng Pei, Hui-Ming Cheng.Three-dimensional flexible and conductive interconnected graphene networks grown bychemical vapour deposition [J]. Nat. Mater.,2011,10:424-428.
    [55] Sungjin Park, Rodney S. Ruoff. Chemical methods for the production of graphenes [J].Nature Nanotechnol.,2009,4:217-224.
    [56] William S. Hummers Jr., Richard E. Offeman. Preparation of Graphitic Oxide [J]. J. Am.Chem. Soc.,1958,80:1339-1339.
    [57] H. P. Boehm, A. Clauss, G. O. Fischer, U. Hofmann. Das Adsorptionsverhalten sehr dünnerKohlenstoff-Folien [J]. Z. Anorg. Allg. Chem.,1962,316:119-127.
    [58] Shaojun Guoab, Shaojun Dong. Graphene nanosheet: synthesis, molecular engineering,thin film, hybrids, and energy and analytical applications [J]. Chem. Soc. Rev.,2011,40:2644-2672.
    [59] Yongchao Si, Edward T. Samulski. Synthesis of Water Soluble Graphene [J]. Nano Lett.,2008,8:1679-1682.
    [60] Marjolein L. Toebes, Martijn K. van der Lee, Lai Mei Tang, Marije H. Huis in ‘t Veld,Johannes H. Bitter, A. Jos van Dillen, Krijn P. de Jong. Preparation of Carbon NanofiberSupported Platinum and Ruthenium Catalysts: Comparison of Ion Adsorption andHomogeneous Deposition Precipitation [J]. J. Phys. Chem. B,2004,108:11611-11619.
    [61] A. J. Plomp, D. S. Su, K. P. de Jong, J. H. Bitter. On the Nature of Oxygen-ContainingSurface Groups on Carbon Nanofibers and Their Role for Platinum Deposition—An XPS andTitration Study [J]. J. Phys. Chem. C,2009,113:9865-9869.
    [62] Stefan van Dommele, Krijn P. de Jonga, Johannes H. Bitter, Nitrogen-containing carbonnanotubes as solid base catalysts [J]. Chem. Commun.,2006:4859-4861.
    [63] Yangchuan Xing, Liang Li, Charles C. Chusuei, Robert V. Hull. Sonochemical Oxidationof Multiwalled Carbon Nanotubes [J]. Langmuir,2005,21:4185-4190.
    [64] F. Avilés, J. V. Cauich-Rodríguez, L. Moo-Tah, A. May-Pat, R. Vargas-Coronado.Evaluation of mild acid oxidation treatments for MWCNT functionalization [J]. Carbon,2009,47:2970-2975.
    [65] Yubing Wang, Zafar Iqbal, Somenath Mitra. Rapidly Functionalized, Water-DispersedCarbon Nanotubes at High Concentration [J]. Journal of the American Chemical Society,2005,128:95-99.
    [66] Céline Bergeret, Jack Cousseau, Vincent Fernandez, Jean-Yves Mevellec, Serge Lefrant.Spectroscopic Evidence of Carbon Nanotubes’ Metallic Character Loss Induced by CovalentFunctionalization via Nitric Acid Purification [J]. J. Phys. Chem. C,2008,112:16411-16416.
    [67] Pumera, Martin, míd, B etislav, Veltruská, Kate ina. Influence of Nitric Acid Treatmentof Carbon Nanotubes on Their Physico-Chemical Properties [J]. J. Nanosci. Nanotechnol.,2009,9:2671-2676.
    [68] Oleg Byl, Jie Liu, John T. Yates, Jr. Etching of Carbon Nanotubes by OzoneA Surface AreaStudy [J]. Langmuir,2005,21:4200-4204.
    [69] TSANG S. C., HARRIS P. J. F., GREEN M. L. H. Thinning and opening of carbonnanotubes by oxidation using carbon dioxide [J]. Nature,1993,362:520-522.
    [70] C. Xu, J. Chen, Y. Cui, Q. Han, H. Choo, P. K. Liaw, D. Wu. Influence of the SurfaceTreatment on the Deposition of Platinum Nanoparticles on the Carbon Nanotubes [J]. Adv. Eng.Mater.,2006,8:73-77.
    [71] Bubert, H., Brandl, W., Kittel, S., Marginean, G., Toma, D. Analytical investigation ofplasma-treated carbon fibres [J]. Anal. Bioanal. Chem.,2002,374:1237-1241.
    [72] Wei Xia, Chen Jin, Shankhamala Kundu, Martin Muhler, A highly efficient gas-phase routefor the oxygen functionalization of carbon nanotubes based on nitric acid vapor [J]. Carbon,2009,47:919-922.
    [73] Erik B. Malarkey, Reno C. Reyes, Bin Zhao, Robert C. Haddon, Vladimir Parpura. WaterSoluble Single-Walled Carbon Nanotubes Inhibit Stimulated Endocytosis in Neurons [J]. NanoLett.,2008,8:3538-3542.
    [74] Maurizio Fagnoni, Antonella Profumo, Daniele Merli, Daniele Dondi, Piercarlo Mustarelli,Eliana Quartarone. Water-Miscible Liquid Multiwalled Carbon Nanotubes [J]. Adv. Mater.,2009,21:1761-1765.
    [75] Bo Yu, Feng Zhou, Gang Liu, Yongmin Liang, Wilhelm T. S. Huck Weimin Liu. Theelectrolyte switchable solubility of multi-walled carbon nanotube/ionic liquid (MWCNT/IL)hybrids [J]. Chem. Commun.,2006:2356-2358.
    [76] A. S. Lobach, R. G. Gasanov, E. D. Obraztsova, A. N. Shchegolikhin, V. I. Sokolov.Sidewall Functionalization of Single-Walled Carbon Nanotubes by OrganometallicChromium-Centered Free Radicals [J]. Full., Nanotube. Carbon Nanostruct.,2005,13:287-297.
    [77] Manhong Liu, Yanlian Yang, Tao Zhu, Zhongfan Liu. Chemical modification ofsingle-walled carbon nanotubes with peroxytrifluoroacetic acid [J]. Carbon,2005,43:1470-1478.
    [78] Zhu Yinghuai, Ang Thiam Peng, Keith Carpenter, John A. Maguire, Narayan S. Hosmane,Masao Takagaki. Substituted Carborane-Appended Water-Soluble Single-Wall CarbonNanotubes: New Approach to Boron Neutron Capture Therapy Drug Delivery [J]. J. Am.Chem. Soc.,2005,127:9875-9880.
    [79] Monica L. Usrey, Ethan S. Lippmann, Michael S. Strano. Evidence for a Two-StepMechanism in Electronically Selective Single-Walled Carbon Nanotube Reactions [J]. J. Am.Chem. Soc.,2005,127:16129-16135.
    [80] K. Sadowska, K.P. Roberts, R. Wiser, J.F. Biernat, E. Jab onowsk, R. Bilewicz. Synthesis,characterization, and electrochemical testing of carbon nanotubes derivatized with azobenzeneand anthraquinone [J].Carbon,2009,47:1501-1510.
    [81] Ralf Graupner, Jürgen Abraham, David Wunderlich, Andrea Vencelová, Peter Lauffer,Jonas R hrl, Martin Hundhausen, Lothar Ley, Andreas Hirsch.Nucleophilic Alkylation Reoxidation: A Functionalization Sequence for Single-Wall CarbonNanotubes [J]. J. Am. Chem. Soc.,2006,128:6683-6689.
    [82] Yang Xu, Xianbao Wang, Rong Tian, Shaoqing Li, Li Wan, Mingjian Li, Haijun You, QinLi, Shimin Wang. Microwave-induced electrophilic addition of single-walled carbon nanotubeswith alkylhalides [J]. Appl. Surf. Sci.,2008,254:2431-2435.
    [83] Yubing Wang, Sanjay V. Malhotra, Frank J. Owensb, Zafar Iqbal. Electrochemical nitrationof single-wall carbon nanotubes [J]. Chem. Phys. Lett.,2005,407:68-72.
    [84] A. Felten, C. Bittencourt, J. J. Pireaux, G. Van Lier, J. C. Charlier. Radio-frequency plasmafunctionalization of carbon nanotubes surface O2, NH3, and CF4treatments [J]. J. Appl. Phys.2005,98:074308/1-9.
    [85] Changlun Chen, Bo Liang, Akihisa Ogino, Xiangke Wang, Masaaki Nagatsu. OxygenFunctionalization of Multiwall Carbon Nanotubes by Microwave-Excited Surface-Wave PlasmaTreatment [J]. J. Phys. Chem. C,2009,113:7659-7665.
    [86] Tomonari, Y., Murakami, H., Nakashima, N. Solubilization of Single-Walled CarbonNanotubes by using Polycyclic Aromatic Ammonium Amphiphiles in Water—Strategy for theDesign of High-Performance Solubilizers [J]. Chem.-Eur. J.,2006,12:4027-4034.
    [87] Linda Vaisman, H. Daniel Wagner, Gad Marom. The role of surfactants in dispersion ofcarbon nanotubes [J]. Adv. Colloid Interface Sci.,2006,128-130:37-46.
    [88] Kunlun Ding, Baoji Hu, Yun Xie, Guimin An, Ranting Tao, Hongye Zhang, Zhimin Liu. Asimple route to coat mesoporous SiO2layer on carbon nanotubes [J]. J. Mater. Chem.,2009,19:3725-3731.
    [89] Kocharova N., Leiro J., Lukkari J., Heinonen M., Skala T., Sutara F., Skoda M., VondracekM. Self-Assembled Carbon Nanotubes on Gold: Polarization-Modulated InfraredReflection-Absorption Spectroscopy, High-Resolution X-ray Photoemission Spectroscopy, andNear-Edge X-ray Absorption Fine Structure Spectroscopy Study, Langmuir,2008,24:3235-3243.
    [90] Klumpp, C., Kostarelos, K., Prato, M., Bianco, M. Functionalized carbon nanotubes asemerging nanovectors for the delivery of therapeutics [J]. Biochim. Biophys. Acta,2006,1758:404-412.
    [91] S. Kawasaki, T. Hara, T. Yokomae, F. Okino, H. Touhara, H. Kataura, T. Watanuki, Y.Ohishi. Pressure-polymerization of C60molecules in a carbon nanotube [J]. Chem. Phys. Lett.,2006,418:260-263.
    [92] Andrei N. Khlobystov, David A. Britz, Arzhang Ardavan, G. Andrew D. Briggs.Observation of ordered phases of fullerene in carbon nanotubes [J]. Phys. Rev. Lett.,2004,92:245507/1-3.
    [93] T. Nakamura, T. Ohana, M. Ishihara, M. Hasegawa, Y. Koga. Chemical modification ofsingle-walled carbon nanotubes with sulfur-containing functionalities [J]. Diamond Relat.Mater.,2007,16:1091-1094.
    [94] C.S. Chen, X.H. Chen, B. Yi, T.G. Liu, W.H. Li, L.S. Xu, Z. Yang, H. Zhang, Y.G. Wang.Zinc oxide nanoparticle decorated multi-walled carbon nanotubes and their optical properties[J]. Acta Mater.,2006,54:5401-5407.
    [95] Kanchan M. Samant, Vijay R. Chaudhari, Sudhir Kapoor, Santosh K. Haram. Filling andcoating of multiwalled carbon nanotubes with silver by DC electrophoresis [J]. Carbon,2007,45:2126-2129.
    [96] Yenny Hernandez, Valeria Nicolosi, Mustafa Lotya, Fiona M. Blighe, Zhenyu Sun,Sukanta De, I. T. McGovern, Brendan Holland, Michele Byrne, Yurii K. Gun'Ko, John J.Boland, Peter Niraj, Georg Duesberg, Satheesh Krishnamurthy, Robbie Goodhue, JohnHutchison, Vittorio Scardaci, Andrea C. Ferrari, Jonathan N. Coleman. High-yield productionof graphene by liquid-phase exfoliation of graphite [J]. Nat. Nanotechnol.,2008,3:563-568.
    [97] Dmitry V. Kosynkin, Amanda L. Higginbotham, Alexander Sinitskii, Jay R. Lomeda, AyratDimiev, B. Katherine Price, James M. Tour. Longitudinal unzipping of carbon nanotubes toform graphene nanoribbons [J]. Nature,2009,458:872-876.
    [98] Alexander Sinitskii, Ayrat Dimiev, David A. Corley, Alexandra A. Fursina, Dmitry V.Kosynkin, James M. Tour. Kinetics of Diazonium Functionalization of Chemically ConvertedGraphene Nanoribbons [J]. ACS Nano,2010,4:1949-1954.
    [99] Sandip Niyogi, Elena Bekyarova, Mikhail E. Itkis, Hang Zhang, Kristin Shepperd, JeremyHicks, Michael Sprinkle, Claire Berger, Chun Ning Lau, Walt A. deHeer, Edward H. Conrad,Robert C. Haddon. Spectroscopy of Covalently Functionalized Graphene [J]. Nano Lett.,2010,10:4061-4066.
    [100] Haitao Liu, Sunmin Ryu, Zheyuan Chen, Michael L. Steigerwald, Colin Nuckolls, LouisE. Brus. Photochemical Reactivity of Graphene [J]. J. Am. Chem. Soc.,2009,131:17099-17101.
    [101] Mildred Quintana, Ester Vazquez, Maurizio Prato. Organic functionalisation of graphenes,Chem. Commun.,2010,46:1766-1768.
    [102] Xiaoyan Zhang, Lili Hou, Arjen Cnossen, Anthony C Coleman, Oleksii Ivashenko, PetraRudolf, Bart J van Wees, Wesley R Browne, Ben L Feringa. One-Pot Functionalization ofGraphene with Porphyrin through Cycloaddition Reactions [J]. Chem.-Eur. J.,2011,17:8957-8964.
    [103] Mildred Quintana, Konstantinos Spyrou, Marek Grzelczak, Wesley R. Browne, PetraRudolf, Maurizio Prato. Functionalization of Graphene via1,3-Dipolar Cycloaddition, ACSNano,2010,4:3527-3533.
    [104] Hongkun He, Chao Gao. General Approach to Individually Dispersed, Highly Soluble,and Conductive Graphene Nanosheets Functionalized by Nitrene Chemistry [J]. Chem. Mater.,2010,22:5054-5064.
    [105] Sandip Niyogi, Elena Bekyarova, Mikhail E. Itkis, Jared L. McWilliams, Mark A. Hamon,Robert C. Haddon. Solution Properties of Graphite and Graphene [J]. J. Am. Chem. Soc.,2006,128:7720-7721.
    [106] Yanyu Liang, Dongqing Wu, Xinliang Feng, Klaus Müllen. Dispersion of GrapheneSheets in Organic Solvent Supported by Ionic Interactions [J]. Adv. Mater.,2009,21:1679-1683.
    [107] Supinda Watcharotone, Dmitriy A. Dikin, Sasha Stankovich, Richard Piner, Inhwa Jung,Geoffrey H. B. Dommett, Guennadi Evmenenko, Shang-En Wu, Shu-Fang Chen, Chuan-Pu Liu,SonBinh T. Nguyen, Rodney S. Ruoff. Graphene Silica Composite Thin Films as TransparentConductors [J]. Nano Lett.,2007,7:1888-1892.
    [108] Yongsheng Liu, Jiaoyan Zhou, Xiaoliang Zhang, Zhibo Liu, Xiangjian Wan, Jianguo Tian,Tuo Wang, Yongsheng Chen. One-Step Ionic-Liquid-Assisted Electrochemical Synthesis ofIonic-Liquid-Functionalized Graphene Sheets Directly from Graphite [J]. Adv. Funct. Mater.,2008,18:1518-1525.
    [109] Yongsheng Liu, Jiaoyan Zhou, Xiaoliang Zhang, Zhibo Liu, Xiangjian Wan, Jianguo Tian,Tuo Wang, Yongsheng Chen. Synthesis, characterization and optical limiting property ofcovalently oligothiophene-functionalized graphene material [J]. Carbon,2009,47:3113-3121.
    [110] Dingshan Yu, Yan Yang, Michael Durstock, Jong-Beom Baek, Liming Dai. SolubleP3HT-Grafted Graphene for Efficient Bilayer Heterojunction Photovoltaic Devices [J]. ACSNano,2010,4:5633-5640.
    [111] Zhuang Liu, Joshua T. Robinson, Xiaoming Sun, Hongjie Dai. PEGylated NanographeneOxide for Delivery of Water-Insoluble Cancer Drugs [J]. J. Am. Chem. Soc.,2008,130:10876-10877.
    [112] Kai Yang, Shuai Zhang, Guoxin Zhang, Xiaoming Sun, Shuit-Tong Lee, Zhuang Liu.Graphene in Mice: Ultrahigh In Vivo Tumor Uptake and Efficient Photothermal Therapy [J].Nano Lett.,2010,10:3318-3323.
    [113] Yuxi Xu, Hua Bai, Gewu Lu, Chun Li, Gaoquan Shi. Flexible Graphene Films via theFiltration of Water-Soluble Noncovalent Functionalized Graphene Sheets [J]. J. Am. Chem.Soc.,2008,130:5856-5857.
    [114] QingHua Wang, Mark C. Hersam. Room-temperature molecular-resolutioncharacterization of self-assembled organic monolayers on epitaxial graphene [J]. Nat. Chem.,2009,1:206-211.
    [115] Yuxi Xu, Qiong Wu, Yiqing Sun, Hua Bai, Gaoquan Shi. Three-DimensionalSelf-Assembly of Graphene Oxide and DNA into Multifunctional Hydrogels [J]. ACS Nano,2010,4:7358-7362.
    [116] Wenwen Tu, Jianping Lei, Siyuan Zhang, Huangxian Ju. Characterization, DirectElectrochemistry, and Amperometric Biosensing of Graphene by NoncovalentFunctionalization with Picket-Fence Porphyrin [J]. Chem.-Eur. J.2010,16:10771-10777.
    [117] Hua Bai, Yuxi Xu, Lu Zhao, Chun Lia, Gaoquan Shi. Non-covalent functionalization ofgraphene sheets by sulfonated polyaniline [J]. Chem. Commun.,2009:1667-1669.
    [118] Ryan Muszynski, Brian Seger, Prashant V. Kamat. Decorating Graphene Sheets with GoldNanoparticles [J]. J. Phys. Chem. C,2008,112:5263-5266.
    [119] K. Vinodgopal, B. Neppolian, Ian V. Lightcap, Franz Grieser, Muthupandian Ashokkumar,Prashant V. Kamat. Sonolytic Design of Graphene Au Nanocomposites. Simultaneous andSequential Reduction of Graphene Oxide and Au(III)[J]. J. Phys. Chem. Lett.,2010,1:1987-1993.
    [120] G. Williams, B. Seger, P. V. Kamat. TiO2-Graphene Nanocomposites. UV-AssistedPhotocatalytic Reduction of Graphene Oxide [J]. ACS Nano,2008,2:1487-1491.
    [121] G. Postole, A. Auroux, M. L.Occelli. Advances in Fluid Catalytic Cracking [M].2010.
    [122] E. Castillejos, B. Bachiller-Baeza, I. Rodríguez-Ramos, A. Guerrero-Ruiz. An immersioncalorimetry study of the interaction of organic compounds with carbon nanotube surfaces [J].Carbon,2012,50:2731-2740.
    [123] Benjamin Frank, Sabine Wrabetz, Oleksiy V. Khavryuchenko, Raoul Blume, AnnetteTrunschke1, Robert Schl g. Calorimetric Study of Propane and Propylene Adsorption on theActive Surface of Multiwalled Carbon Nanotube Catalysts [J]. Chemphyschem: a Europeanjournal of chemical physics and physical chemistry,2011,12:2709-2713.
    [124] Rosa Arrigo, Michael H vecker, Robert Schl gla, Dang Sheng Su. Dynamic surfacerearrangement and thermal stability of nitrogen functional groups on carbon nanotubes [J].Chem. Commun.,2008:4891-4893.
    [125] Rosa Arrigo, Michael H vecker, Sabine Wrabetz, Raoul Blume, Martin Lerch, JamesMcGregor, Edward P. J. Parrott, J. Axel Zeitler, Lynn F. Gladden, Axel Knop-Gericke, RobertSchl gl, Dang Sheng Su. Tuning the Acid/Base Properties of Nanocarbons by Functionalizationvia Amination [J]. J. Am. Chem. Soc.,2010,132:9616-9630.
    [126] Heiner Friedrich, Petra E de Jongh, Arie J Verkleij, Krijn P de Jong. Electron Tomographyfor Heterogeneous Catalysts and Related Nanostructured Materials [J]. Chem. Rev.,2009,109:1613-1629.
    [127] J. M. Thomas, P. A. Midgley. The Merits of Static and Dynamic High-ResolutionElectron Microscopy (HREM) for the Study of Solid Catalysts [J]. ChemCatChem,2010,2:783-798.
    [128] Paul A. Midgley, Edmund P. W. Ward, Ana B. Hungría, John Meurig Thomas.Nanotomography in the chemical, biological and materials sciences [J]. Chem. Soc. Rev.,2007,36:1477-1494.
    [129] Lionel Cervera Gontard, Lan-Yun Chang, Crispin J. D. Hetherington, Angus I.Kirkland, Dogan Ozkaya, Rafal E. Dunin-Borkowski. Aberration-Corrected Imaging of ActiveSites on Industrial Catalyst Nanoparticles [J]. Angew. Chem. Int. Ed.,2007,46:3683-3685.
    [130] Su, D. S., Jacob, T., Hansen, T. W., Wang, D., Schl gl, R., Freitag, B., Kujawa, S. SurfaceChemistry of Ag Particles: Identification of Oxide Species by Aberration-Corrected TEM andby DFT Calculations [J]. Angew. Chem., Int. Ed.,2008,47:5005-5008.
    [131] K. Suenaga, M. Koshino. Atom-by-atom spectroscopy at graphene edge [J].Nature,2010,468:1088-1090.
    [132] Ying Yu, Jimmy C. Yub, Cho-Yin Chan, Yan-Ke Che, Jin-Cai Zhao, Lu Ding, Wei-KunGe, Po-Keung Wong. Enhancement of adsorption and photocatalytic activity of TiO2by usingcarbon nanotubes for the treatment of azo dye [J]. Applied Catalysis B: Environmental,2005,61:1-11.
    [133] Youji Li, Leiyong Li, Chenwan Li, Wei Chen, Mengxiong Zeng. Carbon nanotube/titaniacomposites prepared by a micro-emulsion method exhibiting improved photocatalytic activity[J]. Applied Catalysis A: General,2012,427-428:1-7.
    [134] Zhongbiao Wu, Fan Dong, Weirong Zhao, Haiqiang Wang, Yue Liu, Baohong Guan. Thefabrication and characterization of novel carbon doped TiO2nanotubes, nanowires andnanorods with high visible light photocatalytic activity [J]. Nanotechnology,2009,20:235701/1-9.
    [135] Wei Xia, Yuemin Wang, Ralf Bergstr er, Shankhamala Kundu, Martin Muhler. Surfacecharacterization of oxygen-functionalized multi-walled carbon nanotubes by high-resolutionX-ray photoelectron spectroscopy and temperature-programmed desorption [J]. Applied SurfaceScience,2007,254:247-250.
    [136] Ke Dai, Tianyou Peng, Dingning Ke, Bingqing Wei. Photocatalytic hydrogen generationusing a nanocomposite of multi-walled carbon nanotubes and TiO2nanoparticles under visiblelight irradiation [J]. Nanotechnology,2009,20:125603/1-6.
    [137] T. A. Saleh, V. K. Gupta. Functionalization of tungsten oxide into MWCNT and itsapplication for sunlight-induced degradation of rhodamine B [J]. Journal of colloid andinterface science,2011,362:337-344.
    [138] Qijin Geng, Q. G., Changqiang Cao, Lintong Wang. Investigation intoNanoTiO2/ACSPCR for Decomposition of Aqueous Hydroquinone [J]. Ind. Eng. Chem. Res.,2008,47:2561-2568.
    [139] Ye Cong, Xuanke Li, Yun Qin, Zhijun Dong, Guanming Yuan, Zhengwei Cui, XiaojunLai. Carbon-doped TiO2coating on multiwalled carbon nanotubes with higher visible lightphotocatalytic activity [J]. Applied Catalysis B: Environmental,2011,107:128-134.
    [140] Y. Chen, J. C. C., Stephen Hackney, Larry Sutter, David W. Hand. Preparation of a NovelTiO2-Based p-n Junction Nanotube Photocatalyst, Environ. Sci. Technol.,2005,39:1201-1208.
    [141] K. Woan, G. Pyrgiotakis, W. Sigmund. Photocatalytic Carbon-Nanotube–TiO2Composites [J]. Advanced materials,2009,21:2233-2239.
    [142] A. K. Geim. Graphene: Status and Prospects [J]. Science,2009,324:1530-1534.
    [143] Chao Chen, W. C., Mingce Long, Baoxue Zhou, Yahui Wu, Deyong Wu, Yujie Feng.Synthesis of Visible-Light Responsive Graphene Oxide/TiO2Composites with p/nHeterojunction [J]. ACS Nano,2010,4:6425-6432.
    [144] Jintao Zhang, Zhigang Xiong, X. S. Zhao. Graphene–metal–oxide composites for thedegradation of dyes under visible light irradiation [J]. Journal of Materials Chemistry,2011,21:3634-3640.
    [145] Baojun Lia, Huaqiang Cao. ZnO@graphene composite with enhanced performance forthe removal of dye from water [J]. Journal of Materials Chemistry,2011,21:3346-3349.
    [146] Xiao-Yan Zhang, Hao-Peng Li, Xiao-Li Cui, Yuehe Lin. Graphene/TiO2nanocomposites:synthesis, characterization and application in hydrogen evolution from water photocatalyticsplitting [J]. Journal of Materials Chemistry,2010,20:2801-2806.
    [147] Guancai Xie, Kai Zhang, Beidou Guo, Qian Liu, Liang Fang, Jian Ru Gong.Graphene-Based Materials for Hydrogen Generation from Light-Driven Water Splitting [J]. Adv.Mater.2013,25:3820–3839.
    [148] Qin Li, Beidou Guo, Jiaguo Yu, Jingrun Ran, Baohong Zhang, Huijuan Yan, Jian RuGong. Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production ofCdS-Cluster-Decorated Graphene Nanosheets [J]. J. Am. Chem. Soc.,2011,133:10878–10884.
    [149] Akihide Iwase, Yun Hau Ng, Yoshimi Ishiguro, Akihiko Kudo, Rose Amal. ReducedGraphene Oxide as a Solid-State Electron Mediator in Z-Scheme Photocatalytic Water Splittingunder Visible Light [J]. J. Am. Chem. Soc.,2011,133:11054–11057.
    [150] Jun Zhang, Jiaguo Yu, Mietek Jaroniec, Jian Ru Gong. Noble Metal-Free ReducedGraphene Oxide-ZnxCd1–xS Nanocomposite with Enhanced Solar Photocatalytic H2-ProductionPerformance [J]. Nano Lett.,2012,12:4584–4589.
    [151] Quanjun Xiang, Jiaguo Yu, Mietek Jaroniec. Synergetic Effect of MoS2and Graphene asCocatalysts for Enhanced Photocatalytic H2Production Activity of TiO2Nanoparticles [J]. J.Am. Chem. Soc.,2012,134:6575–6578.
    [1] A.H. Fujishima, Electrochemical photolysis of water at a semiconductor electrode [J].Nature,1972,238:37-38.
    [2] M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy. A review and recent developments inphotocatalytic water-splitting using TiO2for hydrogen production [J]. Renewable andSustainable Energy Reviews,2007,11:401-425.
    [3] G.J. Meyer. Molecular Approaches to Solar Energy Conversion with CoordinationCompounds Anchored to Semiconductor Surfaces [J]. Inorganic Chemistry,2005,44:6852-6864.
    [4]潘凯.染料敏化TiO2纳米晶多孔膜光电化学池的性质研究[J].吉林大学博士学位论文,2006.
    [5] J. Liu, H. Bai, Y. Wang, Z. Liu, X. Zhang, D.D. Sun. Self-Assembling TiO2Nanorods onLarge Graphene Oxide Sheets at a Two-Phase Interface and Their Anti-Recombination inPhotocatalytic Applications [J]. Advanced Functional Materials,2010,20:4175-4181.
    [6] H. Yu, X. Quan, S. Chen, H. Zhao, Y. Zhang. TiO2–carbon nanotube heterojunction arrayswith a controllable thickness of TiO2layer and their first application in photocatalysis [J].Journal of Photochemistry and Photobiology A: Chemistry,2008,200:301-306.
    [7] B. Gao, G.Z. Chen, G. Li Puma, Carbon nanotubes/titanium dioxide (CNTs/TiO2)nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methodsexhibiting enhanced photocatalytic activity [J]. Applied Catalysis B: Environmental,2009,89:503-509.
    [8] M. Zhang, C. Chen, W. Ma, J. Zhao. Visible-light-induced aerobic oxidation of alcohols in acoupled photocatalytic system of dye-sensitized TiO2and TEMPO, Angewandte Chemie,2008,47:9730-9733.
    [9] H. Tada, Q. Jin, H. Nishijima, H. Yamamoto, M. Fujishima, S. Okuoka, T. Hattori, Y.Sumida, H. Kobayashi. Titanium(IV) dioxide surface-modified with iron oxide as a visible lightphotocatalyst [J]. Angewandte Chemie,2011,50:3501-3505.
    [10] G. Xi, S. Ouyang, J. Ye. General Synthesis of Hybrid TiO2Mesoporous "french fries"Toward Improved Photocatalytic Conversion of CO2into Hydrocarbon Fuel: A Case ofTiO2/ZnO [J]. Chemistry,2011,17:9057-9061.
    [11] Q. Jin, M. Fujishima, H. Tada. Visible-Light-Active Iron Oxide-Modified AnataseTitanium(IV) Dioxide [J]. The Journal of Physical Chemistry C,2011,115:6478-6483.
    [12] S. S. Thomas W. Woolerton, Erwin Reisner, Elizabeth Pierce, Stephen W. Ragsdale, FraserA. Armstrong. Efficient and Clean Photoreduction of CO2to CO by Enzyme-Modified TiO2Nanoparticles Using Visible Light [J]. Journal of the American Chemical Society,2010,132:2132-2133.
    [13] T.M. Shunsuke Sato, Shu Saeke, Tsutomu Kajino, Tomoyoshi Motohiro.Visible-Light-Induced Selective CO2Reduction Utilizing a Ruthenium Complex ElectrocatalystLinked to a p-Type Nitrogen-Doped Ta2O5Semiconductor [J]. Angewandte Chemie,2010,49:5101-5105.
    [14] S.-H.A.L. W. Justin Youngblood, Kazuhiko Maeda, Thomas E. Mallouk. Visible LightWater Splitting Using Dye-Sensitized Oxide Semiconductors [J]. Acc. Chem. Res.,2009,42:1966-1973.
    [15] U.P. Apfel, W. Weigand. Efficient Activation of The Greenhouse Gas CO2[J]. AngewandteChemie,2011,50:4262-4264.
    [16] J.A.M. J. Bandara, A.Lopez, J. Kiwi. Sensitized Degradation of Chlorophenols on IronOxides Induced by Visible Light-Comparison with Titanium Oxide [J]. Appl. Catal. B,2001,34:321-333.
    [17] D.A.F. B.A. Diner, D.W. Randall, R.D. Britt. Hydrogen Bonding, Solvent Exchange, andCoupled Proton and Electron Transfer in the Oxidation and Reduction of Redox-ActiveTyrosine YZ in Mn-Depleted Core Complexes of Photosystem II [J]. Biochemistry,1998,37:17931-17943.
    [18] K. Hirakawa, H. Segawa. Effects of hydrogen bonding interaction and solvent polarity onthe competition between excitation energy and photo-induced electron transfer processes inhydroxy(1-pyrenebutoxy)phosphorus(V)porphyrin [J]. Journal of Photochemistry andPhotobiology A: Chemistry,2010,213:73-79.
    [19] H.N. Ghosh, K. Adamczyk, S. Verma, J. Dreyer, E.T. Nibbering, On the role of hydrogenbonds in photoinduced electron-transfer dynamics between9-fluorenone and amine solvents [J].Chemistry,2012,18:4930-4937.
    [20] N.V. Paul Liska, Mohammad K. Nazeeruddin, Pascal Comte, Michael Gratzel.cis-diaquabis(2,2'-bipyridye-4-4'-dicarboxylate)-ruthenium sensitizes wide band gap oxidesemiconductors very efficiently over a broad spectral range in the visile [J]. J. Am. Chem. Soc.,1988,110:3686-3687.
    [21] Zhengzong Sun, Xiaomiao Feng, Wenhua Hou. Morphology-controlled synthesis ofα-FeOOH and its derivatives [J]. Nanotechnology,2007,18:455607/1-9.
    [22] Y. Dong, H. Yang, R. Rao, A. Zhang. Selective Synthesis of α-FeOOH and α-Fe2O3Nanorods via a Temperature Controlled Process [J]. Journal of Nanoscience andNanotechnology,2009,9:4774-4779.
    [23] W. Gaussian Inc., CT, http://www.gaussian.com, Gaussian03, revision D.01,2004.
    [24] S.K. Ghose, G.A. Waychunas, T.P. Trainor, P.J. Eng. Hydrated goethite (α-FeOOH)(100)interface structure: Ordered water and surface functional groups [J]. Geochimica etCosmochimica Acta,2010,74:1943-1953.
    [25] A.V. Nanolab, Reference in http://www.atomistix.com/.
    [26] T.O. P. Atkins, J. Rourke, M. Weller, F. Armstrong. Inorganic Chemistry [M]. OxfordUniversity Press,4th ed. Oxford, UK,2006.
    [27] J.D.R. W.H. Koppenol. Reduction potential of the carbon dioxide-carbon dioxide radicalanion_a comparison with other C1radicals [J]. J. Phys. Chem.,1987,91:4429-4430.
    [28] J. Schneider, H. Jia, J.T. Muckerman, E. Fujita. Thermodynamics and kinetics of CO2, CO,and H+binding to the metal centre of CO2reduction catalysts [J]. Chemical Society reviews,2012,41:2036-2051.
    [29] L.P. Antonino Sclafani, Gianluca Farneti. Synthesis of2-hydroxybenzoic acid from CO2and phenol in aqueous heterogeneous photocatalytic systems [J]. Chem Commun,1997:529-530.
    [30] P.V.K. Anusorn Kongkanand. Electron Storage in Single Wall Carbon Nanotubes. FermiLevel Equilibration in Semiconductor-SWCNT Suspensions [J]. ACS Nano,2007,1:13-21.
    [31] R.M.D. Anusom Kongkanand, Prashant V. Kamat. Single Wall Carbon Nanotube Scaffoldsfor Photoelectrochemical Solar Cells. Capture and Transport of Photogenerated Electrons [J].Nano letters,2007,7:676-680.
    [32] J. Yu, T. Ma, S. Liu. Enhanced photocatalytic activity of mesoporous TiO2aggregates byembedding carbon nanotubes as electron-transfer channel [J]. Physical chemistry chemicalphysics: PCCP,2011,13:3491-3501.
    [33] MOLEKEL, Reference in http://www.cscs.ch/molek.
    [1] A. J. Nozik. Spectroscopy and hot electron relaxation dynamics in semiconductor quantumwells and quantum dots [J]. Annu. Rev. Phys. Chem.,2001,52:193-231.
    [2] A.J.Nozik. Quantum dot solar cells [J]. Physical E,2002,14:115-120.
    [3] Schaller, R., Klimov, V., High Efficiency Carrier Multiplication in PbSe Nanocrystals:Implications for Solar Energy Conversion [J]. Physical Review Letters,2004,92:186601/1-4.
    [4] Ellingson, R. J. B., M. C., Johnson, J. C., Yu, P.; Micic, O. I., Nozik, A. J., Shabaev, A.,Efros, A. L. Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS QuantumDots [J]. Nano Lett.,2005,5:865-871.
    [5] M. Tuan Trinh, A. J. H., Juleon M. Schins, Tobias Hanrath, Jorge Piris, W. K., Albert P. L.M. Goossens, and Siebbeles, L. D. A. In spite of recentdoubts carrier multiplication does occurin PbSe nanocrystals [J]. Nano Lett.,2008,8:1713-1718.
    [6] Minbiao Ji, S. P., Stephen T. Connor, Taleb Mokari, Yi Cui,, Gaffney, K. J. EfficientMulitple Exciton Generation Observed in Colloidal PbSe Quantum Dots with Temporally andSpectrally Resolved Intraband Excitation [J]. Nano Lett.,2009,9:1217-1222.
    [7] Nair, G., Geyer, S., Chang, L.-Y., Bawendi, M. Carrier multiplication yields in PbS andPbSe nanocrystals measured by transient photoluminescence [J]. Physical Review B,2008,78:125325/1-10.
    [8] Richard D. Schaller, M. S., Jeffrey M. Pietryga, Victor I. Klimov, Seven Excitons at a Costof One Redefining the Limits for Conversion Efficiency of Photons into Charge Carriers [J].Nano Lett.,2006,6:424-429.
    [9] James E. Murphy, M. C. B., Andrew G. Norman, S. Phillip Ahrenkiel, Justin C. Johnson.Pingrong Yu. PbTe Colloidal Nanocrystals: Synthesis, Characterization, and Multiple ExcitonGeneration [J]. J. Am. Chem. Soc.,2006,128:3241-3247.
    [10] Matthew C. Beard, K. P. K., Pingrong Yu, Joseph M. Luther, Qing Song, W. K. M., RandyJ. Ellingson, Arthur J. Nozik. Multiple exciton generation in colloidal silicon nanocrystals [J].Nano Lett.,2007,7:2506-2512.
    [11] Richard D. Schaller, M. S., Sohee Jeong, Victor I. Klimov. High-Efficiency CarrierMultiplication and Ultrafast Charge Separation in Semiconductor Nanocrystals Studied viaTime-Resolved Photoluminescence [J]. J. Phys. Chem. B,2006,110:25332-25338.
    [12] Gachet, D., Avidan, A., Pinkas, I., Oron, D. An upper bound to carrier multiplicationefficiency in type II colloidal quantum dots [J]. Nano letters,2010,10:164-170.
    [13] Schaller, R. D., Petruska, M. A., Klimov, V. I. Effect of electronic structure on carriermultiplication efficiency: Comparative study of PbSe and CdSe nanocrystals [J]. AppliedPhysics Letters,2005,87:253102/1-3.
    [14] Richard D. Schaller, J. M. P., Victor I. Klimov. Carrier Multiplication in InAs NanocrystalQuantum Dots with an Onset Defined by the Energy Conservation Limit [J]. Nano Lett.,2007,7:3469-3476.
    [15] J. J. H. Pijpers, E. H., M. T. W. Milder, R. Fanciulli, J. Savolainen, J. L. Herek, D.Vanmaekelbergh, S. R., D. Mocatta, D. Oron, A. Aharoni, U. Banin, Bonn, M.CarrierMultiplication and Its Reduction by Photodoping in Colloidal InAs Quantum Dots [J]. J. Phys.Chem. C,2007,111:4146-4152.
    [16] Stubbs, S. K., Hardman, S. J. O., Graham, D. M., Spencer, B. F., Flavell, W. R., Glarvey, P.,Masala, O., Pickett, N. L., Binks, D. J. Efficient carrier multiplication in InP nanoparticles[J].Physical Review B,2010,81:081303/1-4.
    [17] Octavi E. Semonin, Joseph M. Luther, Sukgeun Choi, Hsiang-Yu Chen, Jianbo Gao, ArthurJ. Nozik, Matthew C. Beard. Peak external photocurrent quantum efficiency exceeding100%via MEG in a quantum dot solar cell [J]. Science,2011,334:1530-1533.
    [18] Lubomir Spanhel, M. H., Horst Weller, Arnim Henglein. Photochemistry of colloidalsemiconductors.20. Surface modification and stability of strong luminescing CdS particles [J].J. Am. Chem. Soc.,1987,109:5649-5655.
    [19] Xiaoyong Wang, L. Q., Jiayu Zhang, Xiaogang Peng, Min Xiao. Surface-Related Emissionin Highly Luminescent CdSe Quantum Dots [J]. Nano Lett,.2003,3:1103-1106.
    [20] Wang, C., Thompson, R. L., Ohodnicki, P., Baltrus, J., Matranga, C. Size-dependentphotocatalytic reduction of CO2with PbS quantum dot sensitized TiO2heterostructuredphotocatalysts [J]. Journal of Materials Chemistry,2011,21:13452-13457.
    [21] Byung-Ryool Hyun, Y.-W. Z., Adam C. Bartnik, Liangfeng Sun, Hector D. Abruna, FrankW. Wise, Jason D. Goodreau, James R. Matthews, Thomas M. Leslie, Nicholas F. Borrelli.Electron Injection from Colloidal PbS Quantum Dots into Titanium Dioxide Nanoparticles [J].ACS Nano,2008,2:2206-2212.
    [22] Chalita Ratanatawanate, Y. T. Kenneth, J. Balkus, Jr. Photocatalytic Activity of PbSQuantum Dot-TiO2Nanotube Composites [J]. J. Phys. Chem. C,2009,113:10755-10760.
    [23] Ratanatawanate C, Xiong C, Balkus KJ. Fabrication of PbS Quantum Dot Doped TiO2nanotubes [J]. ACS Nano,2008,2:1682-1688.
    [24] Joel Jean, Sehoon Chang, Patrick R. Brown, Jayce J. Cheng, Paul H. Rekemeyer, MoungiG. Bawendi, Silvija Grade ak, Vladimir Bulovi. ZnO nanowire arrays for enhancedphotocurrent in PbS quantum dot solar cells [J]. Advanced materials,2013,25:2790-2796.
    [25] Te-Fu Yeh, Jhih-Ming Syu, Ching Cheng, Ting-Hsiang Chang, Hsisheng Teng. GraphiteOxide as a Photocatalyst for Hydrogen Production from Water [J]. Advanced FunctionalMaterials,2010,20:2255-2262.
    [26] Akshay Mathkar, Dylan Tozier, Paris Cox, Peijie Ong, Charudatta Galande, KaushikBalakrishnan, Arava Leela Mohana Reddy, Pulickel M. Ajayan. Controlled, Stepwise Reductionand Band Gap Manipulation of Graphene Oxide [J]. The Journal of Physical Chemistry Letters,2012,3:986-991.
    [27] Jia-An Yan, Lede Xian, M. Y. Chou. Structural and Electronic Properties of OxidizedGraphene [J]. Physical Review Letters,2009,103:086802/1-5.
    [28] C. Nethravathi, T. Nisha, N. Ravishankar, C. Shivakumara, M. Rajamathi.Graphene–nanocrystalline metal sulphide composites produced by a one-pot reaction startingfrom graphite oxide [J]. Carbon,2009,47:2054-2059.
    [29] Ping Wang, Tengfei Jiang, Chengzhou Zhu, Yueming Zhai, Dejun Wang, Shaojun Dong.One-step, solvothermal synthesis of graphene-CdS and graphene-ZnS quantum dotnanocomposites and their interesting photovoltaic properties [J]. Nano Research,2010,3:794-799.
    [30] Lei Shen, Minggang Zeng, Shuo-Wang Yang, Chun Zhang, Xuefeng Wang, Yuanping Feng.Electron Transport Properties of Atomic Carbon Nanowires between Graphene Electrodes [J]. J.Am. Chem. Soc.,2010,132:11481-11486.
    [31] T. Peng, K. Li, P. Zeng, Q. Zhang, X. Zhang. Enhanced Photocatalytic HydrogenProduction over Graphene Oxide-Cadmium Sulfide Nanocomposite under Visible LightIrradiation [J]. The Journal of Physical Chemistry C,2012,116:22720-22726.
    [32] D. Wu, Z. Gao, F. Xu, J. Chang, W. Tao, J. He, S. Gao, K. Jiang. Hierarchical ZnOaggregates assembled by orderly aligned nanorods for dye-sensitized solar cells [J].CrystEngComm,2013,15:1210-1217.
    [33] M. A. Hines, G. D. Scholes. Colloidal PbS Nanocrystals with Size-Tunable Near-InfraredEmission Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution [J].Adv. Mater.,2003,15:1844-1849.
    [34] Y. Yang, W. Rodriguez-Cordoba, T. Lian. Multiple exciton generation and dissociation inPbS quantum dot-electron acceptor complexes [J]. Nano letters,2012,12:4235-4241.
    [35] C. Ratanatawanate, C. Xiong, K. J. Balkus. Fabrication of PbS Quantum Dot Doped TiO2Nanotubes [J]. ACS Nano,2008,2:1682-1688.
    [36] Li, N., Wang, H., Xue, M., Chang, C., Chen, Z., Zhuo, L., Tang, B. A highly selective andsensitive nanoprobe for detection and imaging of the superoxide anion radical in living cells [J].Chem. Commun.,2012,48:2507-2509.
    [37] D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I.Jung, D. A. Field, C. A. Ventrice, R. S.Ruoff., Chemical analysis of graphene oxide films afterheat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy [J].Carbon,2009,47:145-152.
    [38] K. M. R. Kallury, R. F. Debono, U. J. Krull, M. Thompson. Covalent binding of amino,carboxy, and nitro-substituted aminopropyltriethoxysilanes to oxidized silicon surfaces andtheir interaction with octadecanamine and octadecanoic acid studied by X-ray photoelectronspectroscopy and ellipsometry [J]. J. Adhesion Sci. Technol.,1991,5:801-814.
    [39] P. Llopiz, J. C. Maire. Bull. Soc. Chim. Fr.,1979,11-12:457.
    [40] G. B. D. J. Briggs. Surface Preparation and Microscopy of Materials [J]. J. Chem. Educ.,1993,70: A25.
    [41] D. J. Binks. Multiple exciton generation in nanocrystal quantum dots--controversy, currentstatus and future prospects [J]. Physical Chemistry Chemical Physics: PCCP,2011,13:12693-12704.
    [42] M. C. Beard. Multiple Exciton Generation in Semiconductor Quantum Dots [J]. TheJournal of Physical Chemistry Letters,2011,2:1282-1288.
    [1] M. O’Keeffe, O.M. Yaghi. Deconstructing the Crystal Structures of Metal–OrganicFrameworks and Related Materials into Their Underlying Nets [J]. Chem. Rev.,2011,112:675-702.
    [2] O. R. Evans, W. Lin. Crystal Engineering of NLO Materials Based on Metal-OrganicCoordination Networks [J]. Acc. Chem. Res.,2002,35:511-522.
    [3] C. Wang, T. Zhang, W. Lin. Rational Synthesis of Noncentrosymmetric Metal–OrganicFrameworks for Second-Order Nonlinear Optics [J]. Chem. Rev.,2011,112:1084-1104.
    [4] K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. H. Bae,J. R. Long. Carbon Dioxide Capture in Metal–Organic Frameworks [J]. Chem. Rev.,2011,112:724-781.
    [5] L. Ma, C. Abney, W. Lin. Enantioselective catalysis with homochiral metal–organicframeworks [J]. Chem. Soc. Rev.,2009,38:1248-1256.
    [6] J. Della Rocca, D. Liu, W. Lin. Nanoscale Metal–Organic Frameworks for BiomedicalImaging and Drug Delivery [J]. Acc. Chem. Res.,2011,44:957-968.
    [7] Amanda J. Morris, Gerald J. Meyer, Etsuko Fujita. Molecular Approaches to thePhotocatalytic Reduction of Carbon Dioxide for Solar Fuels [J]. Acc. Chem. Res.,2009,42:1983-1994.
    [8] M.R.D. Dubois, D. L. Development of Molecular Electrocatalysts for CO2Reduction andH2Production/Oxidation [J]. Acc. Chem. Res.,2009,42:1974-1982.
    [9] M.J.N. Esswein, D. G., Hydrogen Production by Molecular Photocatalysis [J]. Chem. Rev.,2007,107:4022-4047.
    [10] Y. Fu, D. Sun, Y. Chen, R. Huang, Z. Ding, X. Fu, Z. Li, An amine-functionalized titaniummetal-organic framework photocatalyst with visible-light-induced activity for CO2reduction [J].Angewandte Chemie,2012,51:3364-3367.
    [11] C. Wang, Z. Xie, K.E. deKrafft, W. Lin. Doping metal-organic frameworks for wateroxidation, carbon dioxide reduction, and organic photocatalysis [J]. Journal of the AmericanChemical Society,2011,133:13445-13454.
    [12] C. Wang, K. E. Krafft, W. Lin. Pt nanoparticles@photoactive metal-organic frameworks:efficient hydrogen evolution via synergistic photoexcitation and electron injection [J]. Journalof the American Chemical Society,2012,134:7211-7214.
    [13] A. Fateeva, P.A. Chater, C.P. Ireland, A.A. Tahir, Y.Z. Khimyak, P.V. Wiper, J.R. Darwent,M.J. Rosseinsky. A Water-Stable Porphyrin-Based Metal–Organic Framework Active forVisible-Light Photocatalysis [J]. Angew. Chem. Int. Ed.,2012,51:7440-7444.
    [14] C. Chatgilialoglu, D. Crich, M. Komatsu, I. Ryu, Chemistry of Acyl Radicals [J]. Chem.Rev.,1999,99:1991-2070.
    [15] K.O. Tatsuaki Nakanishi, Takahiko Kojima and Shunichi Fukuzumi. ReorganizationEnergies of Diprotonated and Saddle-Distorted Porphyrins in Photoinduced Electron-TransferReduction Controlled by Conformational Distortion [J]. Journal of the American ChemicalSociety,2008,131:577-584.
    [16] Qi-Kui Liu, Jian-Ping Ma, Yu-Bin Dong. Adsorption and Separation of Reactive AromaticIsomers and Generation and Stabilization of Their Radicals within Cadmium(II)-TriazoleMetal-Organic Confined Space in a Single-Crystal-to-Single-Crystal Fashion[J]. Journal of theAmerican Chemical Society,2010,132:7005-7017.
    [17] M. K. Bhunia, J. T. Hughes, J. C. Fettinger, A. Navrotsky. Thermochemistry of paddlewheel MOFs: Cu-HKUST-1and Zn-HKUST-1[J]. Langmuir,2013,29:8140-8145.
    [18] S. D. Harvey, A. D. Eckberg, P. K. Thallapally. Evaluation ofcopper-1,3,5-benzenetricarboxylate metal-organic framework (Cu-MOF) as a selective sorbentfor Lewis-base analytes [J]. Journal of Separation Science,2011,34:2418-2426.
    [19] Zhijian Liang, Marc Marshall, Alan L. Chaffee. CO2Adsorption-Based Separation byMetal Organic Framework (Cu-BTC) versus Zeolite (13X)[J]. Energy&Fuels,2009,23:2785-2789.
    [20] K. Schlichte, T. Kratzke, S. Kaskel, Improved synthesis, thermal stability and catalyticproperties of the metal-organic framework compound Cu3(BTC)2[J]. Microporous andMesoporous Materials,2004,73:81-88.
    [21] Kelsuke Maklno, Magdl M. Mossoba, and Peter Rlesz, Chemical Effects of Ultrasound onAqueous Solutions. Formation of Hydroxyl Radicals and Hydrogen Atoms [J]. The Journal ofPhysical Chemistry,1983,87:1369-1377.
    [1] Fujishima, A. H. K. Electrochemical photolysis of water at a semiconductor electrode [J].Nature,1972,238:37-38.
    [2] Puangpetch, T., Sreethawong, T., Yoshikawa, S., Chavadej, S. Hydrogen production fromphotocatalytic water splitting over mesoporous-assembled SrTiO3nanocrystal-basedphotocatalysts [J]. Journal of Molecular Catalysis A: Chemical,2009,312:97-106.
    [3] Lu, X., Wang, G., Xie, S., Shi, J., Li, W., Tong, Y., Li, Y. Efficient photocatalytic hydrogenevolution over hydrogenated ZnO nanorod arrays [J]. Chemical communications,2012,48:7717-7719.
    [4]杨亚辉,陈启元,尹周澜,李洁. K2La2Ti3O10的制备和光催化产氢性能[J].中国有色金属学报,2007,17:642-648.
    [5] Sarahan, M. C., Carroll, E. C., Allen, M., Larsen, D. S., Browning, N. D., Osterloh, F. E.K4Nb6O17-derived photocatalysts for hydrogen evolution from water, Nanoscrolls versusnanosheets [J]. Journal of Solid State Chemistry,2008,181:1678-1683.
    [6] Gon alves, R. V., Migowski, P., Wender, H., Eberhardt, D., Weibel, D. E., Sonaglio, F. C.,Zapata, M. J. M., Dupont, J., Feil, A. F., Teixeira, S. R. Ta2O5Nanotubes Obtained byAnodization: Effect of Thermal Treatment on the Photocatalytic Activity for HydrogenProduction [J]. The Journal of Physical Chemistry C,2012,116:14022-14030.
    [7] Senevirathna, M. K. I., Pitigala, P. K. D. D. P., Tennakone, K. Water photoreduction withCu2O quantum dots on TiO2nano-particles [J]. Journal of Photochemistry and Photobiology A:Chemistry,2005,171:257-259.
    [8]王艳华,白雪峰,张灵灵. CdS-ZnO复合半导体光催化剂的制备[J].化学与粘合,2009,31:4-6.
    [9] Liu, Z.-L., Deng, J.-C., Deng, J.-J., Li, F.-F., Fabrication and photocatalysis of CuO/ZnOnano-composites via a new method [J]. Materials Science and Engineering: B,2008,150:99-104.
    [10] Shifu, C., Wei, Z., Wei, L., Huaye, Z., Xiaoling, Y. Preparation, characterization andactivity evaluation of p–n junction photocatalyst p-CaFe2O4/n-ZnO [J]. Chemical EngineeringJournal,2009,155:466-473.
    [11] Li, J. Preparation of highly photocatalytic active nano-size TiO2/Cu2O particle compositeswith a novel electrochemical method [J]. Electrochemistry Communications,2004,6:940-943.
    [12] Hu, C.-C., Nian, J.-N., Teng, H. Electrodeposited p-type Cu2O as photocatalyst for H2evolution from water reduction in the presence of WO3[J]. Solar Energy Materials and SolarCells,2008,92:1071-1076.
    [13]李本侠,王媛媛,王艳芬. CuO纳米结构阵列的简易合成及其光催化性质[J].物理化学学报,2009,25:2366-2372.
    [14] Xia, H., Zhuang, H., Zhang, T., Xiao, D. Photocatalytic degradation of Acid Blue62overCuO-SnO2nanocomposite photocatalyst under simulated sunlight [J]. Journal of EnvironmentalSciences,2007,19:1141-1145.
    [15] Yao Mao-hai, Tang You-gen, Zhang Li, Yang Hai-hua, Yan Jian-hui. Photocatalytic activityof CuO towards HER in catalyst from oxalic acid solution under simulated sunlight irradiation[J]. Transactions of Noferrous Metals Society of China,2010,20:1944-1949.
    [16]熊良斌,冯杰,胡安正,闫楠楠,王辉.纳米TiO2-Cu2O复合物的可见光降解[J].中国有色金属学报,2010,20:1737-1742.
    [17] Silva, C. G., Corma, A., García, H., Metal-organic frameworks as semiconductors [J].Journal of Materials Chemistry,2010,20:3141-3156.
    [18] Wang, J.-L., Wang, C., Lin, W., Metal-Organic Frameworks for Light Harvesting andPhotocatalysis [J]. ACS Catalysis,2012,2:2630-2640.
    [19] Wang, C., Xie, Z., deKrafft, K. E., Lin, W. Doping metal-organic frameworks for wateroxidation, carbon dioxide reduction, and organic photocatalysis [J]. Journal of the AmericanChemical Society,2011,133:13445-13454.
    [20] Sun, D., Fu, Y., Liu, W., Ye, L., Wang, D., Yang, L., Fu, X., Li, Z., Studies onphotocatalytic CO2reduction over NH2-Uio-66(Zr) and its derivatives: towards a betterunderstanding of photocatalysis on metal-organic frameworks [J]. Chemistry,2013,19:14279-14285.
    [21] Liu, Y., Yang, Y., Sun, Q., Wang, Z., Huang, B., Dai, Y., Qin, X., Zhang, X., Chemicaladsorption enhanced CO2capture and photoreduction over a copper porphyrin based metalorganic framework [J]. ACS applied materials&interfaces,2013,5:7654-7658.
    [22] Pullen, S., Fei, H., Orthaber, A., Cohen, S. M., Ott, S. Enhanced photochemical hydrogenproduction by a molecular diiron catalyst incorporated into a metal-organic framework [J].Journal of the American Chemical Society,2013,135:16997-17003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700