电化学发光成像技术在潜在指纹显现与成分识别中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生命科学、临床医学、环境科学及材料科学等领域的迅速发展对分析化学及分析仪器提出了越来越高的要求。高灵敏度、高通量、多信息化和可视化是当前分析仪器和分析科学发展的一大重要趋势。电化学发光成像就是顺应这一时代背景发展起来的一种有效的分析手段。作为一种全新的成像技术,电化学发光成像目前在研制便携式、微型化、高通量电化学发光生物传感器方面逐渐引起人们的重视。然而该领域的研究尚处于起步阶段,仍然存在着广阔的研究空间。
     指纹鉴定是进行个人识别的最可靠的方法之一,在法庭科学中用来有效地查证、揭露和证实犯罪。尽管指纹显现方法繁多,但是目前仍然需要建立一种简单、快速、适用范围广以及造价低廉的新方法。另外,指纹的成分分析近年来引起人们越来越浓厚的研究兴趣。本项研究基于电化学发光成像高灵敏、反应可控、快速成像以及对于生物分析兼容性的特点,将其用于潜在指纹的显现与成分识别,旨在发展一种集成像分析、生物分析、指纹识别于一体的前瞻研究,为电化学发光成像技术在生命科学和法庭科学中的应用提供新的方法和思路。进行的具体工作如下:
     首先自行组建了一套电化学发光成像系统。该系统由电化学工作站和成像装置组成。其中,电化学工作站用于电化学反应的控制和电化学信号的接收;成像装置用于发光图像的采集,并将图像输入计算机进行后期处理。成像装置是该系统的核心部件,主要包括一个高分辨率数字冷却CCD相机、一个高通透微距镜头以及一个升降样品台。
     利用该成像系统,展开了潜在指纹的电化学发光成像研究。通过在空间上选择性地控制电极表面的电化学发光反应,可以实现潜在指纹的反相成像和正相成像两种显现模式。在反相模式中,指纹覆盖的电极表面会由于沉积的有机脂肪酸等惰性物质而对电子转移造成抑制作用,因此Ru(bpy)32+/TPrA体系产生的电化学发光图像可以间接反衬出指纹的嵴线纹路。考察了反应电位、发光体Ru(bpy)32+浓度对显现效果的影响。反相模式可实现潜在指纹中不同二级结构特征和三级结构特征的检测成像,并适用于陈旧指纹的成像分析。在此基础上,进一步研究和完善了不同承载客体及其他电化学发光体系。在不锈钢片上,成功实现了潜在指纹的显现。并用采集胶带将日常物面(如硬币、桌面、光盘和电脑屏等)上的残留指纹转移到不锈钢导电基底上,证明了该方法的实践价值。利用鲁米诺/K2S208(或H202)进一步拓展了电化学发光反应体系。
     合成了具有生物反应活性的二(2,2’-联吡啶)(2,2’-联吡啶-4,4’-二甲酸)钌的N-羟基琥珀酰亚胺酯(Ru(bpy)2(dcbpy)NHS),实现了潜在指纹的正相模式显现。在正相模式中,电化学发光活性分子Ru(bpy)2(dcbpy)NHS可以通过分子上的N-羟基琥珀酰亚胺酯与指纹氨基酸中的氨基发生共价结合,从而标记到指纹上;继而与共反应剂DBAE在一定电位下产生电化学发光反应,显现出指纹的形貌。利用MALDI-TOF MS验证了Ru(bpy)2(dcbpy)NHS与指纹氨基酸的共价连接,考察了反应电位、发光体浓度及反应时间对显现效果的影响。正相模式可以对痕量汗潜指纹进行有效显现。
     结合酶联免疫分析技术,实现了潜在指纹中目标成分的特异性高灵敏电化学发光检测。首先以人IgG人工模拟指纹为检测对象,验证了方法的可行性。将指纹依次与羊抗人IgG、HRP标记兔抗羊IgG孵育一定时间,通过抗体与目标物的特异性免疫反应使HRP标记到指纹上。然后利用电化学反应使电解质溶液中的溶解O2还原生成H202,在指纹HRP的催化作用下,H202与底物溶液中的鲁米诺产生波长425nm的化学发光,进而显现出指纹纹路。考察了免疫反应温度、反应时间及抗体浓度对显现效果的影响。用BSA模拟指纹作为对照,结果表明抗体对人IgG模拟指纹的标记是特异性的。进一步地,将该方法用于真实血指纹中人IgG的成功检测。
     最后,在上述方法的基础之上,进一步引入生物素-链霉亲和素放大系统,实现了汗潜指纹中人汗腺抗菌肽Dermcidin、人表皮生长因子和溶菌酶等目标代谢物的电化学发光检测。该方法在进行潜在指纹显现的同时,可以实现人汗腺代谢物的特异性识别,有望发展成为一种简单、便携、通用的指纹检测技术,用于兴奋剂检测、病患临床诊断以及爆炸物检测等领域,具有重要的医学诊断和安全保障价值。
The rapid development of life science, clinical medicine, environmental science and material engineering has driven a higher demanding on analytical chemistry and analytical apparatuses. High-sensitivity, high throughput, multi-informatization and visualization are the most important trends in regards to these fields. Electrochemiluminescence (ECL) imaging is such an effective method conforming to the growing tendency. As a new imaging platform, ECL imaging has attracted considerable attention in the fabrication of ECL biosensors with portability, miniaturization, and high throughput. Research in this area is still at an early stage and has a broad prospect of development.
     Fingerprints have long been used as the gold standard for personal identification in forensic investigations, and continue to be the most reliable tool in crime cases and law enforcement. Although innumerable methods have been exploited for fingerprint detection, it still remains challenging to acquire fingerprint information in a technically simple, rapid, and easy handling way. Additionally, research interest has been recently directed to detect the secretion chemicals in fingerprints. Taking into account the advantages of ECL imaging, e.g., high sensitivity, controlled reaction, fast imaging and good compatibility with bioassay, herein we present its application in the development and component recognition of latent fingerprint. The aim of this thesis is to establish a prospective study that integrates imaging analysis, bioanalysis and fingerprint identification, in order to provide new methods and ideas for the application of ECL imaging in life science and forensic science.
     Firstly, a home-designed ECL imaging system was established. It consists of an electrochemical workstation and an imaging device. The electrochemical workstation was used to control the electrochemical reaction and detect the signal. And the imaging device was used to record the images and input them into a computer for post-processing. The imaging device equipped with a high-resolution CCD camera, an appropriate Macro Zoom lens and a three-dimensional translational stage is the key component of the whole system.
     ECL imaging for the development of latent fingerprints was carried out by using the established imaging system. Selective control of ECL generation at the electrode surface is shown to be an effective means of visualizing latent fingerprints. Two operating schemes designated negative and positive imaging modes was reported. The negative imaging mode was performed by directly exposing the electrodes bearing sebaceous fingerprints to the reaction solution containing Ru(bpy)32+and TPrA. Since the fingerprint pattern functions as an insulating mask or template, ECL is only generated from the bare electrode surface when biasing a suitable voltage. The ending outcome is that the furrow areas are lighted up by ECL and contrasted distinctively with the dark ridge details, yielding a negative image of the fingerprint. Factors, including the applied potential and the concentration of ECL luminophore, were investigated to achieve a satisfactory visualization enhancement. The negative mode is suitable for identifying the second and even the third level detail in latent fingerprints, as well as enhancing the visualization of aged latent fingerprints. In addition, the imaging of latent fingerprints in the negative mode also works in other ECL reaction systems, such as the well-known one involving luminol-hydrogen peroxide pair, as well as on other conducting substrates, such as stainless steel plates, with a satisfactory visual contrast. The proposed ECL imaging approach could be utilized to enhance sebaceous fingerprints collected from various object surfaces including coin, desk, disk and computer screen, proving the practical significance of the approach.
     In the positive imaging mode, an ECL-generating luminophore, ruthenium bis(2,2'-bipyridine)(2,2'-bipyridine-4,4'-dicarboxylic acid) N-hydroxysuccinimide ester (Ru(bpy)2(dcbpy)NHS), the NHS group in which is reactive toward the amino acids via the formation of amide bonds, was synthesized to functionalize the fingerprint ridges. After the covalent interaction, the ridge details were tagged by the luminophores, which could then react with dissolved co-reactant, namely DBAE, to generate ECL, eventually producing a positive image of the fingerprint. The covalent bonding of Ru(bpy)2(dcbpy)NHS with amino acids present in the ridge details were investigated by MALDI-TOF measurements. Factors, including the applied potential, the concentration of ECL luminophore and the incubation time, were investigated to achieve. Similar enhancement effect was also observed for eccrine fingerprints.
     In combination with the enzyme immunassay, the ECL detection of the target components in latent fingerprints was presented with high specificity and sensitivity. To exemplify the fingerprint visualization approach, hIgG was chosen as a test protein. The artificial simulated fingerprint was incubated with goat anti-human1gG and HRP-conjugated rabbit anti-goat IgG for a certain time successively. After the immune reactions, HRP was immobilized onto the fingerprint ridges, which can then catalyze the oxidation of luminol by electrochemically generated H2O2to yield an ECL image of the fingerprint. A satisfactory visualization enhancement was determined by optimizing operating conditions in regards to the incubation time and temperature of the immunolabeling, and the concentration of immuno reagents. BSA inked fingerprints were used to investigate the specificity of the ECL enzyme immunoassay. Results confirmed that the antibodies specifically target the hlgG antigen in the fingerprint residue. Furthermore, the ECL visualization of a blood fingermprint was realized through the immunodetection of hlgG.
     Finally, the ECL imaging strategy was further improved by introducing the biotin-streptavidin which have been known as a sufficient signal amplification system for the detection of Dermcidin, EGF and lysozyme in eccrine fingerprints. This technique provides an effective method for fingermark detection that enables both identification of an individual and recognition of the secretions in the human perspiration. It has promise for developing a low cost and portable method to detect more other species that are practically and potentially useful for forensic work or diagnostic assay, such as metabolites of illicit drugs, chemical products of explosives, and biomarkers for in vitro diagnosis.
引文
[1]汪尔康.21世纪的分析化学,科学出版社,1999.
    [2]Bard A J. Electrogenerated Chemiluminescence, Marcel Dekker:New York,2004,1.
    [3]Dufford R T, Nightingale D, Gaddum L W. Luminescence of Grignard compounds in electric and magnetic fields, and related electrical phenomena, J. Am. Chem. Soc,1927, 49,1858-1864.
    [4]Harvey N. Luminescence during electrolysis, J. Phys. Chem.,1929,33,1456-1459.
    [5]李云辉,王春燕.电化学发光,化学工业出版社:北京,2008,1.
    [6]Miao W. Electrogenerated chemiluminescence and its biorelated applications, Chem. Rev.,2008,108 (7),2506-2553.
    [7]Hercules D M. Chemiluminescence resulting from electrochemically generated species, Science,1964,145 (3634),808-809.
    [8]Blackburn G F, Shah H P, Kenten J H, Leland J, Kamin R A, Link J, Peterman J, Powell M J, Shah A, Talley D B, Tyagi S K, Wilkins E, Wu T G, Massey R J. Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics, Clin. Chem.,1991,37 (9),1534-1539.
    [9]Ding Z F, Quinn B M, Haram S K, Pell L E, Korgel B A, Bard A J. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots, Science,2002,296 (5571),1293-1297.
    [10]Bard A J. Electrogenerated Chemiluminescence, Marcel Dekker:New York,2004.
    [11]Richter M M. Electrochemiluminescence (ECL), Chem. Rev.,2004,104 (6),3003-3036.
    [12]Hu L, Xu G. Applications and trends in electrochemiluminescence, Chem. Soc. Rev., 2010,39 (8),3275-3304.
    [13]李云辉,王春燕.电化学发光,化学工业出版社:北京,2008,57.
    [14]Sentic M, Milutinovic M, Kanoufi F, Manojlovic D, Arbault S, Sojic N. Mapping electrogenerated chemiluminescence reactivity in space:mechanistic insight into model systems used in immunoassays, Chem. Sci.,2014,5,2568-2572.
    [15]Liu X, Shi L, Niu W, Li H, Xu G. Environmentally friendly and highly sensitive ruthenium (Ⅱ) tris (2,2'-bipyridyl) electrochemiluminescent system using 2-(dibutylamino) ethanol as co-reactant, Angew. Chem. Int. Ed.,2007,46 (3),421-424.
    [16]Fahnrich K A, Pravda M, Guilbault G G. Recent applications of electrogenerated chemiluminescence in chemical analysis, Talanta,2001,54 (4),531-559.
    [17]Chen X, Su B, Song X, Chen Q, Chen X, Wang X. Recent advances in electrochemiluminescent enzyme biosensors, TrAC,2011,30 (5),665-676.
    [18]Marquette C A, Blum L J. Electro-chemiluminescent biosensing, Anal. Bioanal. Chem., 2008,390(1),155-168.
    [19]Zanarini S, Bard A J, Marcaccio M, Palazzi A, Paolucci F, Stagni S. Ruthenium(Ⅱ) complexes containing tetrazolate group:Electrochemiluminescence in solution and solid state, J. Phys. Chem. B,2006,110 (45),22551-22556.
    [20]Nobushi Y, Uchikura K. Selective detection of hydroxyl radical scavenging capacity based on electrogenerated chemiluminescence detection using tris(2,2'-bipyridine) ruthenium(Ⅲ) by flow injection analysis, Chem. Pharm. Bull.,2010,58 (1),117-120.
    [21]Waseem A, Yaqoob M, Nabi A. Flow-injection determination of thyroxine using immobilized enzyme with tris(2,2'-bipyridyl)ruthenium(Ⅲ) chemiluminescence detection, Anal. Sci.,2006,22 (8),1095-1098.
    [22]Morita H, Konishi M. Electrogenerated chemiluminescence derivatization reagents for carboxylic acids and amines in high-performance liquid chromatography using tris (2,2'-bipyridine)ruthenium(Ⅱ),Anal. Chem.,2002,74(7),1584-1589.
    [23]Chen X, Yi C Q, Li M J, Lu X, Li Z, Li P W, Wang X R. Determination of sophoridine and related lupin alkaloids using tris(2,2'-bipyridine)ruthenium clectrogenerated chemiluminescence, Anal. Chim. Acta,2002,466 (1),79-86.
    [24]Liu Y, Shi Y, Liu Z, Tian W. A sensitive method for simultaneous determination of four macrolides by CE with electrochemiluminescence detection and its applications in human urine and tablets, Electrophoresis,2010,31 (2),364-370.
    [25]Wang J, Yang Z, Wang X, Yang N. Capillary electrophoresis with gold nanoparticles enhanced electrochemiluminescence for the detection of roxithromycin, Talanta,2008, 76(1),85-90.
    [26]Liu J F, Cao W D, Qiu H B, Sun X H, Yang X R, Wang E K. Determination of sulpiride by capillary electrophoresis with end-column electrogenerated chemilurainescence detection, Clin. Chem.,2002,48 (7),1049-1058.
    [27]Zhu D, Li X, Sun J, You T. Chemometrics optimization of six antihistamines separations by capillary electrophoresis with electrochemiluminescence detection, Talanta,2012,88,265-271.
    [28]Miao W J, Bard A J. Electrogenerated chemluminescence.72. Determination of immobilized DNA and C-reactive protein on Au(111) electrodes using Tris(2,2'-bipyridyl)ruthenium(Ⅱ) labels, Anal. Chem.,2003,75 (21),5825-5834.
    [29]Zhang J, Qi H, Li Y, Yang J, Gao Q, Zhang C. Electrogenerated chemiluminescence DNA biosensor based on hairpin DNA probe labeled with ruthenium complex, Anal. Chem.,2008,80 (8),2888-2894.
    [30]Qi H, Zhang Y, Peng Y, Zhang C. Homogenous electrogenerated chemiluminescence immunoassay for human immunoglobulin G using N-(aminobutyl)-N-ethylisoluminol as luminescence label at gold nanoparticles modified paraffin-impregnated graphite electrode, Talanta,2008,75 (3),684-690.
    [31]Tian D, Duan C, Wang W, Cui H. Ultrasensitive electrochemiluminescence immunosensor based on luminol functionalized gold nanoparticle labeling, Biosens. Bioelectron.,2010,25 (10),2290-2295.
    [32]Tian D, Duan C, Wang W, Li N, Zhang H, Cui H, Lu Y. Sandwich-type electrochemiluminescence immunosensor based on N-(aminobutyl)-N-ethylisoluminol labeling and gold nanoparticle amplification, Talanta,2009,78 (2),399-404.
    [33]Shan Y, Xu J-J, Chen H-Y. Electrochemiluminescence quenching by CdTe quantum dots through energy scavenging for ultrasensitive detection of antigen, Chem. Commun., 2010,46(28),5079-5081.
    [34]Huang H, Zhu J-J. DNA aptamer-based QDs electrochemiluminescence biosensor for the detection of thrombin, Biosens. Bioelectron.,2009,25 (4),927-930.
    [35]Li Y, Liu L, Fang X, Bao J, Han M, Dai Z. Electrochemiluminescence biosensor based on CdSe quantum dots for the detection of thrombin, Electrochim. Acta,2012,65,1-6.
    [36]Zhang Y, Ge S, Wang S, Yan M, Yu J, Song X, Liu W. Magnetic beads-based electrochemiluminescence immunosensor for determination of cancer markers using quantum dot functionalized PtRu alloys as labels, Analyst,2012,137 (9),2176-2182.
    [37]Sardesai N, Pan S, Rusling J. Electrochemiluminescent immunosensor for detection of protein cancer biomarkers using carbon nanotube forests and Ru(bpy)32+-doped silica nanoparticles, Chem. Commun.,2009, (33),4968-4970.
    [38]Zhu X, Chen L, Lin Z, Qiu B, Chen G. A highly sensitive and selective "signal-on" electrochemiluminescent biosensor for mercury, Chem. Commun.,2010,46 (18), 3149-3151.
    [39]Zhan W, Bard A J. Electrogenerated chemiluminescence.83. Immunoassay of human C-reactive protein by using Ru(bpy)32+ -encapsulated liposomes as labels, Anal. Chem., 2007,79 (2),459-463.
    [40]Wang H, Sun D, Tan Z, Gong W, Wang L. Electrochemiluminescence immunosensor for α-fetoprotein using Ru(bpy)32+ -encapsulated liposome as labels, Colloid. Surface. B, 2011,84(2),515-519.
    [41]Deng S, Lei J, Huang Y, Yao X, Ding L, Ju H. Electrocatalytic reduction of coreactant by highly loaded dendrimer-encapsulated palladium nanoparticles for sensitive electrochemiluminescent immunoassay, Chem. Commun.,2012,48 (73),9159-9161.
    [42]Wang G, Jin F, Dai N, Zhong Z, Qing Y, Li M, Yuan R, Wang D. Signal-enhanced electrochemiluminescence immunosensor based on synergistic catalysis of nicotinamide adenine dinucleotide hydride and silver nanoparticles, Anal. Biochem., 2012,422(1),7-13.
    [43]Xu S, Liu Y, Wang T, Li J. Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection, Anal. Chem.,2011,83 (10),3817-3823.
    [44]Wang J, Han H, Jiang X, Huang L, Chen L, Li N. Quantum dot-based near-infrared electrochemiluminescent immunosensor with gold nanoparticle-graphene nanosheet hybrids and silica nanospheres double-assisted signal amplification, Anal. Chem.,2012, 84(11),4893-4899.
    [45]Liao N, Zhuo Y, Chai Y, Xiang Y, Cao Y, Yuan R, Han J. Amplified electrochemiluminescent immunosensing using apoferritin-templated poly (ethylenimine) nanoparticles as co-reactant, Chem. Commun.,2012,48 (61), 7610-7612.
    [46]Gan N, Zhou J, Xiong P, Hu F, Cao Y, Li T, Jiang Q. An ultrasensitive electrochemiluminescent immunoassay for aflatoxin Ml in milk, based on extraction by magnetic graphene and detection by antibody-labeled CdTe quantumn dots-carbon nanotubes nanocomposite, Toxins,2013,5 (5),865-883.
    [47]Song Y, Zhuang Q, Li C, Liu H, Cao J, Gao Z. CdS nanocrystals functionalized TiO2 nanotube arrays:Novel electrochemiluminescence platforms for ultrasensitive immunosensors, Electrochem. Commun.,2012,16(1),44-48.
    [48]http://www.roche-diagnostics.cn/.
    [49]http://blog.sciencenet.cn/home.php?mod=space&uid=632778&do=blog&id=491452.
    [50]任宏周,唐贵,杜宁.新型图像传感器CCD的原理及应用,中州煤炭,1998,1,10-11.
    [51]樊旭峰,单亚拿,卢雁,吕晶.CCD摄像技术用丁分光计实验的研究,大学物理学验,2005,18,36-38.
    [52]Sardesai N P, Barron J C, Rusling J F. Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins, Anal. Chem.,2011,83 (17),6698-6703.
    [53]Venkatanarayanan A, Crowley K, Lestini E, Keyes T E, Rusling J F, Forster R J. High sensitivity carbon nanotube based electrochemiluminescence sensor array, Biosens. Bioelectron.,2012,31 (1),233-239.
    [54]http://www.mesoscale.com/.
    [55]Hvastkovs E G, So M, Krishnan S, Bajrami B, Tarun M, Jansson I, Schenkman J B, Rusling J F. Electrochemiluminescent arrays for cytochrome P450-activated genotoxicity screening. DNA damage from benzo [a] pyrene metabolites, Anal. Chem., 2007,79(5),1897-1906.
    [56]Krishnan S, Hvastkovs E G, Bajrami B, Jansson I, Schenkman J B, Rusling J F. Genotoxicity screening for N-nitroso compounds. Electrochemical and electrochemiluminescent detection of human enzyme-generated DNA damage from N-nitrosopyrrolidine, Chem. Commun.,2007,1713-1715.
    [57]Krishnan S, Hvastkovs E G, Bajrami B, Choudhary D, Schenkman J B, Rusling J F. Synergistic metabolic toxicity screening using microsome/DNA electrochemiluminescent arrays and nanoreactors, Anal. Chem.,2008,80 (14), 5279-5285.
    [58]Krishnan S, Hvastkovs E G, Bajrami B, Schenkman J B, Rusling J F. Human cyt P450 mediated metabolic toxicity of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) evaluated using electrochemiluminescent arrays, Mol. BioSyst.,2009,5 (2),163-169.
    [59]Pan S, Zhao L, Schenkman J B, Rusling J F. Evaluation of electrochemiluminescent metabolic toxicity screening arrays using a multiple compound set, Anal. Chem.,2011, 83 (7),2754-2760.
    [60]Pan S, Sardesai N P, Liu H, Li D, Rusling J F. Assessing DNA damage from enzyme-oxidized single-walled carbon nanotubes, Toxicol. Res.,2013,2 (6),375-378.
    [61]Marquette C, Blum L. Self-containing reactant biochips for the electrochemiluminescent determination of glucose, lactate and choline, Sens. Actuator B-Chem.,2003,90(1),112-117.
    [62]Marquette C A, Degiuli A, Blum L J. Electrochemiluminescent biosensors array for the concomitant detection of choline, glucose, glutamate, lactate, lysine and urate, Biosens. Bioelectron.,2003,19 (5),433-439.
    [63]Marquette C A, Blum L J. Conducting elastomer surface texturing:a path to electrode spotting:Application to the biochip production, Biosens. Bioelectron.,2004,20 (2), 197-203.
    [64]Corgier B P, Marquette C A, Blum L J. Screen-printed electrode microarray for electrochemiluminescent measurements, Anal. Chim. Acta,2005,538 (1),1-7.
    [65]Zhou Z, Xu L, Wu S, Su B. A novel biosensor array with a wheel-like pattern for glucose, lactate and choline based on electrochemiluminescence imaging, Analyst,2014, DOI:10.1039/C1034AN00687A.
    [66]Delaney J L, Hogan C F, Tian J, Shen W. Electrogenerated chemiluminescence detection in paper-based microfluidic sensors, Anal. Chem.,2011,83 (4),1300-1306.
    [67]Sardesai N P, Kadimisetty K, Faria R, Rusling J F. A microfluidic electrochemiluminescent device for detecting cancer biomarker proteins, Anal. Bioanal. Chem.,2013,405,3831-3838.
    [68]Wasalathanthri D P, Malla S, Bist I, Tang C K, Faria R C, Rusling J F. High-throughput metabolic genotoxicity screening with a fluidic microwell chip and electrochemiluminescence, Lab Chip,2013,13 (23),4554-4562.
    [69]Mani V, Kadimisetty K, Malla S, Joshi A A, Rusling J F. Paper-based electrochemiluminescent screening for genotoxic activity in the environment, Environ. Sci. Technol.,2013,47(4),1937-1944.
    [70]吴锁柱.微流控液滴液液萃取和电化学检测系统的研究[博士学位论文],杭州:浙江大学,2013.
    [71]Chow K F, Mavre F, Crooks J A, Chang B Y, Crooks R M. A large-scale, wireless electrochemical bipolar electrode microarray, J. Am. Chem. Soc,2009,131 (24), 8364-8365.
    [72]Fosdick S E, Crooks J A, Chang B Y, Crooks R M. Two-dimensional bipolar electrochemistry, J. Am. Chem. Soc.,2010,132 (27),9226-9227.
    [73]Mavre F, Anand R K, Laws D R, Chow K F, Chang B Y, Crooks J A, Crooks R M. Bipolar electrodes:A useful tool for concentration, separation, and detection of analytes in microelectrochemical systems, Anal. Chem.,2010,82 (21),8766-8774.
    [74]Wu M, Yuan D, Xu J, Chen H. Electrochemiluminescence on bipolar electrodes for visual bioanalysis, Chem. Sci.,2013,4 (3),1182-1188.
    [75]Chow K F, Mavre F, Crooks R M. Wireless electrochemical DNA microarray sensor, J. Am. Chem. Soc.,2008,130 (24),7544-7545.
    [76]Wu S, Zhou Z, Xu L, Su B. Integrating bipolar electrochemistry and electrochemiluminescence imaging with microfluidic droplets for chemical analysis, Biosens. Bioelectron.,2014,53,148-153.
    [77]Dolci L S, Zanarini S, Ciana L D, Paolucci F, Roda A. Development of a new device for ultrasensitive electrochemiluminescence microscopy imaging, Anal. Chem.,2009,81 (15),6234-6241.
    [78]Deiss F, LaFratta C N, Symer M, Blicharz T M, Sojic N, Walt D R. Multiplexed sandwich immunoassays using electrochemiluminescence imaging resolved at the single bead level, J. Am. Chem. Soc.,2009,131 (17),6088-6089.
    [79]Sentic M, Loget G, Manojlovic D, Kuhn A, Sojic N. Light-emitting electrochemical "swimmers", Angew. Chem. Int. Ed.,2012,51 (45),11284-11288.
    [80]Lin Z, Chen X, Jia T, Wang X, Xie Z, Oyama M, Chen X. Fabrication of a colorimetric electrochemiluminescence sensor, Anal. Chem.,2009,81 (2),830-833.
    [81]Doeven E H, Zammit E M, Barbante G J, Hogan C F, Barnett N W, Francis P S. Selective excitation of concomitant electrochemiluminophores:tuning emission color by electrode potential, Angew. Chem. Int. Ed.,2012,51 (18),4354-4357.
    [82]Doeven E H, Zammit E M, Barbante G J, Francis P S, Barnett N W, Hogan C F. A potential-controlled switch on/off mechanism for selective excitation in mixed electrochemiluminescent systems, Chem. Sci.,2013,4 (3),977-982.
    [83]Doeven E H, Barbante G J, Kerr E, Hogan C F, Endler J A, Francis P S. Red-green-blue electro generated chemiluminescence utilizing a digital camera as detector, Anal. Chem., 2014,86 (5),2727-2732.
    [84]Engstrom R C, Johnson K W, Desjarlais S. Characterization of electrode heterogeneity with electrogenerated chemiluminescence, Anal. Chem.,1987,59 (4),670-673.
    [85]Wightman R M, Curtis C L, Flowers P A, Maus R G, McDonald E M. Imaging Microelectrodes with High-frequency electrogenerated chemiluminescence, J. Phys. Chem. B,1998,102 (49),9991-9996.
    [86]Maus R G, McDonald E M, Wightman R M. Imaging of nonuniform current density at microelectrodes by electrogenerated chemiluminescence, Anal. Chem.,1999,71 (21), 4944-4950.
    [87]Fan F R F, Cliffel D, Bard A J. Scanning electrochemical microscopy.37. Light emission by electrogenerated chemiluminescence at SECM tips and their application to scanning optical microscopy, Anal. Chem.,1998,70 (14),2941-2948.
    [88]Zu Y B, Ding Z F, Zhou J F, Lee Y M, Bard A J. Scanning optical microscopy with an electrogenerated chemiluminescent light source at a nanometer tip, Anal. Chem.,2001, 73(10),2153-2156.
    [89]Maus R G, Wightman R M. Microscopic imaging with electrogenerated chemiluminescence, Anal. Chem.,2001,73 (16),3993-3998.
    [90]Szunerits S, Tam J M, Thouin L, Amatore C, Walt D R. Spatially resolved electrochemiluminescence on an array of electrode tips, Anal. Chem.,2003,75 (17), 4382-4388.
    [91]Chovin A, Garrigue P, Sojic N. Electrochemiluminescent detection of hydrogen peroxide with an imaging sensor array, Electrochim. Acta,2004,49 (22),3751-3757.
    [92]Chovin A, Garrigue P, Vinatier P, Sojic N. Development of an ordered array of optoelectrochemical individually readable sensors with submicrometer dimensions: application to remote electrochemiluminescence imaging, Anal. Chem.,2004,76 (2), 357-364.
    [93]Chovin A, Garrigue P, Sojic N. Remote NADH imaging through an ordered array of electrochemiluminescent nanoapertures, Bioelectrochemistry,2006,69 (1),25-33.
    [94]Zhou H, Kasai S, Matsue T. Imaging localized horseradish peroxidase on a glass surface with scanning electrochemical/chemiluminescence microscopy, Anal. Biochem., 2001,290(1),83-88.
    [95]Zhou H, Kasai S, Yasukawa T, Matsue T. Imaging the activity of immobilized horse radish peroxidase with scanning electrochemical/chemiluminescence microscopy, Electrochemistry,1999,57(12),1135-1137.
    [96]Chang Y, Palacios R E, Chen J, Stevenson K J, Guo S, Lackowski W M, Barbara P F. Electrogenerated chemiluminescence of solitori waves in conjugated polymers, J. Am. Chem. Soc.,2009,131 (40),14166-14167.
    [97]Guo S, Fabian O, Chang Y, Chen J, Lackowski W M, Barbara P F. Electrogenerated chemiluminescence of conjugated polymer films from patterned electrodes, J. Am. Chem. Soc.,2011,133 (31),11994-12000.
    [98]Chen J, Chang Y, Fabian O, Guo S, Lackowski W M, Barbara P F. Effects on oxidation waves of conjugated polymers by studying photoluminescence quenching and electrogenerated chemiluminescence, J. Phys. Chem. C,2011,115 (20),10256-10263.
    [99]Shultz L L, Stoyanoff J S, Nieman T A. Temporal and spatial analysis of electrogenerated Ru(bpy)33+ chemiluminescent reactions in flowing streams, Anal. Chem.,1996,68 (2),349-354.
    [100]李重阳,李波阳,李敏刚,耿晓鹏,王伟.指纹显现技术发展综述,公安大学学报(自然科学版),2003,35,22-27.
    [101]Lee H C, Gaensslen R E. Advances in Fingerprint Technology, Second ed., CRC Press: Boca Raton,2001.
    [102]Hawthorne M R. Fingerprint Analysis and Understanding, CRC Press:Boca Raton, 2009.
    [103]Champod C, Lennard C, Margot P, Stoilovic M. Fingerprints and Other Ridge Skin Impressions, CRC Press:Boca Raton,2004.
    [104]Wilshire B. Advances in fingerprint detection, Endeavour,1996,20 (1),12-15.
    [105]罗伯特.刘持平等译:《世界指纹史》,中国人民公安大学出版社:北京,2008,103.
    [106]http://www.daidaka.com/blog/7.html.
    [107]李重阳,李波阳.指纹学的形成,发展和应用,甘肃科技,2006,22(2),106-107.
    [108]Knowles A. Aspects of physicochemical methods for the detection of latent fingerprints,J. Phys. E:Sci. Instrum.,1978,11 (8),713-721.
    [109]Faulds H. On the skin-furrows of the hand, Nature,1880,22,605.
    [110]Herschel W J. Skin furrows of the hand, Nature,1880,23,76.
    [111]Galton F. Fingerprints, Macmillan and Company,1892.
    [112]Brown R M, Hillman A R. Electrochromic enhancement of latent fingerprints by poly (3,4-ethylenedioxythiophene), Phys. Chem. Chem. Phys.,2012,14 (24),8653-8661.
    [113]王元凤,杨瑞琴,王彦吉.纳米材料显现潜在指纹的研究,中国人民公安大学学报:自然科学版:2007,13(2),1-7.
    [114]Jelly R, Patton E L, Lennard C, Lewis S W. The detection of latent fingermarks on porous surfaces using amino acid sensitive reagents:A review, Anal. Chim. Acta,2009, 652(1),128-142.
    [115]陈艳,张春静,高东梅,杨帆,韩冬雪,牛利.潜指纹显现方法研究进展,应用化学,2011,28(10),1099-1107.
    [116]Connatser R M, Prokes S M, Glembocki O J, Schuler R L, Gardner C W, Lewis S A, Lewis L A. Toward surface-enhanced raman imaging of latent fingerprints, J. Forensic Sci.,2010,55 (6),1462-1470.
    [117]Croxton R S, Baron M G, Butler D, Kent T, Sears V G. Development of a GC-MS method for the simultaneous analysis of latent fingerprint components, J. Forensic Sci., 2006,57(6),1329-1333.
    [118]Ricci C, Phiriyavityopas P, Curum N, Chan K, Jickells S, Kazarian S G. Chemical imaging of latent fingerprint residues, Appl. Spectrosc,2007,61 (5),514-522.
    [119]Bramble S. Separation of latent fingermark residue by thin-layer chromatography, J. Forensic Sci.,1995,40,969-975.
    [120]Croxton R S, Baron M G, Butler D, Kent T, Sears V G. Variation in amino acid and lipid composition of latent fingerprints, Forensic Sci. Int.,2010,199 (1),93-102.
    [121]Weyermann C, Roux C, Champod C. Initial results on the composition of fingerprints and its evolution as a function of time by GC/MS analysis, J. Forensic Sci.,2011,56 (1), 102-108.
    [122]Hemmila A, McGill J, Ritter D. Fourier transform infrared reflectance spectra of latent fingerprints:a biometric gauge for the age of an individual, J. Forensic Sci.,2008,53 (2),369-376.
    [123]Asano K G, Bayne C K, Horsman K M, Buchanan M V. Chemical composition of fingerprints for gender determination, J. Forensic Sci.,2002,47 (4),805-807.
    [124]Archer N E, Charles Y, Elliott J A, Jickells S. Changes in the lipid composition of latent fingerprint residue with time after deposition on a surface, Forensic Sci. Int., 2005,154 (2),224-239.
    [125]Girod A, Ramotowski R, Weyermann C. Composition of fingermark residue:A qualitative and quantitative review, Forensic Sci. Int.,2012,223 (1),10-24.
    [126]Hazarika P, Russell D A. Advances in fingerprint analysis, Angew. Chem. Int. Ed., 2012,57(15),3524-3531.
    [127]Chan W C, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science,1998,281 (5385),2016-2018.
    [128]Menzel E. Photoluminescence detection of latent fingerprints with quantum dots for time-resolved imaging, Fingerprint Whorld,2000,26,119-123.
    [129]Menzel E R, Savoy S M, Ulvick S J, Cheng K H, Murdock R H, Sudduth M R. Photoluminescent semiconductor nanocrystals for fingerprint detection, J. Forensic Sci., 2000,45(3),545-551.
    [130]Menzel E, Takatsu M, Murdock R, Bouldin K, Cheng K. Photoluminescent CdS/dendrimer nanocomposites for fingerprint detection, J. Forensic Sci.,2000,45 (4), 770-773.
    [131]Bouldin K K, Menzel E, Takatsu M, Murdock R. Diimide-enhanced fingerprint detection with photoluminescent CdS/dendrimer nanocomposites, J. Forensic Sci.,2000, 45(6),1239-1242.
    [132]Gao D, Li F, Song J, Xu X, Zhang Q, Niu L. One step to detect the latent fingermarks with gold nanoparticles, Talanta,2009,80 (2),479-483.
    [133]Gao D, Song J, Xu X, Han D, Niu L. Application of Gold Nanoparticles for Enhancement of Latent Fingerprints on Various Substrates in One Step, Acta Chim. Sin., 2010,68(24),2615-2618.
    [134]Choi M J, McBean K E, Ng P H R, McDonagh A M, Maynard P J, Lennard C, Roux C. An evaluation of nanostructured zinc oxide as a fluorescent powder for fingerprint detection, J. Mater. Sci.,2008,43 (2),732-737.
    [135]Choi M J, McDonagh A M, Maynard P, Roux C. Metal-containing nanoparticles and nano-structured particles in fingermark detection, Forensic Sci. Int.,2008,179 (2-3), 87-97.
    [136]Sametband M, Shweky I, Banin U, Mandler D, Almog J. Application of nanoparticles for the enhancement of latent fingerprints, Chem. Commun.,2007,1142-1144.
    [137]Wang Y F, Yang R Q, Wang Y J, Shi Z X, Liu J J. Application of CdSe nanoparticle suspension for developing latent fingermarks on the sticky side of adhesives, Forensic Sci. Int.,2009,185 (1),96-99.
    [138]Saunders G, Cards C. In 74th Conference of the International Association for Identification, Pensacola, USA,1989, pp 14-16.
    [139]Becue A, Champod C, Margot P. Use of gold nanoparticles as molecular intermediates for the detection of fingermarks, Forensic Sci. Int.,2007,168 (2-3),169-176.
    [140]Schnetz B, Margot P. Technical note:latent fingermarks, colloidal gold and multimetal deposition (MMD)-Optimisation of the method, Forensic Sci. Int.,2001,118 (1), 21-28.
    [141]Becue A, Scoundrianos A, Moret S. Detection of fingermarks by colloidal gold (MMD/SMD)- beyond the pH 3 limit, Forensic Sci. Int.,2012,219(1),39-49.
    [142]Stauffer E, Becue A, Singh K V, Thampi K R, Champod C, Margot P. Single-metal deposition (SMD) as a latent fingermark enhancement technique:an alternative to multimetal deposition (MMD), Forensic Sci. Int.,2007,168(1), e5-e9.
    [143]Jaber N, Lesniewski A, Gabizon H, Shenawi S, Mandler D, Almog J. Visualization of latent fingermarks by nanotechnology:reversed development on paper—A remedy to the variation in sweat composition, Angew. Chem. Int. Ed.,2012,51 (49),12224-12227.
    [144]Shenawi S, Jaber N, Almog J, Mandler D. A novel approach to fingerprint visualization on paper using nanotechnology:reversing the appearance by tailoring the gold nanoparticles' capping ligands, Chem. Commun.,2013,49 (35),3688-3690.
    [145]Kwak G, Lee W E, Kim W H, Lee H. Fluorescence imaging of latent fingerprints on conjugated polymer films with large fractional free volume, Chem. Commun.,2009, 2112-2114.
    [146]Yang S, Wang C F, Chen S. A release-induced response for the rapid recognition of latent fingerprints and formation of inkjet-printed patterns, Angew. Chem. Int. Ed.,2011, 50 (16),3706-3709.
    [147]Jacky W, SingaKwok H, ZhongaTang B. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chem. Commun.,2001,1740-1741.
    [148]Li Y, Xu L, Su B. Aggregation induced emission for the recognition of latent fingerprints, Chem. Commun.,2012,48 (34),4109-4111.
    [149]Xu L, Li Y, Hu R, Li S, Qin A, Tang B Z, Su B. Enhancing the visualization of latent fingerprints by aggregation induced emission of siloles, Analyst,2014,139 (10), 2332-2335.
    [150]Zhang M Q, Becue A, Prudent M, Champod C, Girault H H. SECM imaging of MMD-enhanced latent fingermarks, Chem. Commun.,2007,3948-3950.
    [151]Zhang M Q, Girault H H. Fingerprint imaging by scanning electrochemical microscopy, Electrochem. Commun.,2007,9 (7),1778-1782.
    [152]Zhang M, Girault H H. SECM for imaging and detection of latent fingerprints, Analyst, 2009,134(1),25-30.
    [153]Qin G, Zhang M, Zhang T, Zhang Y, Mclntosh M, Li X, Zhang X. Label-free electrochemical imaging of latent fingerprints on metal surfaces, Electroanalysis,2012, 24(5),1027-1032.
    [154]Zhang M, Qin G, Zuo Y, Zhang T, Zhang Y, Su L, Qiu H, Zhang X. SECM imaging of latent fingerprints developed by deposition of Al-doped ZnO thin film, Electrochim. Acta,2012,75,412-416.
    [155]Shan X, Patel U, Wang S, Iglesias R, Tao N. Imaging local electrochemical current via surface plasmon resonance, Science,2010,327 (5971),1363-1366.
    [156]Williams G, McMurray H N, Worsley D A. Latent fingerprint detection using a scanning Kelvin microprobe, J. Forensic Sci.,2001,46 (5),1085-1092.
    [157]Williams G, McMurray N. Latent fingermark visualisation using a scanning Kelvin probe, Forensic Sci. Int.,2007,167,102-109.
    [158]Beresford A L, Hillman A R. Electrochromic enhancement of latent fingerprints on stainless steel surfaces, Anal. Chem.,2010,32 (2),483-486.
    [159]夏彬彬,杨瑞琴,王彦吉.化学成像技术在手印显现和增强中的应用,光谱学与光谱分析,2010,30(5),1367-1370.
    [160]Ricci C, Bleay S, Kazarian S G. Spectroscopic imaging of latent fingermarks collected with the aid of a gelatin tape, Anal. Chem.,2007,79 (15),5771-5776.
    [161]Bhargava R, Perlman R S, Fernandez D C, Levin I W, Bartick E G. Non-invasive detection of superimposed latent fingerprints and inter-ridge trace evidence by infrared spectroscopic imaging, Anal. Bioanal. Chem.,2009,394 (8),2069-2075.
    [162]Ira W. Infrared spectroscopic imaging of latent fingerprints and associated forensic evidence, Analyst,2009,134 (9),1902-1904.
    [163]Mou Y, Rabalais J W. Detection and identification of explosive particles in fingerprints using attenuated total reflection-Fourier transform infrared spectromicroscopy, J. Forensic Sci.,2009,54 (4),846-850.
    [164]Day J S, Edwards H G, Dobrowski S A, Voice A M. The detection of drugs of abuse in fingerprints using Raman spectroscopy I:latent fingerprints, Spectroc. Acta PL A-Molec. Biomolec. Spectr.,2004,60 (3),563-568.
    [165]Day J S, Edwards H G, Dobrowski S A, Voice A M. The detection of drugs of abuse in fingerprints using Raman spectroscopy Ⅱ:cyanoacrylate-fumed fingerprints, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.,2004,60 (8),1725-1730.
    [166]West M J, Went M J. The spectroscopic detection of exogenous material in fingerprints after development with powders and recovery with adhesive lifters, Forensic Sci. Int.,2008,174 (1),1-5.
    [167]West M J, Went M J. The spectroscopic detection of drugs of abuse in fingerprints after development with powders and recovery with adhesive lifters, Spectroc. Acta Pt. A-Molec. Biomolec. Spectn.,2009,71 (5),1984-1988.
    [168]Widjaja E. Latent fingerprints analysis using tape-lift, Raman microscopy, and multivariate data analysis methods, Analyst,2009,134 (4),769-775.
    [169]Song W, Mao Z, Liu X, Lu Y, Li Z, Zhao B, Lu L. Detection of protein deposition within latent fingerprints by surface-enhanced Raman spectroscopy imaging, Nanoscale, 2012,4 (7),2333-2338.
    [170]Hartzell-Baguley B, Hipp R E, Morgan N R, Morgan S L. Chemical composition of latent fingerprints by gas chromatography-mass spectrometry, J. Chem. Educ.,2007,84 (4),689.
    [171]Mountfort K A, Bronstein H, Archer N, Jickells S M. Identification of oxidation products of squalene in solution and in latent fingerprints by ESI-MS and LC/APCI-MS, Anal. Chem.,2007,79 (7),2650-2657.
    [172]Richmond-Aylor A, Bell S, Callery P, Morris K. Thermal degradation analysis of amino acids in fingerprint residue by pyrolysis GC-MS to develop new latent fingerprint developing reagents, J. Forensic Sci.,2007,52 (2),380-382.
    [173]Ifa D R, Manicke N E, Dill A L, Cooks R G. Latent fingerprint chemical imaging by mass spectrometry, Science,2008,321 (5890),805-805.
    [174]Bailey M, Ismail M, Bleay S, Bright N, Elad M L, Cohen Y, Geller B, Everson D, Costa C, Webb R. Enhanced imaging of developed fingerprints using mass spectrometry imaging, Analyst,2013,138 (21),6246-6250.
    [175]Yagnik G B, Korte A R, Lee Y J. Multiplex mass spectrometry imaging for latent fingerprints, J. Mass Spectrom.,2013,48 (1),100-104.
    [176]Bright N J, Webb R P, Bleay S, Hinder S, Ward N I, Watts J F, Kirkby K J, Bailey M J. Determination of the deposition order of overlapping latent fingerprints and inks using secondary ion mass spectrometry, Anal. Chem.,2012,84 (9),4083-4087.
    [177]Ferguson L, Bradshaw R, Wolstenholme R, Clench M, Francese S. Two-step matrix application for the enhancement and imaging of latent fingermarks, Anal. Chem.,2011, 83 (14),5585-5591.
    [178]Hinder S J, Watts J F. SIMS fingerprint analysis on organic substrates, Surf. Interface Anal,2010,42 (6-7),826-829.
    [179]Wolstenholme R, Bradshaw R, Clench M R, Francese S. Study of latent fingermarks by matrix-assisted laser desorption/ionisation mass spectrometry imaging of endogenous lipids, Rapid Commun. Mass Spectrom.,2009,23 (19),3031-3039.
    [180]Forbes T P, Sisco E. Chemical imaging of artificial fingerprints by desorption electro-flow focusing ionization mass spectrometry, Analyst,2014,139,2982-2985.
    [181]Rowell F, Hudson K, Seviour J. Detection of drugs and their metabolites in dusted latent fingermarks by mass spectrometry, Analyst,2009,134 (4),701-707.
    [182]Tang H, Lu W, Che C, Ng K. Gold nanoparticles and imaging mass spectrometry: double imaging of latent fingerprints, Anal. Chem.,2010,82 (5),1589-1593.
    [183]Francese S, Bradshaw R, Flinders B, Mitchell C, Bleay S, Cicero L, Clench M R. Curcumin:A multipurpose matrix for MALDI mass spectrometry imaging applications, Anal. Chem.,2013,85 (10),5240-5248.
    [184]Niziol J, Ruman T. Surface-transfer mass spectrometry imaging on a monoisotopic silver nanoparticle enhanced target, Anal. Chem.,2013,85 (24),12070-12076.
    [185]Khedr A. The profile of free amino acids in latent fingerprint of healthy and beta-thalassemic volunteers,J. Chromatogr. B,2010,878 (19),1576-1582.
    [186]Rowell F, Seviour J, Lim A Y, Elumbaring-Salazar C G, Loke J, Ma J. Detection of nitro-organic and peroxide explosives in latent fingermarks by DART-and SALDI-TOF-mass spectrometry, Forensic Sci. Int.,2012,221 (1),84-91.
    [187]Benton M, Rowell F, Sundar L, Jan M. Direct detection of nicotine and cotinine in dusted latent fingermarks of smokers by using hydrophobic silica particles and MS, Surf. Interface Anal.,2010,42 (5),378-385.
    [188]Benton M, Chua M, Gu F, Rowell F, Ma J. Environmental nicotine contamination in latent fingermarks from smoker contacts and passive smoking, Forensic Sci. Int.,2010, 200 (1),28-34.
    [189]Ferguson L S, Wulfert F, Wolstenholme R, Fonville J M, Clench M R, Carolan V A, Francese S. Direct detection of peptides and small proteins in fingermarks and determination of sex by MALDI mass spectrometry profiling, Analyst,2012,137 (20), 4686-4692.
    [190]Francese S, Bradshaw R, Ferguson L S, Wolstemholme R, Clench M, Bleay S. Beyond the ridge pattern:Multi-informative analysis of latent fingermarks by MALDI Mass Spectrometry, Analyst,2013,138,4215-4228.
    [191]Leggett R, Lee-Smith E E, Jickells S M, Russell D A. "Intelligent" fingerprinting: Simultaneous identification of drug metabolites and individuals by using antibody-functionalized nanoparticles, Angew. Chem. Int. Ed.,2007,46 (22), 4100-4103.
    [192]Wolfbeis O S. Nanoparticle-enhanced fluorescence imaging of latent fingerprints reveals drug abuse, Angew. Chem. Int. Ed.,2009,48(13),2268-2269.
    [193]Boddis A M, Russell D A. Simultaneous development and detection of drug metabolites in latent fingermarks using antibody-magnetic particle conjugates, Anal. Methods,2011,3,519-532.
    [194]Boddis A M, Russell D A. Development of aged fingermarks using antibody-magnetic particle conjugates, Anal. Methods,2012,4,637-641.
    [195]Hazarika P, Jickells S M, Russell D A. Rapid detection of drug metabolites in latent fingermarks, Analyst,2009,134,93-96.
    [196]Hazarika P, Jickells S M, Wolff K, Russell D A. Imaging of latent fingerprints through the detection of drugs and metabolites, Angew. Chem. Int. Ed.,2008,47 (52), 10167-10170.
    [197]Hazarika P, Jickells S M, Wolff K, Russell D A. Multiplexed detection of metabolites of narcotic drugs from a single latent fingermark, Anal. Chem.,2010,82 (22), 9150-9154.
    [198]Spindler X, Hofstetter O, McDonagh A M, Roux C, Lennard C. Enhancement of latent fingermarks on non-porous surfaces using anti-L-amino acid antibodies conjugated to gold nanoparticles, Chem. Commun.,2011,#7(19),5602-5604.
    [199]谢海燕,陈薛钗,邓玉林.核酸适配体及其在化学领域的相关应用,化学进展,2007,19(6),1026-1033.
    [200]Wood M, Maynard P, Spindler X, Lennard C, Roux C. Visualization of latent fingermarks using an aptamer-based reagent, Angew. Chem. Int. Ed.,2012,51 (49), 12272-12274.
    [201]Li K, Qin W, Li F, Zhao X, Jiang B, Wang K, Deng S, Fan C, Li D. Nanoplasmonic imaging of latent fingerprints and identification of cocaine, Angew. Chem. Int. Ed., 2013,52,11542-11545.
    [202]Wang J, Wei T, Li X, Zhang B, Wang J, Huang C, Yuan Q. Near-infrared-light-mediated imaging of latent fingerprints based on molecular recognition, Angew. Chem. Int. Ed.,2014,53 (6),1616-1620.
    [203]Terpetschnig E, Szmacinski H, Malak H, Lakowicz J R. Metal-ligand complexes as a new class of long-lived fluorophores for protein hydrodynamics, Biophys. J.,1995,68 (1),342-350.
    [204]Wang H, Zhang C, Li Y, Qi H. Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes, Anal. Chim. Acta,2006,575 (2),205-211.
    [205]Xue L, Guo L, Qiu B, Lin Z, Chen G. Mechanism for inhibition of Ru(bpy)32+/DBAE electrochemiluminescence system by dopamine, Electrochem. Commun.,2009,11 (8), 1579-1582.
    [206]Xu L, Li Y, Wu S, Liu X, Su B. Imaging latent fingerprints by electrochemi-luminescence, Angew. Chem. Int. Ed.,2012,51,8068-8072.
    [207]Xu L, Li Y, He Y, Su B. Non-destructive enhancement of latent fingerprints on stainless steel surfaces by electrochemiluminescence, Analyst,2013,138 (8), 2357-2362.
    [208]许林茹,何亚芸,苏彬.基于鲁米诺电化学发光成像的潜在指纹显现技术,化学 通报,2014,77(1),86-89.
    [209]朱连德,朱果逸.电化学发光传感器研究进展,分析科学学报,2003,19(3),277-281.
    [210]Wilson R, Clavering C, Hutchinson A. Electrochemiluminescence enzyme immunoassays for TNT and pentaerythritol tetranitrate, Anal. Chem.,2003,75 (16), 4244-4249.
    [211]Wilson R, Clavering C, Hutchinson A. Electrochemiluminescence enzyme immunoassay for TNT, Analyst,2003,128 (5),480-485.
    [212]Wilson R, Clavering C, Hutchinson A. Paramagnetic bead based enzyme electrochemiluminescence immunoassay for TNT, J. Electroanal. Chem.,2003,557, 109-118.
    [213]Marquette C A, Blum L J. Conducting elastomer surface texturing:a path to electrode spotting-Application to the biochip production, Biosens. Bioelectron.,2004,20 (2), 197-203.
    [214]Kong Y, Chen H, Wang Y, Soper S A. Fabrication of a gold microelectrode for amperometric detection on a polycarbonate electrophoresis chip by photodirected electroless plating, Electrophoresis,2006,27 (14),2940-2950.
    [215]Thorpe G H, Kricka L J, Gillespie E, Moseley S, Amess R, Baggett N, Whitehead T P. Enhancement of the horseradish peroxidase-catalyzed chemiluminescent oxidation of cyclic diacyl hydrazides by 6-hydroxybenzothiazoles, Anal. Biochem.,1985,145 (1), 96-100.
    [216]张美芹,张亭,秦刚,张扬,张学记.血指印检测研究进展,应用化学,2012,29(1),1-8.
    [217]Wood P J. Understanding Immunology, Pearson Education,2006.
    [218]Wilson M. Microbial Inhabitants of Humans, Cambridge University Press,2005.
    [219]Schittek B, Hipfel R, Sauer B, Bauer J, Kalbacher H, Stevanovic S, Schirle M, Schroeder K, Blin N, Meier F. Dermcidin:a novel human antibiotic peptide secreted by sweat glands, Nat. Immunol,2001,2 (12),1133-1137.
    [220]Carpenter G, Cohen S. Epidermal growth factor, Annu. Rev. Biochem.,1979,48 (1), 193-216.
    [221]Carpenter G, Cohen S. Epidermal growth factor, J. Biol. Chem.,1990,265 (14), 7709-7712.
    [222]Drapel V, Becue A, Champod C, Margot P. Identification of promising antigenic components in latent fingermark residues, Forensic Sci. Int.,2009,184 (1),47-53.
    [223]Muzyka K. Current trends in the development of the electrochemiluminescent immunosensors, Biosens. Bioelectron.,2014,54,393-407.
    [224]Deng S, Ju H. Electrogenerated chemiluminescence of nanomaterials for bioanalysis, Analyst,2013,138 (1),43-61.
    [225]Huang H, Li J, Zhu J-J. Electrochemiluminescence based on quantum dots and their analytical application, Analytical Methods,2011,3 (1),33-42.
    [226]Wei H, Wang E. Electrochemiluminescence of tris(2,2'-bipyridyl)ruthenium and its applications in bioanalysis:a review, Luminescence,2011,26 (2),77-85.
    [227]Forster R J, Bertoncello P, Keyes T E. Electrogenerated chemiluminescence, Annu. Rev. Anal. Chem.,2009,2,359-385.
    [228]Gorman B A, Francis P S, Barnett N W. Tris(2,2'-bipyridyl)ruthenium(Ⅱ) chemiluminescence, Analyst,2006,131 (5),616-639.
    [229]Yin X B, Dong S J, Wang E. Analytical applications of the electrochemiluminescence of tris (2.2'-bipyridyl) ruthenium and its derivatives, TrAC,2004,23 (6),432-441.
    [230]Knight A W. A review of recent trends in analytical applications of electrogenerated chemiluminescence, TrAC,1999,18(1),41-62.
    [231]Gerardi R D, Barnett N W, Lewis S W. Analytical applications of tris(2,2'-bipyridyl)ruthenium(Ⅲ) as a chemiluminescent reagent, Anal. Chim. Acta, 1999,378,1-41.
    [232]Knight A W, Greenway G M. Occurrence, mechanisms and analytical applications of electrogenerated chemiluminescence, Analyst,1994,119 (5),879-890.
    [233]Wood M, Maynard P, Spindler X, Roux C, Lennard C. Selective targeting of fingermarks using immunogenic techniques, Aust. J. Forensic Sci.,2013,45 (2), 211-226.