吡啶甲醛及含吸电子基苯甲醛和苯乙醛的合成方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毗啶甲醛、含吸电子基苯甲醛以及苯乙醛都是非常重要的有机化工中间体,在医药、农药、香料、食品添加剂、染料等多种领域具有十分广泛的应用,市场前景良好。因此,开发高效、低成本、绿色环保的合成工艺,使其能应用于工业化,意义深远。
     在分析、总结文献的基础上,本文以绿色化学为理念,采用成本低、效率高、环境友好的固定床气相氧化法、缩合氧化法及缩合水解法分别合成吡啶甲醛、含吸电子基苯甲醛以及苯乙醛化合物,工艺流程简单,操作方便易行。
     在用固定床气相氧化法合成吡啶甲醛时,本文首先研究了Mo掺杂V/TiO2催化剂对其催化2-甲基吡啶气相氧化合成吡啶-2-甲醛的影响,以H2-TPR、XRD、TEM等方法表征催化剂,详细考察了催化剂组成、煅烧温度、反应温度等条件对催化剂活性的影响,并对2-甲基吡啶水溶液浓度、氧气浓度、催化剂用量等条件进行了优化。研究结果表明,Mo的掺杂提高了V/TiO2催化剂的反应活性及其对目标产品吡啶-2-甲醛的选择性。低反应温度和高煅烧温度可以提高对2-吡啶甲醛的选择性。钒和钼的最佳摩尔比率为2.9:1,催化剂的最佳负载量为7%。最佳反应条件下(催化剂煅烧温度600℃,催化剂用量8g,反应温度290℃,10%2-甲基吡啶水溶液的流速为0.2mL·min-1,氧气的流速为0.1L·min-1),2-甲基吡啶的转化率为70.2%,2-吡啶甲醛的选择性为88.3%,反应速率为1.13mmol·gcat-1·h-1。
     此外,本文首次将Bi-Mo/TiO2催化体系应用于甲基毗啶气相催化氧化合成吡啶甲醛研究,制备了以Bi2Mo3O12(a)和Mo03为活性组分、以二氧化钛为载体的催化剂,并将其用于催化反应研究,发现催化剂的高活性源于α-Bi2Mo3O12和Mo03的协同作用,用XRD、H2-TPR、NH3-TPD、O2-TPD、SEM等方法表征(a-Bi2Mo3O12+MoO3)/TiO2催化剂,并测量了催化剂的比表面积,着重证明了α-Bi2Mo3O12和MoO3协同作用的存在。α-Bi2Mo3O12和MoO3的协同作用不仅稳定了载体TiO:的晶体构型,维持催化剂的比表面积,还提高了催化剂的还原能力、脱氧能力、表面酸性,从而使催化剂表现出较高的反应活性。α-Bi2Mo3O12和Mo03的最佳摩尔比为1:1,最佳反应条件下(催化剂煅烧温度550℃,催化剂用量4g,反应温度290℃,10%的2-甲基吡啶水溶液的流速为0.5mL·min-1,氧气流速为0.1L·min-1),2-甲基吡啶的转化率为70.9%,吡啶-2-甲醛的选择性为83.1%,反应速率为4.13mmol·gcat-1·h-1,与V-Mo催化剂相比,Bi-Mo催化剂的活性更高。
     本文首次以含吸电子基甲苯为同一起始原料,采用缩合氧化法和缩合水解法,两步分别合成了含吸电子基苯甲醛和苯乙醛。
     在缩合反应中,对缩合试剂DMFDMA以及溶剂DMF的用量进行了优化,取得了较好的结果,各个底物反应得到烯胺的收率很高,均在85%以上。
     在烯胺氧化制备苯甲醛化合物时,使用廉价、绿色环保的双氧水作氧化剂,对烯胺进行氧化反应研究,并对溶剂种类及其用量、双氧水用量、反应温度等实验条件进行了优化,反应在温和的条件下进行,得到含吸电子基苯甲醛的收率为500%~70%。在烯胺水解制备苯乙醛化合物时,以盐酸为水解剂,在温和的反应条件下,得到含吸电子基苯乙醛的收率均在80%以上,具有较好的工业化应用价值。
     文中中间体及产品结构均经1HNMR、MS以及GC-MS确证。
Pyridylaldehydes, benzaldehydes and phenylacetaldehydes with electron withdrawing groups as synthetic intermediates are of paramount importance and have a huge market with big potential due to their widespread application in the fields of medicine, agriculture, perfumery, food additives, dyes as well as others. Therefore, it is meaningful to develop high-efficient, low-cost and environmentally-friendly synthetic routes that can be employed in industry.
     After analyzing and summarizing the reported literatures, the methods of gas-phase oxidation in a fixed bed, condensation-oxidation and condensation-hydrolysis which have the advantages of being high-efficient, low cost and environmentally-friendly were designed for the preparation of pyridylaldehydes, benzaldehydes and phenylacetaldehydes with electron withdrawing groups, respectively. The above mentioned methods are simple and easy to practice.
     When preparing pyridylaldehydes, the gas-phase oxidation of2-picoline to2-pyridylaldehyde was studied over Mo modified V/TiO2catalysts in the first place. The newly prepared V-MO/TiO2catalysts were characterized by XRD, H2-TPR and SEM. The effects of catalyst composition, calcination temperature, reaction temperature, concentration of2-picoline solution and oxygen as well as amount of catalyst were investigated in detail. The research results showed that the addition of Mo to V/TiO2greatly increased reducibility and thus the catalytic activity of the catalysts. Low reaction temperature, high calcination temperature and space velocity led to the high selectivity to2-pyridylaldehyde. The optimal V/Mo molar ratio of the catalyst with7%loading amount was2.9:1. Optimal conditions (calcination temperature=600℃, amount of catalyst=8g, reaction temperature=290℃, flow rate of10%2-picoline solution=0.2mL·min-1, oxygen flow rate=0.1L·min-1) of V-Mo/TiO2catalysts gave70.2%conversion and88.3%selectivity with the reaction rate at1.13mmol·gcat-1·h-1.
     The novel system of Bi-Mo/TiO2was first applied in the gas-phase oxidation of picolines to pyridylaldehydes. Catalysts were prepared with Bi2Mo3O12(α) and MoO3as active components supported over TiO2, and were characterized by XRD, H2-TPR, NH3-TPD, O2-TPD as well as SEM. The high activity of the Bi-Mo catalysts mainly stemmed from the synergetic effect between Bi2MO3O12(α) and MoO3which was proved and mainly studied. The synergetic effect not only stabilized the crystallographic structure of TiO2and thus maintained the surface area of the catalysts, but also improved the reducible property, oxygen desorption ability and surface acidity of the catalysts, therefore the high catalytic activity. The optimal molar ratio of Bi2Mo3O12(α) to MoO3was1:1. Optimal conditions (calcination temperature=550℃, amount of catalyst=4g, reaction temperature=290℃, flow rate of10%2-picoline solution=0.5mL·min-1, oxygen flow rate=0.1L·min-1) of Bi-Mo/TiO2catalysts gave70.9%conversion and83.1%selectivity with the reaction rate at4.13mmol·gcat-1·h-1. Compared with V-Mo catalysts, Bi-Mo catalysts were much more active.
     This paper also studied the novel preparation methods of benzaldehydes and phenylacetaldehydes with electron withdrawing groups from toluene derivatives via the two-step condensation-oxidation and condensation-hydrolysis, respectively.
     In consendation reactions, the usage amount of the reagent DMFDMA and solvent DMF was optimized, good results were achieved and the yields of the products enamines were all over85%.
     In preparation of benzaldehyde derivatives via oxidation of enamines, the green and cheap oxidant hydrogen peroxide was used, the experiments were carried out under mild conditions and reaction parameters including solvent and its usage amount, the amount of hydrogen peroxide as well as reaction temperature were optimized, and the yields of the products obtained were between50%and70%. When preparing phenylacetaldehydes derivatives, the experiments were also carried out under mild conditions with hydrochloric acid as hydrolyzing agent, and the yields of the product higher than80%, which is promising to be applied in industrial.
     The structures of the products obtained were verified by1H NMR, MS and GC-MS.
引文
[1]赵天宝.化学试剂·化学药品手册(第二版)M.北京:化学工业出版社,1996:864-865.
    [2]秦勇,王印,郭培良等.一种紫杉醇及其类似物侧链的合成方法[P].CN1709864,2005.
    [3]沈玉梅,任云峰,成康民等.p-榄香烯二胺类衍生物及其合成方法和应用[P].CN101239918,2008.
    [4]刘吉开,卿晨,汤建国等.Flazin类似物及其制备方法与应用[P].CN101037437,2007.
    [5]王立升,尤叶君,杨华等.苦参碱衍生物及其制备方法[P].CN101863887,2010.
    [6]刘颖,刘登科,穆帅等.含有杂环的希夫碱化合物[P].CN102127091,2011.
    [7]曹日晖,武嘉林,于富生等.去氢骆驼蓬碱衍生物及其应用[P].CN101429198,2009.
    [8]宫平,翟鑫,赵燕芳等.青蒿素类衍生物及其应用[P].CN102010421,2011.
    [9]许建华,刘洋,吴丽贤等.姜黄素哌啶酮结构类似物及其用于制备抗肿瘤药物的应用[P].CN101434600,2009.
    [10]马维勇.喹唑啉衍生物及其制备方法和应用[P].CN101081846,2007.
    [11]崔京南,李峰,钱旭红.芳杂环基咪唑并萘酰亚胺化合物及其应用[P].CN1 824665,2006.
    [12]古练权,杜志云,鲍雅丹等.2,6-二吡啶烯环己酮衍生物及其在制备抗菌药物中的应用[P].CN1830962,2006.
    [13]彭玲,张翼,周洁华等.酰腙化合物及其制备方法和用途[P].CN1490308,2004.
    [14]罗先金,张钟闾,薛飞.一种苯并咪唑-4-酰胺型衍生物[P].CN101619058,2010.
    [15]蒋晔,楚立,张建平等.一种哒嗪酮类衍生物及其合成方法[P].CN102206202,2011.
    [16]吴春福,陈国良,李杰等.白藜芦醇衍生物、类似物及其制备方法和用途[P]. CN101139267,2008.
    [17]李松,何新华,郑志兵等.芳酰肼类化合物及其用于制备免疫抑制剂的用途[P].CN1752085,2006.
    [18]姚祝军,周海滨.C环连接有五元杂环的青藤碱衍生物和合成方法[P].CN1687070,2005.
    [19]张军辉,李洪玉,李金岭等.一种比沙可啶的制备方法[P].CN101973932,2011.
    [20]张和胜.合成多奈哌齐及其衍生物的新方法[P].CN1613848,2005.
    [21]李忠,钱旭红,邵旭升等.具有杀虫活性的含氮杂环化合物、其制备及用途[P].CN101492444,2009.
    [22]赖金强,宋国胜,尹标林.茼蒿素类化合物及其合成方法与应用[P].CN101851245,2010.
    [23]徐效华,刘斌,张敏等.橙酮类化合物和与合成方法及其除草方面的应用[P].CN101914081,2010.
    [24]任天瑞.抗逆性植物生长调节剂及其制法和用途[P].CN1433686,2003.
    [25]Oono S., Kishimoto S., Method of processing of color photographic materials [P]. JP 59214855,1984.
    [26]林国强,陈沛然,韩世清等.一类手性杂芳基氰醇及其衍生物、制备方法和用途[P].CN1308074,2001.
    [27]李进飞, 陈东东,钱占山等.一种吡啶丙炔酸酯的合成方法[P].CN101654431,2010.
    [28]Zi G. F., Zhang F. R., Liu X., et al, Synthesis, structure, and catalytic activity of titanium(IV) and zirconium(IV) amides with chiral biphenyldiamine-based ligands [J]. J. Organomet. Chem.,2010,695(5):730-739.
    [29]Zhang L., Murphy C. S., Kuang G. C., et al., A fluorescent heteroditopic ligand responding to free zinc ion over six orders of magnitude concentration range [J]. Chem. Commun.,2009,47:7408-7410.
    [30](a) He X., Shen Z., Mo W., et al., TEMPO-tert-butyl nitrite:an efficient catalytic system for aerobic oxidation of alcohols [J]. Adv. Synth. Catal.,2009, 351(1+2):89-92. (b) Liu R., Liang X., Dong C., et al., Transition-metal-free:A highly efficient catalytic aerobic alcohol oxidation process [J]. J. Am. Chem. Soc., 2004,126(13):4112-4113. (c) Wang N., Liu R., Chen J., et al., NaNO2-activated, iron-TEMPO catalyst system for aerobic alcohol oxidation under mild conditions [J]. Chem. Commun.,2005,42:5322-5324. (d) Liu R., Dong C., Liang X., et al., Highly efficient catalytic aerobic oxidations of benzylic alcohols in water [J]. J. Org. Chem.,2005,70(2):729-731. (e) Jiang N., Vinci D., Liotta C. L., et al., Piperylene sulfone:A recyclable dimethyl sulfoxide substitute for copper-catalyzed aerobic alcohol oxidation [J]. Ind. Eng. Chem. Res.,2008, 47(3):627-631.
    [31](a) Korovchenko P., Donze C., Gallezot P., et al., Oxidation of primary alcohols with air on carbon-supported platinum catalysts for the synthesis of aldehydes or acids [J]. Catal. Today.,2007,121(1-2):13-21. (b) Mori S., Takubo M., Makida K., et al., A simple and efficient oxidation of alcohols with ruthenium on carbon [J]. Chem. Commun.,2009,34:5159-5161. (c) Liu H., Liu Y, Li Y., et al., Metal-organic framework supported gold nanoparticles as a highly active heterogeneous catalyst for aerobic oxidation of alcohols [J]. J. Phys. Chem. C., 2010,114(31):13362-13369.
    [32](a) Zhu M., Li B., He P., et al., Oxidant-dependent selective oxidation of alcohols utilizing multinuclear coppertriethanolamine complexes [J]. Tetrahedron,2008, 64(39):9239-9243. (b) Koeckritz A., Sebek M., Dittmar A., et al., Ru-catalyzed oxidation of primary alcohols [J]. J. Mol. Catal. A:Chem.,2006,246(1-2):85-99. (c) Krohn K., Khanbabaee K., Rieger H., Transition-metal-catalyzed oxidations.2. Titanium- or zirconium-catalyzed selective dehydrogenation of benzyl alcohols to aldehydes and ketones with tert-butyl hydroperoxide [J]. Chem. Ber.,1990, 123(6):1357-1364.
    [33]Kamalakar G, Kulkarni S. J., Raghavan K. V., Liquid phase oxidative dehydrogenation of 2-picolyl alcohol to pyridine-2-carboxaldehyde over modified ZSM-5 catalysts [J]. Microporous. Mesoporous. Mater.,1999,29(3):283-290.
    [34]Boekelheide V., Linn W. J., Rearrangements of N-oxides. A novel synthesis of pyridyl carbinols and aldehydes [J]. J. Am. Chem. Soc.,1954,76:1286-1291.
    [35]Edwards W. M., Teague P. C., Preparation of 2-pyridylmethanol [J]. J. Am. Chem. Soc.,1949,71:3548.
    [36]Kost A. N., Vorob'eva L. I., Shibilkina O. K., et al., Hydroxymethylpyridines [P]. SU 803369,1987.
    [37]Kanbara Y., Abe T., Fushimi N., et al., Base-catalyzed direct transformation of benzylamines into benzyl alcohols [J]. Synlett.,2012,23(5):706-710.
    [38]陈群,何明阳,陈圣春等.2-吡啶甲醛的制备方法[P].CN 1763009,2006.
    [39]Siegrist U., Szezepanski H., Process for the preparation of aqueous nicotinaldehyde [P]. EP613888,1994.
    [40]Munoz J. M., Alcazar J., de la Hoz A., et al., Application of flow chemistry to the reduction of nitriles to aldehydes [J]. Tetrahedron. Lett.,2011,52(46):6058-6060.
    [41]聂亮,李文生,周小平.芳香烯烃催化氧化制备芳香醛[P].CN1800132,2006.
    [42]Zimmermann C., Seebauer F., Werenka C., et al, Process for the safe ozonolysis of organic compounds in flammable solvents [P]. WO2008077769,2008.
    [43]Wang M. L., Rajendran V., A study of synthesizing benzaldehydes from propenylbenzenes and cinnamic acid derivatives [J]. J. Chin. Inst. Chem. Eng., 2008,39(5):533-537.
    [44]Miyazawa A., Tanaka T., Itakura T., et al., Micromixers for high-efficiency preparation of aldehydes by reaction of alkyl esters and metal hydrides [P]. JP2007050340,2007.
    [45]黄胜堂,黄文龙,张惠斌.2-吡啶甲醛合成工艺的改进[J].化学试剂,2005,27(1):58.
    [46]沈大冬,朱锦桃.2-吡啶甲醛的制备[J].中国医药工业杂志,2006,37(7):448.
    [47]Marcot B., Palland R., Oxidation of several pyridine derivatives [J]. Compt. Rend.,1959,248:252-254.
    [48]Takehira K., Shishido T., Song Z., et al, Crystalline CrV0.95P0.05O4 catalyst for the vapor-phase oxidation of picolines [J]. Catal. Today.,2004,91-92:7-11.
    [49]田部浩山.新固体酸和碱及其催化作用[M].北京:化学工业出版社,1992:4-19.
    [50]陈英奇,戴立言,杨能渭.2-甲基吡啶气相催化氧化合成2-吡啶甲醛的研究[J].高校化学工程学报,2002,16(4):436-440.
    [51]Leitis L., Shimanskaya M. V., Vapor phase-contact oxidation of a-picoline [J]. Kim. Ser.,1963,5:567-574.
    [52]Sun Q., Jehng J. M., Hu H., et al., In situ Raman spectroscopy during the partial oxidation of methane to formaldehyde over supported vanadium oxide catalysts [J].J. Catal.,1991,165(1):91-101.
    [53]Grzybowska-Swierkosz B., Vanadia-titania catalysts for oxidation of o-xylene and other hydrocarbons [J]. Appl. Catal. A:Gen.,1997,157:263-310.
    [54]Wachs I. E., Jehng J. M., Deo G, Weckhuysen B. M., Guliants V. V., Benziger J. B., In situ Raman spectroscopy studies of bulk and surface metal oxide phases during oxidation reactions [J]. Catal. Today.,1996,32(1-4):47-55
    [55]Deo G., Wachs I. E., Reactivity of supported vanadium oxide catalysts:The partial oxidation of methanol [J]. J. Catal.,1994,146:323-334.
    [56]Tewary P. K., Lal G, Ganesan K., Vapor phase oxidation of 2-methylpyridine on V2O5/TiO2(anatase) catalysts [J]. React. Kinet. Catal. Lett.,1990,41:283-290.
    [57]Wachs I. E., Weckhuysen B. M., Structure and reactivity of surface vanadium oxide species on oxide supports [J]. Appl. Catal. A:Gen.,1997,157:67-90.
    [58]Vedrine J. C., Millet J. M. M., Volta J. C., Molecular description of active sites in oxidation reactions:Acid-base and redox properties, and role of water [J]. Catal. Today.,1996,32:115-123.
    [59]Alemany L. J., Lietti L., Ferlazzo N., et al, Reactivity and physicochemical characterization of V2O5-WO3/TiO2 De-NOx catalysts [J]. J. Catal.,1995, 155(1):117-130
    [60]Kim B. G., Ju W. D., Kim I., et al., Performance of vanadium-molybdenum mixed oxide catalysts in selective oxidation of hydrogen sulfide containing excess water and ammonia [J]. Solid. State. Ionics.,2004,172(1-4):135-138.
    [61]Arena F., Giordano N., Parmaliana A., Working mechanism of oxide catalysts in the partial oxidation of methane to formaldehyde [J]. J. Catal,1997, 167(1):66-76.
    [62]Deo G, Wachs I. E., Haber J., Supported vanadium oxide catalysts. Molecular structural characterization and reactivity properties [J]. Critic. Rev. Surf. Chem., 1994,4(3-4):141-187.
    [63]Zenkovets G. A., Gavrilov V. Y., Kryukova G. N., et al., Effect of the conditions of thermal treatment of molybdenum-titanium and vanadium-molybdenum-titanium oxide catalysts on pore structure formation [J]. Kinet. Catal.,2002, 43:573-579.
    [64]Wachs I. E., Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials [J]. Catal. Today.,2005,100(1-2):79-94.
    [65]Lin C. H., Bai H., Surface acidity over vanadia/titania catalyst in the selective catalytic reduction for NO removal-in situ DRIFTS study [J]. Appl. Catal. B: Environ.,2003,42(3):279-287.
    [66]Jehng J. M., Deo G, Weckhuysen B. M., et al, Effect of water vapor on the molecular structures of supported vanadium oxide catalysts at elevated temperatures [J]. J. Mol. Catal. A:Chem.,1996,110:41-54.
    [67]Ai M., Oxidation of propane over V2O5-P2O5-based catalysts at relatively low temperatures [J]. Catal. Today.,1998,42(3):297-301.
    [68]Popova G. Y., Andrushkevich T. V., Chesalov Y. A., et al., Mechanism of β-picoline oxidation to nicotinic acid on V-Ti-O catalyst as studied by In situ FTIR [J]. React. Kinet. Catal. Lett.,2006,87(2):387-394.
    [69]Ovchinnikova E. V., Andrushkevich T. V., Kinetics of the β-picoline oxidation to nicotinic acid over vanadia-titania catalyst.2. Effect of dioxygen and β-picoline [J]. React. Kinet. Catal. Lett.,2008,93(2):203-210.
    [70](a) Zhang Q., Li J., Liu X., et al, Synergetic effect of Pd and Ag dispersed on Al2O3 in the selective hydrogenation of acetylene [J]. Appl. Catal. A:Gen.,2000, 197:221-228. (b) Massard R., Uzio D., Thomazeau C., et al., Strained Pd overlayers on Ni nanoparticles supported onalumina and catalytic activity for buta-1,3-diene selective hydrogenation [J]. J. Catal.,2007,245:133-143. (c) Nagai M., Transition-metal nitrides for hydrotreating catalyst—Synthesis, surface properties, and reactivities [J]. Appl. Catal. A:Gen.,2007,322:178-190.
    [71](a) Simchi H., Kaflou A., Simchi A., Synergetic effect of Ni and Nb2O5 on dehydrogenation properties of nanostructured MgH2 synthesized by high-energy mechanical alloying [J]. Int. J. Hydrogen. Energy.,2009,34:7724-7730. (b) Gaigneaux E. M., Tsiakaras P. E., Herla D., et al., Catalytic synergy via spillover at low temperature:the dehydration and dehydrogenation of sec-butanol in the presence of oxygen [J]. Catal. Today.,1997,33:151-160. (c) Tope B. B., Balasamy R. J., Khurshid A., et al., Catalytic mechanism of the dehydrogenation of ethylbenzene over Fe-Co/Mg(Al)O derived from hydrotalcites [J]. Appl. Catal. A: Gen.,2011,407:118-126.
    [72](a) Jia A. P., Hu G. S., Meng L., et al., CO oxidation over CuO/Ce1-xCuxO2-δ andCe1-xCuxO2-δ catalysts:Synergetic effects and kinetic study [J]. J. Catal.,2012, 289:199-209. (b) Zhang G Q., Zhang X., Lin T., et al., Synergetic effect of FeVO4 and a-Fe2O3 in Fe-V-O catalysts for liquid phase oxidation of toluene to benzaldehyde [J]. Chin. Chem. Lett.,2012,23:145-148. (c) Matsuura I., Schut R., Hirakawa K., The surface structure of the active bismuth molybdate catalyst [J]. J. Catal.,1980,63:152-166.
    [73](a) Bettahar M. M., Costentin G, Savary L., et-al., On the partial oxidation of propane and propylene on mixed metal catalysts [J]. Appl. Catal. A:Gen.,1996, 145:1-48. (b) Moro-Oka Y, Ueda W., Multicomponent bismuth molybdate catalyst:A highly functionalized catalyst system for the selective oxidation of olefm [J]. Adv. Catal.,1994,40:233-273. (c) Grasselli R. K., Burrington J. D., Selective oxidation and ammoxidation of propylene by heterogeneous catalysis [J]. Adv Catal.,1981,30:133-163.
    [74](a) Le M. T., Craenenbroeck J. V., Driessche I. V., et al., Bismuth molybdate catalysts synthesized using spray drying for the selective oxidation of propylene [J]. Appl Catal. A:Gen.,2003,249:355-364. (b) Well W. J. M. V, Le M. T., Schi(?)dt N. C., et al., The influence of the calcination conditions on the catalytic activity of Bi2MoO6 in the selective oxidation of propylene to acrolein [J]. J. Mol. Catal. A:Chem.,2006,256:1-8. (c) Carson D., Coudurier G, Forissier M., et al., Synergy effects in the catalytic properties of bismuth molybdates [J]. J. Chem. Soc. Faraday. Trans.1.,1983,79:1921-1929.
    [75](a) Kolchin I. K., Gal'perin E. L., Bobkov S. S., et al., Bismuth-molybde num-phosphorus catalysts for oxidation and oxidative ammonolysis of propene [J]. Kinet. Katal.,1965,6:878-883. (b) Burrington J. D., Grasselli R. K., Aspects of selective oxidation and ammoxidation mechanisms over bismuth molybdate catalysts [J]. J. Catal.,1979,59:79-99.
    [76]Egashira M., Matsuo K., Kagawa S., et al, Phase diagram of the system Bi2O3-MoO3 [J]. J. Catal.,1979,58:409-418.
    [77](a) Abrahams B. F., Hudson T. A., Robson R., Highly Symmetric Networks Derived from Cubane-Related Octametallic Complexes of a New Oxyanion of Carbon, C4O74-, Each Molecule Attached to Eight Neighbors by 24 Equivalent Hydrogen [J]. J. Am. Chem. Soc.,2004,126(28):8624-8625. (b) Kuramoto N., Asao K., The syntheses and crystal structures of some bis(1,2-diaryl-1,2-ethylenedithiolato) nickel complexes and their photostabilising eficiency to organic dyes [J]. Dyes. Pigments.,1990,12(1):65-76.
    [78]Benedict I., Ofiong E., The inhibition of mild steel corrosion in hydrochloric acid by 2,2'-pyridil and a-pyridoin [J]., Mater. Chem. Phys.,1997,51(3):203-210.
    [79]Cheng L. X., Jin X. L., Teng Q. F., et al, Antioxidant activity of a-pyridoin and its derivatives:possible mechanism [J]. Org. Biomol. Chem.,2010, 8(5):1058-1063.
    [8O]M(?)rkved E. H., Andreassen T., Novakova V., et al., Zinc azaphthalocyanines with thiophen-2-yl,5-methylthiophen-2-yl and pyridin-3-yl peripheral substituents: Additive substituent contributions to singlet oxygen production [J]. Dyes. Pigments.,2009,82:276-285.
    [81]Salama M. A., Almotabacani L. A., Synthesis and Chemistry of Some New 2-Mercaptoimidazole Derivatives of Possible Antimicrobial Activity [J], Phosphorus. Sulfur. Silicon. Relat. Elem.,2004,179(2):305-319.
    [82]Rakotomalala M., Katz M., Voisin E., et al., Photochromic benzo[g]quinoxalines [J]. Can. J. Chem.,2011,89(3):297-302.
    [83]Batist P.A., Bouwens J. F. H., Schuit G. C. A., Bismuth molybdate catalysts. Preparation, characterization and activity of different compounds in the Bi-Mo-O system [J], J. Catal.,1972,25:1-11.
    [84]Bond G. C., Tahir S. F., Vanadium-oxide monolayer catalysts-Preparation, characterization and catalytic activity [J]. Appl. Catal.,1991,71:1-31.
    [85]Mazumder B., Vedrine J. C., Oxidative dehydrodimerisation and aromatization of isobutene on Bi2O3-SnO2 catalysts [J]. App.l Catal. A:Gen.,2003,245:87-102.
    [86]Burrington J. D., Kartisek C. T., Grasselli R. K., Aspects of selective oxidation and ammoxidation mechanisms over bismuth molybdate catalysts:Ⅱ. Allyl alcohols as a probe for the allylic intermediate [J]. J. Catal.,1980,63:235-254.
    [87]Burrington J. D., Kartisek C. T., Grasselli R. K., Aspects of selective oxidation and ammoxidation mechanisms over bismuth molybdate catalysts.3. Substituent effects in the selective oxidation of allylbenzenes [J]. J. Org. Chem.,1981, 46:1877-1882.
    [88]Smet F. D., Ruiz P., Delmon B., et al., Catalytic behavior of multiphasic oxide catalysts containing lanthanides (La, Ce, Pr, Sm, Tb) in the selective oxidation of isobutene to methacrolein [J]. Catal. Lett.,1996,41:203-207.
    [89]Grasselli R. K., Burrington J. D., Brazdil J. F., Mechanistic features of selective oxidation and ammoxidation catalysis [J]. Faraday. Discuss. Chem. Soc.,1981, 72:203-223.
    [90]Jiang Z. C., An L. D., Chen Z. S., et al., The redox behavior of bismuth molybdates [J].Sci. China. Ser. B:Chem.,1992,35:28-38.
    [91]Grzybowska B., Haber J., Janas J., Interaction of allyl iodide with molybdate catalysts for the selective oxidation of hydrocarbons [J]. J. Catal.,1977, 49:150-163.
    [92]Keulks G. W., The mechanism of oxygen atom incorporation into the products of propylene oxidation over bismuth molybdate [J]. J. Catal.,1970,19:232-235.
    [93]Muzykantov V. S., Cheshkova K. T., Boreskov G. K., Heteroexchange and self-diffusion of oxygen in the oxygen-carbon dioxide-molybdenum trioxide system [J]. Kinet. Katal.,1973,14:432-439.
    [94]Hada V., Tungler A., Szepesy L., Chemo- and diastereoselectivity in the heterogeneous catalytic hydrogenation of 2,2'-pyridoin and its derivatives [J]. J. Catal.,2002,209(2):472-479.
    [95]Oda D., The reactions of pyridils and related compounds with alkali.Ⅱ. The reactivities of several pyridils [J]. Nippon. Kagaku. Zasshi.,1961,82:480-483.
    [96]魏文德.有机化工原料大全(下卷)[M].北京:北京化学工业出版社,1999:412.
    [97]李世发,倪钟,贾立森等.硝苯地平的制备方法[P].CN1421434,2003.
    [98]唐子龙,陈卫文,刘汉文.具有杀虫活性的2,3-二芳基取代-3,4-二氢-2H-1,3 苯并恶嗪[P].CN101624382,2010.
    [99]Bhaskar G, Kumar V. S., Rao B. V., A short stereoselective synthesis of (-)-chloramphenicol and (+)-thiamphenicol [J]. Tetrahedron:Asymmetry.,2004, 15(8):1279-1283.
    [100]高放,王春凤,王建超等.共轭型的含二苯甲酮二苯乙烯类染料及其合成与应用[P].CN101602893,2009.
    [101]Naffziger M. R., Ashburn B. O., Perkins J. R., et al., Diels-Alder approach for the construction of halogenated, o-nitro biaryl templates and application to the total synthesis of the anti-HIV agent siamenol [J]. J. Org. Chem.,2007, 72:9857-9865.
    [102]Seto M., Aramaki Y., Imoto H., et al., Orally active CCR5 antagonists as anti-HIV-1 agents 2:Synthesis and biological activities of anilide derivatives containing a pyridine N-oxide moiety [J]. Chem. Pharm. Bull.,2004,52:818-829.
    [103]Csuzdi E., Solyom S., Berzsenyi P., et al.,2,3-Benzodiazepine derivatives as adenosine transporter inhibitors and their preparation, pharmaceutical compositions and use in the treatment of psychotic diseases [P]. WO2008124075, 2008.
    [104]Zheng H. M., Zhang Q., Chen J. X., et al., Copper(II) acetate-catalyzed addition of arylboronic acids to aromatic aldehydes [J]. J. Org. Chem.,2009,74,:943-945
    [105](a) Yamane Y, Liu X., Hamasaki A., et al., One-Pot Synthesis of Indoles and Aniline Derivatives from Nitroarenes under Hydrogenation Condition with Supported Gold Nanoparticles [J]. Org. Lett.,2009,11(22):5162-5165. (b) Raucher S., Koolpe G. A., Synthesis of substituted indoles via Meerwein arylation[J].J. Org. Chem.,1983,48(12):2066-2069.
    [106]朱士正,许勇,王彦利.一种脒类化合物及其制备方法[P].CN1327981,2001.
    [107]Kosogof C., Liu B., Liu G, et al., A preparation of pyrimidine derivatives, useful as ghrelin receptor modulators [P]. US20050070712,2005.
    [108]Boyle R. G., Walker D. W., Boyce R. J., Preparation of urea compounds as inhibitors of Chk-1 kinase [P]. WO2011141716,2011.
    [109]Augustyns K., Joossens J., Van der Veken P., et al, Novel non-peptide α-aminophosphonate urokinase inhibitors as anticancer, antiinflammatory and antirheumatic agents [P]. WO2007045496,2007.
    [110]Tajbakhsh M., Lakouraj M. M., Yadoolahzadeh K., Synthesis and application of O-xylylenebis(triphenylphosphonium peroxymonosulfate) for selective oxidation of benzylic alcohols and hydroquinones [J]. Phosphorus. Sulfur. Silicon. Relat. Elem.,2005,180:2431-2437.
    [111]Rezaeifard A., Jafarpour M., Moghaddam G K., et al., Cytochrome P-450 model reactions:efficient and highly selective oxidation of alcohols with tetrabutylammonium peroxymonosulfate catalyzed by Mn-porphyrins [J]. Bioorg. Med. Chem.,2007,15(8):3097-3101.
    [112]Manyar H. G, Chaure G S., Kumar A., Supported polyperoxometallates:Highly selective catalyst for oxidation of alcohols to aldehydes [J]. J. Mol. Catal. A: Chem.,2006,243(2):244-252.
    [113]Buffin B. P., Belitz N. L., Verbeke S. L., Electronic, Steric, and Temperature Effects in the Pd(II)-biquinoline Catalyzed Aerobic Oxidation of Benzylic Alcohols in Water [J]. J. Mol. Catal. A:Chem.,2008,284(1-2):149-154.
    [114]Geiβlmeir D., Jary W. G, Falk H., The TEMPO/Copper Catalyzed Oxidation of Primary Alcohols to Aldehydes Using Oxygen as Stoichiometric Oxidant [J]. Monatsh. Chem.,2005,136(9):1591-1599.
    [115]Herrerias C. I., Zhang T. Y, Li C. J., Catalytic oxidations of alcohols to carbonyl compounds by oxygen under solvent-free and transition-metal-free conditions [J]. Tetrahedron. Lett.,2006,47(1):13-17.
    [116]Chung C. W. Y., Toy P. H., Multipolymer Reaction System for Selective Aerobic Alcohol Oxidation:Simultaneous Use of Multiple Different Polymer-Supported Ligands [J]. J. Comb. Chem.,2007,9(1):115-120.
    [117]Sainz-Diaz C.I., A new approach to the synthesis of 2-nitrobenzaldehyde. Reactivity and molecular structure studies [J]. Monatsh. Chem.,2002, 133(l):9-22.
    [118]张姝,白金泉,郭丰艳.邻硝基苯甲醛合成方法研究进展[J].广东化工,2009,36:73-76.
    [119](a)刘焕梅.光化学合成α-溴代邻硝基乙苯的研究[J].精细石油化工,2005,4:13-15. (b) Davis A. L., Tabb D. L., Swan J. K., et al., Synthesis of the 3-methyl and 4-methyl derivatives of 3-amino-3,4-dihydro-1-hydroxycarbostyril and related compounds [J]. J. Heterocycl. Chem.,1980,17(7):1405-1408. (c) Yin L., Wu J., Xiao J., et al., Oxidation of benzylic methylenes to ketones with Oxone-KBr in aqueous acetonitrile under transition metal free conditions [J]. Tetrahedron. Lett.,2012,53(33):4418-4421.
    [120]Irfan M., Glasnov T. N., Kappe C. O., Continuous Flow Ozonolysis in a Laboratory Scale Reactor [J]. Org. Lett.,2011,13(5):984-987.
    [121]Cha J. S., Kim J. M., Chun J., H., et al., Conversion of carboxylic acids into aldehydes by oxidation of alkoxyaluminum intermediate with pyridinium chlorochromate or pyridinium dichromate [J]. Bull. Korean Chem. Soc.,1998, 19(7):730-732.
    [122]Cha J. S., Lee D. Y., Kim J. M., Reductive oxidation of carboxylic acids to aldehydes with sodium borohydride and pyridinium chlorochromate [J]. Org. Prep. Proced. Int.,1999,31(6):694-697.
    [123]夏传海,刘莺,杨翠云等.一种将有机羧酸转化为有机醛的制备方法[P].CN101318885,2008.
    [124]Cassebaum H., Preparation of o-nitrobenzaldehyde [J]. J. Prakt. Chem.,1965, 29(1-2):59-64.
    [125]吴金川,白鹏,李鑫钢.邻硝基苯甲醛的制备新工艺[J].天然气化工,1999,24(3):48-49.
    [126]Bratulescu G., Synthesis of Aromatic Aldehydes by a Fast Method Involving Kornblum's Reaction [J]. Synth. Commun.,2008,38:2748-2752.
    [127]Caron S., Vazquez E., Efficient Synthesis of [6-Chloro -2-(4-chlorobenzoyl)-1H-indol-3-yl]-acetic Acid, a Novel COX-2 Inhibitor [J]. J. Org. Chem.,2003, 68:4104-4107.
    [128](a) Kuang W., Fan Y., Chen K., et al., Partial Oxidation of Toluene over Ultrafine Mixed Mo-Based Oxide Particles [J]. J. Catal.,1999,186(2):310-317. (b) Zhang H. L., Zhong W., Duan X., et al., A study of catalytic activity, constituent, and structure of V-Ag catalyst for selective oxidation of toluene to benzaldehyde [J]. J. Catal.,1991,129(2):426-437. (c) Reddy K. A., Doraiswamy L. K., Controlling mechanisms in the selective oxidation of toluene to benzaldehyde [J]. Chem. Eng. Sci.,1969,24(9):1415-1426.
    [129](a) Kiwi-Minsker L., Bulushev D. A., Rainone F., et al., Implication of the acid-base properties of V/Ti-oxide catalyst in toluene partial oxidation [J]. J. Mol. Catal. A:Chem.,2002,184:223-235. (b) Bulushev D. A., Kiwi-Minsker L Zaikovskii V. I., et al., Formation of Active Sites for Selective Toluene Oxidation during Catalyst Synthesis via Solid-State Reaction of V2O5 with TiO2 [J]. J. Catal.,2000,193(1):145-153.
    [130]蔡敏敏,魏运洋,蔡春等.氧气液相氧化法制备邻硝基苯甲醛[J].化学反应工程与工艺,2002,18(1):23-25.
    [131]Sawatari N., Sakaguchi S, Ishii Y., Oxidation of nitrotoluenes with air using N-hydroxyphthalimide analogues as key catalysts [J]. Tetrahedron. Lett.,2003, 44(10):2053-2056.
    [132]佘远斌,罗振华,宋旭锋等.金属卟啉仿生催化氧化邻硝基甲苯绿色合成邻硝基苯甲醛[J].化工学报,2007,58(11):2782-2786.
    [133]Lozar J. J., Savall A. J., Oxidation of o-Nitrotoluene by Cerium(IV) Methanesulfonate [J]. Ind. Eng. Chem. Res.,1995,34(9):3149-3153.
    [134]Foa M., Gatti N., o-Nitrobenzaldehyde [P]. EP205173,1986.
    [135]Comninellis C., Plattner E., Javet P., The oxidation of o-nitrotoluene to o-nitrobenzaldehyde with electrogenerated cobaltic sulfate [J]. J. Appl. Electrochem.,1979,9(6):753-755.
    [136]马淳安,虞红强,赵典树.邻硝基苯甲醛的间接电解合成研究[J].合成化学,1995,4(3):345-350.
    [137]张忠诚,刘嘉丽,王信东.间接电解氧化合成邻硝基苯甲醛的研究[J].精细化工,1995,12(1):52-54.
    [138]易清风,于站良,范敏等.用V5+氧化邻硝基甲苯制备邻硝基苯甲醛[J].应用化学,2004,21(7):692-695.
    [139]胡万里,周定,秦天雄等.间接电氧化制苯甲醛的研究[J].哈尔滨工业大学学报,1994,26(1):59-62.
    [140]Tzedakis T., Savall A., Performance predictions in the scale-up of a liquid-liquid CSTR for indirect electro-oxidation of aromatic hydrocarbons [J]. Chem. Eng. Sci.,1991,46(9),2269-2279.
    [141]顾登平,胡瑞省,刘欣等.电化学法合成茴香醛的中试研究[J].精细化工,2004,21(1):53-55.
    [142]Revelant G, Dunand S., Hesse S., et al, Microwave-assisted synthesis of 5-substituted 2-aminothiophenes starting from arylacetaldehydes [J]. Synth.,2011, 18:2935-2940.
    [143]Bao W. L., Wang Q., Zheng Y. F., A facile and efficient oxidation of a, β-unsaturated alcohols with manganese dioxide in ionic liquids under mild conditions [J]. Chin. Chem. Lett.,2004,15(9):1029-1032.
    [144]Teo P., Wickens Z. K., Dong G, et al., Efficient and Highly Aldehyde Selective Wacker Oxidation [J]. Org. Lett.,2012,14(13):3237-3239.
    [145]McMillan J. W., Fischer H. E., Schwartz J., Partial oxidation of olefins by molecular oxygen catalyzed by (alumina) rhodium dioxygen [J]. J. Am. Chem. Soc.,1991,113(10):4014-4016.
    [146]Izumi T., Soutome M., Miura T., Palladium-catalyzed synthesis of indoles from 2-nitrostyrenes [J]. J. Heterocycl. Chem.,1992,29(6):1625-1629.
    [147]Smith K., EI-Hiti G. A., Al-Shamali M., Rearrangement of epoxides to carbonyl compounds in the presence of reusable acidic zeolite catalysts under mild conditions [J]. Catal. Lett.,2006,109(1-2):77-82.
    [148]Chernyak N., Buchwald S. L., Continuous-Flow Synthesis of Monoarylated Acetaldehydes Using Aryldiazonium Salts [J]. J. Am. Chem. Soc.,2012, 134(30):12466-12469.
    [149]Hering T., Hari D. P., Koenig B., Visible-Light-Mediated a-Arylation of Enol Acetates Using Aryl Diazonium Salts [J]. J. Org. Chem.,2012, 77(22):10347-10352.
    [150]Strazzolini P., Giumanini A. G., Runcio A., Nitric acid in dichloromethane solution. Facile preparation from potassium nitrate and sulfuric acid [J]. Tetrahedron. Lett.,2001,42(7):1387-1389.
    [151]倪峰,董菁,吕霞等.利用wittig反应合成苯乙烯醚[J].合成化学,2010,18(6):731-734.
    [152]Batcho A D., Leimgruber W., Intermediates for indoles [P]. US3976639,1976.
    [153]邢其毅,裴伟伟,徐瑞秋等.基础有机化学[M].北京:高等教育出版社,2005:325-330.
    [154]Villemin D., Picard M., Alumina-supported periodic acid in catalytic oxidation of a-phenyl olefins to aldehydes [J]. Nouv J. Chim.,1984,8(3):185-189.
    [155](a) Wang A., Jiang H., Palladium-Catalyzed Direct Oxidation of Alkenes with Molecular Oxygen:General and Practical Methods for the Preparation of 1, 2-Diols, Aldehydes, and Ketones [J]. J. Org. Chem.,2010,75(7):2321-2326. (b) Dhakshinamoorthy A., Pitchumani K., Clay-supported ceric ammonium nitrate as an effective, viable catalyst in the oxidation of olefins, chalcones and sulfides by molecular oxygen [J]. Catal. Commun.,2009,10(6):872-878.
    [156]陈晓晖,许锡恩,陈宪.H2O2在绿色化工生产中的应用进展[J].化工进展,1999,18(2):30-32,37.
    [157]李华,林民,何驰剑等.一种烯烃环氧化的方法[P].CN102442975,2012.
    [158]Shringarpure P. A., Patel A., Supported dodecaphosphotungstate and undecaphosphotungstate:a study on the kinetic behavior for the oxidation of styrene [J]. React. Kinet. Mech Catal.,2011,103(1):165-180.
    [159]Roussel M., Mimoun H., Palladium-catalyzed oxidation of terminal olefins to methyl ketones by hydrogen peroxide [J]. J. Org. Chem.,1980, 45(26):5387-5390.
    [160](a) Hulea V., Dumitriu E., Styrene oxidation with H2O2 over Ti-containing molecular sieves with MFI, BEA and MCM-41 topologies [J]. Appl. Catal. A: Gen.,2004,277(1-2):99-106. (b) Maurya M. R., Chandrakar A. K., Chandb S., Oxovanadium (IV) and copper (II) complexes of 1,2-diaminocyclohexane based ligand encapsulated in zeolite-Y for the catalytic oxidation of styrene, cyclohexene and cyclohexane [J]. J. Mol. Catal. A:Chem.,2007, 270(1-2):225-235.
    [161]念保义,陈攀攀,林武滔等.香叶基二乙胺水解合成柠檬醛[J].三明学院学报,2007,24(4):411-414.
    [162]Capon B., Wu Z. P., Comparison of the Tautomerization and Hydrolysis of Some Secondary and Tertiary Enamines [J]. J. Org. Chem.,1990,55(8):2317-2324.
    [163]Guthrie J. P., Jordan F., Enamine Formation and Hydrolysis. Ethyl β-Cyanomethylaminocrotonate [J]. J. Am. Chem. Soc.,1972,94(26):9132-9136.