用户名: 密码: 验证码:
Ag/LSCO电接触复合材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电接触材料及元件作为电器工业的核心基础,担负着接通与分断电流的任务,其性能直接关系到整机设备的通断容量、使用寿命和运行可靠性。Ag/CdO电接触材料因其接触电阻低、抗熔焊、耐电弧侵蚀等优良性能曾经得到广泛应用,享有“万能触点”的美誉。近年来,Cd对人体和环境的危害引起人们的重视,环保型替代材料的开发受到学术界与产业界普遍关注,其中Ag/导电陶瓷复合材料体系已成为环保型电接触材料研究的一个重要方向。
     本研究分别采用固相法和溶胶凝胶法制备了La0.5Sr0.5Co03-δ (LSCO)微米、纳米颗粒,并比较分析了LSCO纳米颗粒作为电接触材料增强相的潜在优势;分别采用水热法和静电纺丝法制备了LSCO微球及LSCO纤维。为进一步改善LSCO与Ag之间的界面性能,采用机械球磨技术、水热法及静电纺丝法分别对上述制备的三种不同形貌的LSCO粉体进行表面载银改性。在此基础上,将获得的LSCO粉体应用于Ag/LSCO电接触材料制备,考察了不同形貌的LSCO增强相及其载银方法对Ag/LSCO电接触材料性能的影响。最后,对Ag/LSCO电接触材料的电弧侵蚀行为及机理进行了研究。全文主要研究内容和结论如下:
     (一)分别采用固相法、溶胶凝胶法、水热法和静电纺丝法制备LSCO陶瓷粉体,系统考察络合剂种类、用量、pH值、前驱体浓度、反应时间、反应温度、热处理工艺等因素对LSCO陶瓷粉体结构形貌的影响,以实现对不同形貌LSCO陶瓷粉体的可控制备。研究结果表明:(1)在LSCO颗粒的制备过程中,固相法和溶胶-凝胶法都适用于制备La1-xSrxCoO3-δ(x=0.1-0.7)颗粒。与固相法相比,溶胶-凝胶法可制备出平均粒径在50nm左右的LSCO纳米颗粒(LSCOP),并且在700~950℃温度(接近Ag熔点960℃)范围内会发生分解,释放02,更适宜作为银基电接触材料的增强相。(2)在水热法制备LSCO微球(LSCOS)的过程中,当柠檬酸与金属离子总量的摩尔比为2:1,反应温度为180℃,反应时间为30h时,可获得平均粒径为5~10μm、纯度较高、分散性较好的LSCO微球。(3)在静电纺丝法制备LSCO纤维(LSCOf)的过程中,采用平均分子量为1300000的PVP配置纺丝成型剂,前驱体纺丝液中PVP的加入量为3.5wt%,金属离子浓度为0.125mol/L时,纺丝效率最高,能达到9ml/h。获得的LSCO前驱体纤维在800℃热处理下能够获得平均直径为0.5~2μm的LSCO陶瓷纤维。
     (二)开展不同形貌LSCO粉体的表面载银改性研究。采用机械球磨技术制备载银LSCO复合颗粒(LSCOmp),采用水热法制备载银LSCO微球(LSCOms),采用静电纺丝法制备载银LSCO纤维(LSCOmf).研究结果表明:(1)在机械球磨法制备LSCOmP的过程中,Ag与LSCO的质量比为80:20,PEG6000含量3wt%,空气环境中球磨40h,可获得LSCOp充分嵌入银颗粒的麻球状LSCOmp。(2)以葡萄糖作还原剂,采用水热法制备的LSCOms纯度较高。水热前驱体微球在800℃的高温处理下发生烧结晶化,但银粒子仍能完整包覆在LSCO微球表面。(3)在静电纺丝法制备LSCO纤维的工艺中引入银镜反应,合成的LSCOmf前驱体表面粗糙,有小颗粒附着,热处理后发现LSCOmf表面银包覆均匀,直径为0.5~2μm。
     (三)采用粉末冶金法结合复压复烧工艺制备Ag/LSCO电接触材料,开展不同LSCO增强相形貌、载银改性等因素对Ag/LSCO电接触材料性能的影响研究。研究结果表明:(1)在粉末冶金法制备Ag/LSCO电接触材料的过程中,采用600MPa初压、880℃初烧,再以800MPa复压、880℃复烧退火的工艺条件可使材料获得最高的致密度、硬度和最低的电阻率。(2)三种不同形貌的LSCO增强相制备的Ag/LSCO电接触材料性能各有优势。LSCOp增强相在改善材料的燃弧时间、燃弧能量、弹跳次数和材料损失方面具有优势,其不足之处在于材料电阻率和接触电阻较高,抗熔焊性能较差。LSCOS增强相制备的电接触材料具有良好的抗熔焊性能,并在降低材料本身的电阻率和接触电阻方面,介于其它两种形貌的增强相之间。其劣势在于制备材料的燃弧时间长,燃弧能量大,弹跳次数较多,材料转移损失严重。LSCOf增强相在提高材料物理性能、降低接触电阻方面优势明显,制备的材料抗熔焊性能良好,且燃弧时间、燃弧能量、弹跳次数和材料转移损失情况介于其它两种形貌的增强相之间。(3)在物理性能上,由LSCOmp增强的银基电接触材料(Ag/LSCOmp)的密度从9.57g/cm3提高到9.72g/cm3,维氏硬度从80.07提高到102.53,电阻率从3.73μΩ·cm降低到3.10μΩ·cm;由LSCOms增强的银基电接触材料(Ag/LSCOms)的密度从9.51g/cm3提高到9.75g/cm3,维氏硬度从85.65提高到94.97,电阻率从2.96μΩ·cm降低到2.17μΩ·cm;由LSCOmf增强的银基电接触材料(Ag/LSCOmf)的密度从9.72g/cm3提高到9.78g/cm3,维氏硬度从88.09提高到102.70,电阻率从2.81μΩ·cm。降低到2.03μΩ·cm。(4)在电接触性能上,Ag/LSCOmp材料的平均接触电阻从9.31mΩ降到6.29mΩ,燃弧时间从6.74ms降到5.61ms,燃弧能量从557.40mJ降到439.96mJ,平均弹跳次数从1.18降到1.12次,材料转移损失从7.63%降到0.07%,抗熔焊性能明显改善;Ag/LSCOms材料的平均接触电阻从5.52mΩ降到5.42mΩ,燃弧时间从18.22ms降到14.78ms,燃弧能量从3021.80mJ降到2045.46mJ,平均弹跳次数从1.97降到1.75次,材料转移损失从13.27%降到0.77%,抗熔焊性能保持良好,材料的综合性能得到提高;Ag/LSCOmf材料的平均接触电阻从4.41mΩ降到4.27mΩ,燃弧时间从15.39ms降到14.01ms,燃弧能量从2511.85mJ降到2369.02mJ,平均弹跳次数从1.80降到1.60次,材料转移损失从12.42%降到1.05%,抗熔焊性能保持良好,材料的综合性能得到提高。(5) Ag/LSCOmp的接触电阻较高但其它性能均超过同等条件下制备的Ag/CdO和Ag/SnO2,有望在接触电阻要求不高的领域替代Ag/CdO;Ag/LSCOms的接触电阻较高,燃弧时间和弹跳次数优于Ag/CdO而略逊于Ag/SnO2,其它性能均超过Ag/CdO和Ag/SnO2,有望在接触电阻要求不高的领域替代Ag/CdO;Ag/LSCOmf的综合性能均超过同等条件下制备的Ag/SnO2;除材料转移和电寿命方面略逊与Ag/CdO外,其它性能均超过Ag/CdO,有望在电寿命要求不高的领域替代Ag/CdO。
     (四)开展了载银改性前后LSCOp增强Ag基电接触材料的电弧侵蚀行为研究。研究结果表明:(1) Ag/LSCOp电触头在电弧侵蚀下呈现凸丘、球状结构、骨架结构、气孔、裂纹等5种特征侵蚀形貌,这归因于LSCO增强相与Ag基体之间的界面结合不足、受电弧作用后的成分偏析,一旦出现上述特征侵蚀形貌后,材料的性能将急剧下降。(2) Ag/LSCOmp电触头在电弧侵蚀下呈现海绵状结构和波纹状结构这2种特征形貌,可能是由于LSCO与Ag基体之间的界面结合增强,均匀度增加,电弧发生过程中复合熔体的粘度增加。这表明Ag/LSCOmp抗电弧侵蚀性能高、工作性能稳定,具有较长的电寿命。(3) Ag/LSCO电接触材料的电弧侵蚀特性与材料的制备工艺及其组织结构有关,通过机械球磨技术进行载银改性可改善增强相与银基体之间的界面性能,有效提高电接触材料的抗电弧侵蚀性能。
As core foundation of electrical industry, electrical contact materials and components are responsible for making and breaking a current, and thus their performance directly determine switching capacity, service life and reliability of equipment. Ag/CdO electrical contact material is known as a "universal contact" and has been widely used due to its excellent performance such as low contact resistance, welding resistance, arc erosion resistance, etc. In recent years, people more and more pay attention to the harm of Cd element to human body as well as environment, so the development of environmentally friendly replacement materials attract wildly attentions from academia and industries. To date, Ag/conductive ceramic composite material system has become an important research direction of the environmental friendly electrical contact materials.
     In this thesis, La0.5Sr0.5CoO3-δ (LSCO) micronparticles and nanoparticles were prepared by solid-phase method and the sol-gel method respectively, and the potential advantages of LSCO nanoparticles used as a reinforcement of electrical contact material were also comparatively analysed. LSCO microspheres and fibers were prepared by hydrothermal method and electrospinning method respectively. In order to further improve the interfacial bonding between LSCO and Ag, the above LSCO powders with different morphologies were modified by silver loading through mechanical milling technology, hydrothermal method and electrospinning method, respectively. On this basis, the obtained LSCO powders were applied as reinforced phases to prepare Ag/LSCO electrical contact materials, and the influence of different morphologies of LSCO reinforced phase and silver-loading modification on the properties of Ag/LSCO electrical contact material were investigated. Finally, the arcing erosive behaviors and corresponding mechanisms of Ag/LSCO electrical contact material erosion were studied. The main contents and conclusions are as follows:
     (1) LSCO ceramic powders were prepared by solid-phase method, sol-gel method, hydrothermal method and electrostatic spinning method, respectively. In order to realize the controllable preparation of LSCO ceramic powders with different morphologies, the influences of varieties and amount of the complexing agent, pH value, concentration of precursor, reaction time, reaction temperature and heat treatment process on the structure and morphology of LSCO ceramic powders were investigated. The results show that:(i) For the preparation of LSCO particles, the solid phase method and sol-gel method can be used to prepare La1-xSrxCoO3_s (x=0.1-0.7) particles. Compared with solid-phase method, the average size of LSCO particles prepared by sol-gel method is about50nm. The LSCO nanoparticles prepared by sol-gel method can decompose and release O2at the temperature ranged from700℃to950℃(close to the melting point of silver of960℃). This feature makes the LSCO nanoparticles more suitable for being used as a reinforced phase of electrical contact material.(ii) For the preparation of LSCO microspheres by hydrothermal method, the high-purity and well-dispersed LSCO microspheres with average particle diameter of5-10μm can be prepared under the conditions that the molar ratio of citric acid to the total amount of metal ions is2:1, the reaction temperature is180℃and the reaction time is30h.(iii) For the preparation of LSCO fibers by electrostatic spinning method, the optimum preparation conditions are that the spinning forming agent is prepared by3.5wt%PVP with the average molecular weight of1300000, and the concentration of metal ions is0.125mol/L. The spinning speed can reach9ml/h under these conditions. After treating the LSCO precursor fiber at800℃, the LSCO ceramic fibers with diameters ranged from0.5μm to2μm can be prepared.
     (2) Silver-loading modification of LSCO powders with different morphologies is carried out. Silver-loaded LSCO composite particles (LSCOmp), silver-loaded LSCO microspheres (LSCOms) and silver-loaded LSCO fibers (LSCOmf) were prepared by mechanical milling technology, hydrothermal method and electrospinning method, respectively. The results show that:(i) For the preparation of LSCOmp by mechanical milling technology, the optimum conditions are that the mass ratio of Ag powder and LSCO ceramic is80:20, the content of PEG6000is3wt%, and the powders are milled for40h in the air. Under these conditions, LSCOp can be well inserted into silver, leading to the formation of globular LSCOmp.(ii) For the preparation of LSCOms by hydrothermal method, the purity of LSCOms can reach a high level when using glucose as a reducing agent. Although precursor microspheres experiences LSCO ceramic crystallization sinter at800℃, the silver particles can still fully loaded on the surface of LSCO microsphere.(iii) For the preparation of LSCOmf by electrospinning method, silver mirror reaction is introduced in the electrospinning process. The surface of obtained precursor fibers is rough and coated with small particles. After thermal treatment, LSCOmf with the diameter of0.5-2μm can be obtained and are loaded by silver uniformly.
     (3) Ag/LSCO electrical contact materials were prepared by powder metallurgy method combined with repressing and resintering process, and the influence of LSCO morphology and silver-loading modification on their properties. The results show that:(i) For the preparation of Ag/LSCO electrical contact materials by powder metallurgy method, the optimum repressing and resintering process is that the powders are first suppressed at600MPa and sintered at880℃, and then suppressed at800MPa and sintered at880℃. Under these conditions, the highest density, hardness and minimum resistivity can be achieved in Ag/LSCOmp electrical contact materials.(ii) The performances of Ag/LSCO electrical contact materials prepared by LSCO reinforced phase with three different morphologies have their own advantages each other. The electrical contact material prepared with LSCOP reinforced phase has advantages in improving the arcing time, arcing energy, bouncing times and material loss, but leads to a higher resistivity, a higher contact resistance and a poor welding resistance performance. For the LSCOS reinforced phase, the ability of lowering resistivity and the contact resistance is between that of the two other reinforced phases. Electrical contact materials prepared with LSCOs reinforced phase have a good welding resistance performance, but leads to a longer arcing time, a higher arcing energy, a more bouncing time and a worse lost of materials. LSCOf reinforced phase has advantages in improving the physical performance and contact resistant of the materials. Electrical contact materials prepared with LSCOf reinforced phase have a good welding resistance.(iii) From the aspects of physical properties, for Ag/LSCOmp electrical contact materials, the density is increased from9.57g/cm3to9.72g/cm3, the Vickers hardness is increased from80.07to102.53, the resistivity is reduced from3.73μΩ·cm cm to3.10μΩ·cm; For Ag/LSCOms electrical contact materials, the density is increased from9.51g/cm3to9.75g/cm3, the Vickers hardness is increased from85.65to94.97, the resistivity is reduced from2.96μΩ·cm to2.17μΩ·cm; For Ag/LSCOmf electrical contact materials, the density is increased from9.72g/cm3to9.78g/cm3, the Vickers hardness is increased from88.09to102.70, the resistivity is reduced from2.81μΩ·cm to2.03μΩ·cm;(iv) From the aspects of electrical properties, for Ag/LSCOmp electrical contact materials, the average contact resistant is reduced from9.31mΩ to6.29mΩ, the arcing time is reduced from6.74ms to5.61ms, the arcing energy is reduced from557.40mJ to439.96mJ, the average bouncing time is reduced from1.18to1.12, the lost percent of material transfer is reduced from7.63%to0.07%, the welding resistance is improved; For Ag/LSCOms electrical contact materials, the average contact resistant is reduced from5.52mQ to5.42mQ, the arcing time is reduced from18.22ms to14.78ms, the arcing energy is reduced from3021.80mJ to2045.46mJ, the average bouncing time is reduced from1.97to1.75, the lost percent of material transfer is reduced from13.27%to0.77%, the welding resistance performance maintains well, the combination property is improved; For Ag/LSCOmf electrical contact materials, the average contact resistant is reduced from4.41mQ to4.27mΩ, the arcing time is reduced from15.39ms to14.01ms, the arcing energy is reduced from2511.85mJ to2369.02mJ, the average bouncing time is reduced from1.80to1.60, the lost percent of material transfer is reduced from12.42%to1.05%, the welding resistance maintains well, the combination property was improved.(V) Ag/LSCOmp electrical contact materials have a high contact resistant, whereas other properties are better than that of Ag/CdO and Ag/SnO2prepared at the same conditions. Ag/LSCOmp is therefore expected to replace Ag/CdO in the contact resistance of less demanding areas. Ag/LSCOms electrical contact materials have a high contact resistant and its arcing time as well as bouncing time is superior to Ag/CdO and inferior to Ag/SnO2, Whereas other properties are better than that of Ag/CdO and Ag/SnO2. Ag/LSCOms is expected to replace Ag/CdO in the contact resistance of less demanding areas. The combination property of Ag/LSCOmf is better than Ag/SnO2prepared at the same condition. Though the material transfer and electrical life are inferior to Ag/CdO, its other properties are superior to Ag/CdO. Ag/LSCOmf electrical contact materials are expected to replace Ag/CdO in the electrical life of less demanding areas.
     (4) The arcing erosive behaviors of Ag-based electrical contact materials reinforced by LSCOP powders before and after Ag-loading modification. The results shows that:(i) There are five kinds of arcing erosive morphologies on the Ag/LSCOp electrical contact after arc erosion, such as undulating hill structure, globular structure, skeletal structure, pore or hole, and crack. These characteristic morphologies might be associated with a weak binding force between LSCO reinforced phase and silver, and the composition segregation after arc erosion. Once these erosion morphologies appear, the performance of the material will decline sharply.(ii) There are two kinds of arcing erosive morphologies on the Ag/LSCOmp electrical contact, such as spongeous structure and corrugate structure. These characteristic morphologies might be associated with the strong binding force between LSCO reinforced phase and silver matrix, improved wettability, increased uniformity and the improved recombination viscosity during arcing erode. These indicate that Ag/LSCOmp have high arc erosion resistant capacity, stable performance, and long electrical life.(iii) The arc erosion behaviors of Ag/LSCO electrical contact material are related to their structure and preparation process. By means of mechanical milling technology, the Ag-loading modification of LSCO can efficiently improve interfacial bonding between LSCO and silver matrix, thereby increasing the arc erosion resistance property of Ag/LSCO electrical contact material.
引文
[1]Zhijie Lin, Shaohong Liu, Xudong Sun, Ming Xie, Jiguang Li, Xiaodong Li, Yongtai Chen, Jialin Chen, Di Huo, Mu Zhang, Qi Zhu, Manmen Liu. The effects of citric acid on the synthesis and performance of silver-tin oxide electrical contact materials. Journal of Alloys and Compounds,2014,588:30-35.
    [2]Vladan Cosovic, Aleksandar Cosovic, Nadezda Talijan, Dragana Zivkovic, Dragan Manasijevic, Dusko Minic. Improving dispersion of SnO2 nanoparticles in Ag-SnO2 electrical contact materials using template method. Journal of Alloys and Compounds,2013,567:33-39.
    [3]G M. Zeer. Investigation of the microstructure and properties of electrocontact silver-zinc oxide nanopowder material. The Physics of Metals and Metallography,2012,113:902-906.
    [4]Canhui Xua, Danqing Yia, Chunping Wua, Huiqun Liua, Weizhou Lia. Microstructures and properties of silver-based contact material fabricated by hot extrusion of internal oxidized Ag-Sn-Sb alloy powders. Materials Science and Engineering:A,2012,538:202-209.
    [5]Milenko Braunovic.Valery V.Konchits,Nikolai K.Myshkin. Electrical Contacts Fundamentals, Applications and Technology. CRC Press,2010,2-5.
    [6]Zhenbiao, Li, Zhang Guansheng, Qin Qingsheng. The static welding resistance of electric contact materials. Proceedings of the CSEE,1994,14 (1):34-39.
    [7]He, Da Hai, and Rafael Manory. A novel electrical contact material with improved self-lubrication for railway current collectors. Wear,2001,249 (7):626-636.
    [8]Rauba, A. A., S. V. Petrochenko, and A. A. Fedorov. Improvement of wear resistance of working surfaces of direct-current machine commutator by impact machining. Journal of Friction and Wear,2013,34 (1):51-56.
    [9]Gargouri, Kacem. Electronic Commutator Direct Current (ECDC) machine. International Journal of Electrical Power & Energy Systems,2012,42 (1):525-532.
    [10]Shin, Wae-Gyeong, Young-Sik Song, and Young-Kyo Seo. Correlation analysis of brush temperature in brush-type DC motor for predicting motor life. Journal of mechanical science and technology,2012,26 (7):2151-2154.
    [11]Shin, Wae-Gyeong, and Soo-Hong Lee. An analysis of the main factors on the wear of brushes for automotive small brush-type DC motor. Journal of mechanical science and technology,2010,24 (1):37-41.
    [12]Fu, Xuli, and D. D. L. Chung. Carbon fiber reinforced mortar as an electrical contact material for cathodic protection. Cement and concrete research,1995,25 (4):689-694.
    [13]Chen, Pu-Woei, and D. D. L. Chung. Carbon fiber reinforced concrete as an electrical contact material for smart structures. Smart Materials and Structures,1993,2 (3):181.
    [14]Findik, Fehim, and Huseyin Uzun. Microstructure, hardness and electrical properties of silver-based refractory contact materials. Materials & design,2003,24 (7):489-492.
    [15]Antler, Morton. Electrical effects of fretting connector contact materials:a review. Wear,1985, 106 (1):5-33.
    [16]Schimkat, Joachim. Contact materials for microrelays. The Eleventh Annual International Workshop on Micro Electro Mechanical Systems. MEMS 98. Proceedings. IEEE,1998: 190-194.
    [17]Antler, Morton. Survey of contact fretting in electrical connectors. IEEE Transactions on Components, Hybrids, and Manufacturing Technology,1985,8 (1):87-104.
    [18]郭凤仪.矿用开关电器触头材料电弧侵蚀特性与电寿命的模糊评价研究[博士后研究报告].阜新:辽宁工程技术大学,2004.
    [19]李庶.银基复合电接触材料滑动电摩擦磨损性能研究[博士学位论文].合肥:合肥工业大学,2009.
    [20]Schreiner, Horst. Multilayer Sintered Contact Body. U.S. Patent No.3489531,1970.
    [21]Schreiner, Horst. Electrical Contact Device. U.S. Patent No.3226517,1965.
    [22]Rouse, T. O., and J. L. Electrochemical Studies of Single Crystals of Lithiated Nickel Oxide 1. Distribution of Charge and Potential at Oxide Electrolyte Interface. Journal of The Electrochemical Society,1966,113 (2):184-190.
    [23]Swartz, J. C. Stress relaxations in internally oxidized Ag (Cu). Journal of Physics and Chemistry of Solids,1969,30 (8):2065-2075.
    [24]Wojtasik, K., W. Missol. PM helps develop cadmium-free electrical contacts. Metal Powder Report,2004,59 (7):34-39.
    [25]Shuangjie Chu, Wu Renjie. The New Processing Technologies of the Metal Matrix Composite. Rare Metal Materials and Engineering,1995,24 (6):1-9.
    [26]张为军,堵永国,胡君遂,王乃千.AgREO触点材料耐电弧侵蚀性能研究.电工合金,2000,(3):11-14.
    [27]王海涛,王景芹,赵靖英.Ag/SnO2-La2O3-Bi2O3触头材料的研究.稀有金属材料与工程,2006,34(10):1666-1668.
    [28]Stockel, D. Entwicklungsrichtungen dei Werkstoffer fur Elektrische Kontakte. Metall (W. Berlin),1983,37 (1):30-36.
    [29]Rieder, Werner F., and Thomas W. Strof. Relay life tests with contact resistance measurement after each operation. IEEE Transactions on Components, Hybrids, and Manufacturing Technology,1991,14(1):109-112.
    [30]Muniesa, Jacques. Silver-tin oxide materials used in low voltage switching devices. Proceedings of the Thirty-Sixth IEEE Holm Conference on Electrical Contacts and the Fifteenth International Conference on Electrical Contacts,1990:139-142.
    [31]Wingert, Philip C., C-H. Leung. Comparison of the inherent arc erosion behaviors of silver-cadmium oxide and silver-tin oxide contact materials. IEEE Transactions on Components, Hybrids, and Manufacturing Technology,1987,10 (1):56-62.
    [32]Schopf, Th, et al. Development of silver zinc oxide for general-purpose relays. IEEE Transactions on Components and Packaging Technologies,2002,25 (4):656-662.
    [33]D.Jeannot, J.Pinard, P.Ramoni and E.M.Jost. Physical and chemical properties of metal oxide additions to Ag-SnO2 contact materials and predictions of electrical performance. IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A,1994,17 (1):17-23.
    [34]Joshi, P. B., Murti, N. S. S., Gadgeel, V. L., Kaushik, V. K.,& Ramakrishnan, P. Preparation and characterization of Ag-ZnO powders for applications in electrical contact materials. Journal of materials science letters,1995,14 (16):1099-1101.
    [35]Wu, C. P., Yi, D. Q., Li, J., Xiao, L. R., Wang, B., Zheng, F. Investigation on microstructure and performance of Ag/ZnO contact material. Journal of Alloys and Compounds,2008,457 (1):565-570.
    [36]Shen, Y. S., Gould, Lawrence.,& Swann, S. DTA and TGA studies of four Ag-MeO electrical contact materials. IEEE Transactions on Components, Hybrids, and Manufacturing Technology,1985,8(3):352-358.
    [37]杜作娟.水热还原法制备银氧化锡复合粉体及其性能研究[博士学位论文].长沙:中南大学,2009.
    [38]Joshi, P. B., Krishnan, P. S., Patel, R. H., Murti, N. S. S., Gadgeel, V. L.,& Ramakrishnan, P. Improved P/M silver-zinc oxide electrical contacts. IEEE Transactions on Components, Hybrids, and Manufacturing Technology,1998,34(4):63-74.
    [39]Joshia, P. B., Krishnan, P. S., Patel, R. H., Gadgeel, V. L., Ramakrishnan, P.,& Kaushik, V. K. Effect of lithium addition on density and oxide-phase morphology of Ag-ZnO electrical contact materials. Materials Letters,1997,33(3):137-141.
    [40]Dev, S. C., Basak, O.,& Mohanty, O. N. Development of cadmium-free silver metal-oxide contact materials. Journal of materials science,1993,28(24):6540-6544.
    [41]吴春萍,易丹青,陈敬超,李荐,王斌,方西亚.银稀土氧化物电接触材料的组织与物理性能.中南大学学报(自然科学版),2007,38(2):233-237.
    [42]张昆华,管伟明,孙加林,陈敬超,周晓龙,杜焰.反应合成制备Ag/REO复合材料的氧化行为.贵金属,2007,28(1):1-5.
    [43]Brecher Charles, Shinhoo Kang, and Philip C. Wingert. Erosion resistant Ag-SnO2 electrical contact material. U.S. Patent No.4904317,1990.
    [44]T.Ohira, R.Kichickon, K.Hoshino, et al. Ag-cerium oxide electrial contact material excellent in deposition resistance and consumption resistance. JP. Patent No.9111368,1997.
    [45]Mathers, Frank C., and Aaron D. Johnson. The Electrodeposition of Silver Alloys from Aqueous Solutions. Transactions of The Electrochemical Society,1938,74 (1):229-253.
    [46]Kawakami, Y, Hasegawa, M., Watanabe, Y, Sawa, K. An investigation for the method of lifetime prediction of Ag-Ni contacts for electromagnetic contactor. Proceedings of the Fifty-First IEEE Holm Conference on Electrical Contacts,2005:151-155.
    [47]Qunfang, L., Liqin, L., Yaping, W., Bingjun, D. Preparation of silver-nickel contact materials by mechanical alloying. Rare Metal Materials and Engineering,2003,32(4):298-300.
    [48]Swingler, J. Performance and arcing characteristics of Ag/Ni contact materials under DC resistive load conditions. iET science, measurement & technology,2011,5(2):37-45.
    [49]Honda, F., Imada, Y, Okumura, K., Nakajima, K. Observations of electrical contact surface in Cu-Ag/Ni couple with make/break. IEEE Transactions on Hybrids, and Manufacturing Technology,1991,14(3):597-601.
    [50]Rieder, Werner F., and Thomas W. Strof. Relay life tests with contact resistance measurement after each operation. IEEE Transactions on Hybrids, and Manufacturing Technology,1991, 14(1):109-112.
    [51]陆俭国,王海涛,赵靖英.接触器式继电器的失效分析.电工技术学报,2011,26(1):81-85.
    [52]梁秉钧,张万胜.银镍触头材料不同组织结构对性能的影响.电工合金文集,1989,(3):18-28.
    [53]VBehrens等,赵华人译.银镍基触头材料的烧损及接触电阻特性.电工合金文集,1991,(1):58-62.
    [54]Wingert, Philip, Richard Bevington, Guenther Horn. The effects of graphite additions on the performance of silver-nickel contacts. IEEE Transactions on Components, Hybrids, and Manufacturing Technology,1991,14(1):95-100.
    [55]Yoon, J. W., Noh, B. I., Kim, B. K., Shur, C. C., Jung, S. B. Wettability and interfacial reactions of Sn-Ag-Cu/Cu and Sn-Ag-Ni/Cu solder joints. Journal of alloys and compounds, 2009,486(1):142-147.
    [56]Gao, F., T. Takemoto, and H. Nishikawa. Effects of Co and Ni addition on reactive diffusion between Sn-3.5 Ag solder and Cu during soldering and annealing. Materials Science and Engineering:A,2006,420(1):39-46.
    [57]Slade, Paul G Advances in material development for high power, vacuum interrupter contacts. IEEE Transactions on Components, Packaging, and Manufacturing Technology, PartA,1994:96-106.
    [58]Lee, Pang-Kai. High-current brush material development, Part Ⅰ:Sintered metal-coated graphite. IEEE Transactions on Components, Hybrids, and Manufacturing Technology,1980, 3(1):4-8.
    [59]Jiang, Peng, Feng Li, Yaping Wang. Effect of different types of carbon on microstructure and arcing behavior of Ag/C contact materials. IEEE Transactions on Components and Packaging Technologies,2006,29(2):420-423.
    [60]Borkowski, P., Walczuk, E., Wojcik-Grzybek, D., Frydman, K., Zasada, D. Electrical Properties of Ag-C Contact Materials Containing Different Allotropes of Carbon. Proceedings of the 56th IEEE Holm Conference on Electrical Contacts,2010:1-9.
    [61]Allen, S. E., E. Streicher. The effect of microstructure on the electrical performance of Ag-WC-C contact materials. Proceedings of the Forty-Fourth IEEE Holm Conference on Electrical Contacts,1998:276-285.
    [62]余海峰.新型AgC电接触材料制备及其性能研究.上海:上海大学出版社,2009.
    [63]王文.银合金触头材料在低压电器产品中的应用.电工电气,2009,10:56-59.
    [64]周序科,佟明欣.浸银石墨电刷的显微组织结构与摩擦磨损的研究.新型炭材料,2000,15(1):28-34.
    [65]蒋鹏,王亚平,丁秉钧.碳素形态对Ag/C触头材料组织及性能的影响.兵器材料科学与工程,2003,26(3):28-30.
    [66]Wingert, Philip C., S. E. Allen, R. Bevington. The effects of graphite particle size and processing on the performance of silver-graphite contacts. IEEE Transactions on Components, Hybrids, and Manufacturing Technology,1992,15(2):154-159.
    [67]Hensel, Franz R., Kenneth L. Emmert, James W. Wiggs. Electric contact and combination thereof. U.S. Patent No.2207292,1940.
    [68]Hoyer, Norman S., Ram Kossowsky, and Paul G. Slade. Electrical contact material of TiC, WC and silver. U.S. Patent No.4137076,1979.
    [69]Leung, C-H., PHILIP C. Wingert, Han Kim. Comparison of reignition properties of several Ag/W, Ag/WC, and Ag/Mo electrical contact materials. IEEE Transactions on Components, Hybrids, and Manufacturing Technology,1986,9(1):86-91.
    [70]Slade, P. G. Variations in contact resistance resulting from oxide formation and decomposition in Ag-W and Ag-WC-C contacts passing steady currents for long time periods. IEEE Transactions on Components, Hybrids, and Manufacturing Technology,1986,9(1):3-16.
    [71]Borkowski, P., Walczuk, E., Frydman, K., Wojcik-Grzybek, D. Switching Properties of Contacts Made of Silver-Tungsten and Silver-Tungsten-Rhenium Composite Materials. Holm Conference on Electrical Contacts (HOLM),2013,59:1-10.
    [72]Wingert, Piiilip C., and C-H. Leung. The development of silver-based cadmium-free contact materials. IEEE Transactions on Components, Hybrids, and Manufacturing Technology,1989, 12(1):16-20.
    [73]林景兴,张明江,罗天祜.含添加元素AgW触头材料的研制.电工材料,1989,(3):11-18.
    [74]Cosovic V., Talijan N., Zivkovic D., Minic D., Zivkovic Z. Comparison of properties of silver-metal oxide electrical contact materials. Journal of Mining and Metallurgy Section B: Metallurgy,2012,48(1):131-141
    [75]Cho, H., Hwang, D. Y., Jo, H. H. A study on the development of environment-friendly Ag-SnO2 electric contact materials through a powder metallurgy. Materials science forum, 2007,539:2761-2766.
    [76]Behrens, V., Honig, T., Kraus, A., Michal, R., Saeger, K., Schmidberger, R., Staneff, T. An advanced silver/tin oxide contact material. Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on,1994,17(1):24-31.
    [77]Leung, C., Streicher, E.,& Fitzgerald, D. Welding behavior of Ag/SnO2 contact material with microstructure and additive modifications. In Electrical Contacts, Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts,2004,64-69.
    [78]Ardestani, M., Zakeri, M., Nayyeri, M. J., Babollhavaejie, M. R.. Synthesis of Ag-ZnO composites via ball milling and hot pressing processes. Materials Science-Poland,2014, 32(1),121-125.
    [79]Satoh, Munetake, T. Yanagida, and T. Iwasaki. Dispersion and compounding process of particulate Ag-Ni alloy and fine WC powder using a high-speed elliptical-rotor-type powder mill. Journal of the Japan Society of Powder and Powder Metallurgy,1997,44(6):618-621.
    [80]Lungu, M., Gavriliu, S., Canta, T., Lucaci, M., Enescu, E. AgSnO2 sintered electrical contacts with ultrafine and uniformly dispersed microstructure. Journal of optoelectronics and advanced materials,2006,8(2),576-581.
    [81]Cosovic, V., Pavlovic, M., Cosovic, A., Vulic, P., Premovic, M., Zivkovic, D., Talijan, N. Microstructure Refinement and Physical Properties of Ag-SnO2 Based Contact Materials Prepared by High-Energy Ball Milling. Science of Sintering,2013,45(2):173-180.
    [82]Guanghong, N., Ping, F.,& Song, J.. Preparation of Silver-Tin Oxide Composite Powders by Hydrothermal Method. China Powder Science and Technology,2011,02:27.
    [83]Ivanov, V. V, Nikolaeva, N. S., Sidorak, I. A., Shubin, A. A., Sidorak, A. V.. Ag/ZnO and Ag/SnO2 Electrocontact Materials Obtained from Fine-Grained Coprecipitated Powder Mixture. Journal of Siberian Federal University. Chemistry,2012.2(5):131-137.
    [84]Zhiwei, Z., Xihai, S., Weiguo, Z., Lijun, S., Yuehui, W., Qi, L. The strengthening mechanism of Ag/SnO2 materials in the severe plastic deformation. Powder Metallurgy Technology,2011, 02:004.
    [85]冉丽萍,周文艳,赵新建,易茂中,杨琳.熔渗法制备C/C-Cu复合材料的力学性能.中国有色金属学报,2011,21(7),1607-1613.
    [86]孙财新,王珏,严萍.两种铜基触头材料的电弧侵蚀性能研究.高压电器,2012,48(1):82-89.
    [87]张军志.熔渗法生产CuCr50触头表面黑点现象探究.电工材料,2001,(1):27-28.
    [88]杨华.高比重钨-铜复合材料制备及性能研究[硕士学位论文].武汉:武汉理工大学,2008.
    [89]钱宝光.新型铜基无银弱电接触材料的研究[博士学位论文].山东:山东大学,2005.
    [90]范莉,李业建.W-Cu复合材料的应用及制造技术.电工材料,2013,(3):25-31.
    [91]王临茹.纤维结构W/Cu触头材料制备工艺及性能的研究[硕士学位论文].西安:西安建筑科技大学,2005.
    [92]孙永伟.Mo/Cu-Al2O3电接触材料的研究[硕士学位论文].洛阳:河南科技大学,2012.
    [93]Kaczmar, J. W., K. Pietrzak, W. Wlosinski. The production and application of metal matrix composite materials. Journal of Materials Processing Technology,2000,106(1):58-67.
    [94]Shi, Ziyuan, Maofang Yan. The preparation of Al2O3-Cu composite by internal oxidation. Applied Surface Science,1998,134. (1-4):103-106.
    [95]Hirata, Teruo, Seiichi Tanaka, Masaharu Yida. Method of making Ag-SnO contact materials by high pressure internal oxidation. U.S.,5078810A,1992-1-7.
    [96]Slade, Paul. Electrical contacts:principles and applications. CRC Press,2013.
    [97]王松,张国全,谢明,陈敬超,郑婷婷,陈永泰,李爱坤.内氧化法制备AgCuONiO电接触材料的热力学分析及其组织演变.电工材料,2014,(1):7-14.
    [98]刘意春,谢明,张家敏,严继康,杜景红,甘国友,易健宏.银氧化锡电接触材料的制备方法概#述.材料导报,2013,27(19):60-64.
    [99]谢明,王松,杨有才,王塞北,张吉明,付作鑫,杨云峰.Cu-Al合金内氧化热力学与动力学研究.电工材料,2013,(1):24-26.
    [100]Schimmel, G, et al. On the mechanism of Ag exudation during internal oxidation. Acta Materialia,2010,58(6):2091-2102.
    [101]Romhanji, E., M. Filipovic, Z. Kamberovic. Kinetics of internal oxidation in Ag-6Sn-2In-lTe-0.2Ni and Ag-6Sn-0.6Cu-1Bi-0.2Ni type alloys. Metals and Materials International,2012,18(1):171-176.
    [102]张万胜.银氧化锡氧化铟电触头材料的加工及其特性.电工合金文集,1992,(1):43-47.
    [103]符世继,谢明,陈力,杨有才,黎玉胜,刘莉.合金粉末预氧化法制备Ag-SnO2-Y2O3电接触材料的研究.稀有金属,2008,29(4):8-11.
    [104]颜小芳,柏小平,李燕,万岱,李国伟.氧压对粉末预氧化法AgSnO2电触头材料性能的影响.电工材料,2010,(2):13-17.
    [105]贾建,陶宇,张义文,张莹.热等静压温度对新型粉末冶金高温合金显微组织的影响.航空材料学报,2008,28(3):20-23.
    [106]黄光临,宋柯,李素华,颜小芳.挤压型化学包覆法AgC(5)触头材料的制备及性能分析.电工材料,2010,(3):16-19.
    [107]刘满门,谢明,刘捷,崔浩,杨有才,陈永泰,陈宏燕.机械合金化法制备CuW(85)电接触材料工艺研究.电工材料,2010,(2):25-27.
    [108]肖志杰.层状石墨—铜复合材料的制备及摩擦学行为研究[硕士学位论文].成都:西南交通大学,2011.
    [109]钱宝光,耿浩然,郭忠全,杨勤达,陶珍东.电触头材料的研究进展与应用.机械工程材料,2001,28(3):7-9.
    [110]陈文革.关于电弧熔炼法制造铜铬系真空触头材料的几个问题.电工合金,1999,(2):30-32.
    [111]赵峰,郭生武.冷却速度对真空电弧熔炼CuCr25合金组织及性能的影响.高压电器,1999,35(6):19-23.
    [112]梁淑华,胡锐.电弧熔炼法制造CuCr系触头材料的组成与性能.特种铸造及有色合金,2000,(4):25-26.
    [113]梁永和,张明江,陈名勇.真空电弧熔炼的铜铬触头材料组织性能分析.高压电器,2004,40(3):191-194.
    [114]何安莉,屠明晖,汤道坤,魏绍斌,周祖尧,郑志宏,蒋同春.应用离子注入技术改善航空用电接触材料耐磨性研究.机电元件,1992,(2):002.
    [115]王二敏,王晓震,何安莉,张通和,梁宏.离子注入改善电接触微动磨损研究.航空材料学报,2000.20(3):49-55.
    [116]林永串,周本年.离子注入工艺在电话继电器中的应用.功能材料,1988,(5):011.
    [117]陈敬超,孙加林.反应合成法制备银氧化锡电接触材料.机电元件,2001,21(3):17-20.
    [118]刘方方,陈敬超,郭迎春,耿永红,管伟明.反应合成AgSnO2电接触材料的电接触性能研究.稀有金属,2007,31(4):486-490.
    [119]陈敬超,孙加林,杜焰,周晓龙,甘国友.反应合成银氧化锡电接触材料抗熔蚀性研究.理化检验:物理分册,2004,39(8):387-391.
    [120]陈敬超,孙加林,杜焰,周晓龙,甘国友.反应合成AgSnO2电接触材料的组织与性能研究.电工材料,2003,(3):3-11.
    [121]陈敬超,孙加林,杜焰,周晓龙,甘国友.反应合成银氧化锡电接触材料导电性能研究.稀有金属材料与工程,2004,32(12):1053-1056.
    [122]吴春萍,陈敬超,鲜春桥,李玉华.反应合成AgSnO2电接触材料烧结坯的显微组织分析.电工材料,2004,(1):7-10.
    [123]张昆华,管伟明,孙加林,卢峰,陈敬超,周晓龙,杜焰.AgSnO2电接触材料的制备和直流电弧侵蚀形貌特征.稀有金属材料与工程,2005,34(6):924-927.
    [124]乔秀清.Sn02形貌调控与改性及其在Ag基电接触材料中的应用[博士学位论文].杭州:浙江大学,2013.
    [125]余海峰,马学鸣,朱丽慧,陆尧,项兢,翁桅.新型Ag-5%C电接触材料的制备及其电弧磨损特性的研究.稀有金属,2004,28(1):1-4.
    [126]项兢,陆尧,翁桅,余海峰.碳纳米管增强纳米晶Ag-5%C电接触材料研究.上海有色金属,2007,28(3):109-112.
    [127]王裕超.金属基碳纳米管(碳纳米纤维)电接触复合电镀层的制备及表征[硕士学位论文].上海:上海交通大学,2007.
    [128]李文生,李亚明,张杰,刘毅,董洪峰.银基电接触材料的应用研究及制备工艺.材料导报,2011,25(11):34-39.
    [129]Huck, M., Kraus, A., Michal, R., Saeger, K. E.. Guidelines for the use of Ag/SnO2 contact materials in switching devices for low-voltage power engineering. Proceedings of the Thirty-Sixth IEEE Holm Conference and the Fifteenth International Conference on Electrical Contacts,1990,133-138.
    [130]易丹青,吴春萍,李荐,王斌,许灿辉,卢小东.无镉银-金属氧化物(Ag-MeO)电接触材料的国内外知识产权分析.材料导报,2007,21(8):1-6.
    [131]Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS). Official Journal of the European Union L,2002, (39):19-23.
    [132]Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE). Official Journal of the European Union L,2002, (37):24-38.
    [133]谢永忠,陈京生.欧盟二指令对我国电触头材料发展及出口影响分析.电工材料,2004.(2):38-41.
    [134]Cosovic, V., Cosovic, A., Talijan, N., Zivkovic, D., Zivkovic, Z.. State of the Art and Challenges in Development of Electrical Contact Materials in the Light of the RoHS Directive. Science of Sintering,2012,44(2):245-253
    [135]Zhang, Z., Greenblatt, M., Goodenough, J. B.. Synthesis, Structure, and Properties of the Layered Perovskite La3Ni2O7-δ. Journal of Solid State Chemistry,1994,108(2):402-409.
    [136]Kim, Kyoung-Tae, Chang-Il Kim, Tae-Hyung Kim. Characteristics of La0.5Sr0.5CoO3 thin films fabricated by a simple metal-organic decomposition technique. Vacuum,2004,74(3): 671-675.
    [137]Barsoum, Michel W., T. E. Raghy. Synthesis and characterization of a remarkable ceramic: Ti3SiC2. Journal of the American Ceramic Society,1996,79 (7):1953-1956.
    [138]朱达炎,朱教群,梅炳初,周卫兵.Ti3SiC2基复合材料的研究现状及发展趋势.江苏陶瓷,2005,38(4):23-26.
    [139]陈艳林,梅炳初,朱教群.可加工陶瓷Ti3SiC2的合成和性能.硅酸盐通报,2003,22(3):74-77.
    [140]高闰丰,梅炳初,朱教群,赵莉,李守忠.弥散强化铜基复合材料的研究现状与展望.稀有金属快报,2005,24(8):1-7.
    [141]T. E. Raghy, Tamer, Michel W. Barsoum. Processing and mechanical properties of Ti3SiC2:I, reaction path and microstructure evolution. Journal of the American Ceramic Society,1999, 82 (10):2849-2854.
    [142]Raghy, T. E., Barsoum, M. W., Zavaliangos, A., Kalidindi, S. R.. Processing and mechanical properties of Ti3SiC2:Ⅱ, effect of grain size and deformation temperature. Journal of the American Ceramic Society,1999,82(10):2855-2860.
    [143]朱教群,梅炳初.放电等离子烧结工艺合成Ti3SiC2的研究.硅酸盐学报,2002,30(5):649-652.
    [144]朱教群,梅炳初,陈艳林.以铝为助剂结合放电等离子烧结制备Ti3SiC2无机材料学报,2003,18(3):700-704.
    [145]朱教群,梅炳初.放电等离子烧结制备Ti3SiC2材料的研究.材料科学与工程,2002,20(4):564-567.
    [146]尹娜,刘雪燕,侯智,王成建,陈延学.新型银基导电陶瓷复合电接触材料.电工材料,2004,(1):3-6.
    [147]尹娜.新型银基导电陶瓷复合电接触材料研究[博士学位论文].济南:山东大学,2007.
    [148]尹娜,王成建,刘雪燕,候智.Ag/La2Ni04复合触点材料的制备与性能.稀有金属材料与工程,2006,35(6):990-993.
    [149]刘雪燕,王成建,孙渝明,尹娜,杨鲲.Ag/LaFe1-xNix03-δ触点电弧的多波长光谱测量.稀有金属材料与工程,2008,36(12):2240-2243.
    [150]刘雪燕.银/导电陶瓷复合电接触材料电弧损耗特性的光谱研究[博士学位论文].济南:山东大学,2008.
    [151]尹娜,王成建,亓文鹏,刘雪燕,刘宜华.添加剂对Ag/陶瓷复合触点材料浸润性及电性能的影响.功能材料,2007,37(12):1895-1897.
    [152]Liu, J. M., Ong, C. K.. Effect of oxygen stoichiometry on the electrical property of thin film La0.5Sr0.5CoO3 prepared by pulsed laser deposition. Journal of applied physics,1998,84(10): 5560-5565.
    [153]Yin, J., Zhu, T., Liu, Z. G, Yu, T.. Enhanced fatigue and retention properties of Pb (Ta0.05Zr0.48Ti0.47) O3 films using La0.2 Sr0.75CoO3 top and bottom electrodes. Applied Physics Letters,1999,75(23):3698-3700.
    [154]郝素娥,张巨生.稀土改性导电陶瓷材料.北京:北京料国防工业出版社,2009.
    [155]Jonker, G H., Van Santen, J. H.. Magnetic compounds with perovskite structure Ⅲ. ferromagnetic compounds of cobalt. Physica,1953,19(1):120-130.
    [156]Petrov, A. N., Kononchuk, O. F., Andreev, A. V., Cherepanov, V. A., Kofstad, P.. Crystal structure, electrical and magnetic properties of La1-xSrxCoO3-y. Solid State Ionics,1995, 80(3):189-199.
    [157]Petrov, A. N., Cherepanov, V. A., Kononchuk, O. F., Gavrilova, L. Y. Oxygen nonstoichiometry of La1-xSrxCoO3-δ (0< x<0.6). Journal of Solid State Chemistry,1990, 87(1):69-76.
    [158]Yoo, Y. J., Yu, K. K., Kim, J. Y., Lee, Y P., Kim, K. W., Hong, K. P.. Physical properties of Lai-xSrxCoO3. Physica B:Condensed Matter,2006,385:411-414.
    [159]张进龙,周建十,苏文辉.La1-xSrxCoO3系列化合物的高压合成与性质的研究.高压物理学报,1988,(2):67-72.
    [160]王鹏,姚立广,王明贤,吴维山.La1-xSrxCoO3钙钛矿在碱性溶液中的析氧电催化.催化学报,2000,21(1):23-26.
    [161]刘卫,张益勋,邓增强,江国顺,丁锦文,陈初升.La1-xSrxCoO3-δ体系的低频内耗与电输运性质研究.中山大学学报:自然科学版,2009,(z2):240-241.
    [162]丁铁柱,其其格.稀土氧化物LSCO/YSZ的XRD和XPS研究.中国稀土学报,2002,20(4):320-323.
    [163]胡静,李刚.高分子网络凝胶法制备La0.94Sr0.06CoO3及光催化性能研究.化学工程师,2010,(5):10-13.
    [164]高建峰,刘亚飞,刘杏芹,孟广耀.微波固相反应合成La1-xSrxCoO3阴极材料的研究.硅酸盐学报,2009,(z1),:75-78.
    [165]孙宗宝,孙亮.La1-xSr0.5CoO3多晶靶材制备工艺的研究.机电产品开发与创新,2007,20(3):23-25.
    [166]陶新秀,裴立宅,张千峰,陈同云.镧锶钴复合氧化物的水热合成与表征.稀有金属与硬质合金,2011,39(2):26-28.
    [167]Hong, L., Chen, X., Cao, Z.. Preparation of a perovskite La0.2Sr0.8CoO3-x membrane on a porous MgO substrate. Journal of the European Ceramic Society,2001,21(12):2207-2215.
    [168]Berger, D., Fruth, V, Jitaru, I.,& Schoonman, J.. Synthesis and characterisation of La1-xSrxCoO3 with large surface area. Materials Letters,2004,58(19):2418-2422.
    [169]邵宗平,盛世善,陈恒荣,李林,潘秀莲,熊国兴.EDTA络合溶胶-凝胶法制备钙钛矿型复合氧化物粉体的研究.第三届中国功能材料及其应用学术会议论文集,1998.
    [170]任跃红,董金龙,张晓霞.纳米钙钛矿LaxSr1-xCoO3复合氧化物的制备和表征.光谱实验室,2009,(1):19-22.
    [171]Chiba, R., Yoshimura, F., Sakurai, Y., Tabata, Y., Arakawa, M.. A study of cathode materials for intermediate temperature SOFCs prepared by the sol-gel method. Solid State Ionics, 2004,175(1):23-27.
    [172]Yoo, K. B., Choi, G. M.. Cathodic overpotential of La0.6Sr0.4CoO3 and its composite cathodes LSC-LSGM on LaGaO3-based fuel cell. Journal of the European Ceramic Society, 2007,27(13):4211-4214.
    [173]Shahgaldi, S., Yaakob, Z., Khadem, D. J., Ahmadrezaei, M., Daud, W. R. W. Synthesis and characterization of cobalt-free Ba0.5Sr0.5Fe0.8Cu0.2O3-δperovskite oxide cathode nanofibers. Journal of Alloys and Compounds,2011,509:9005-9009.
    [174]Harlan U. Anderson. Review of p-type doped perovskite materials for SOFC and other applications. Solid State Ionics,1992,52(1-3):33-41.
    [175]Brinker, C. Jeffrey, George W. Scherer. Sol-gel science:the physics and chemistry of sol-gel processing. Gulf Professional Publishing,1990.
    [176]Tsionsky, M., Gun, G., Glezer, V., Lev, O. Sol-gel-derived ceramic-carbon composite electrodes:introduction and scope of applications. Analytical Chemistry.1994,66(10): 1747-1753.
    [177]E. Streicher, Leung Chi, D. Fitzgerald. Arc Affected Surface Composition Changes in Silver Tin Oxide Contacts. Electrical Contact, Proceedings of the 54th IEEE Holm Conference on. 2008,301-307.
    [178]Di, W., Willinger, M. G., Ferreira, R. A., Ren, X., Lu, S., Pinna, N. Citric acid-assisted hydrothermal synthesis of luminescent TbPO4:Eu nanocrystals:controlled morphology and tunable emission. The Journal of Physical Chemistry C.2008,112(48):18815-18820.
    [179]吴飞.溶胶-凝胶法制备钙钛矿结构纳米微波介质陶瓷[硕士学位论文].杭州:浙江大学,2010.
    [180]范景莲,黄伯云.过程控制剂对机械合金化过程与粉末特征的影响.粉末冶金工业,2002,12(2):7-12.
    [181]C. Suryanarayana. Mechanical alloying and milling. Progress In Materials Science,2001, 46(1-2):1-184.
    [182]Young Hwan Kim, Don Keun Lee, Hyun Gil Cha, Chang Woo Kim, Young Soo Kang. Synthesis and characterization of antibacterial Ag-SiO2 nanocomposite. The Journal of Physical Chemistry C,2007,111(9):3629-3635.
    [183]T. Saitoh, T. Mizokawa, A. Fujimori, M. Abbate, Y. Takeda, M. Takano. Electronic structure and magnetic states in La1-xSrxCoO3 studied by photoemission and x-ray-absorption spectroscopy. Physical Review B,1997,56(3):1290.
    [184]K. K. Yu, J. S. Park, H. R. Bae, J. Y. Kim, Y. P. Lee,Y. S. Lee, J-H Kang. Structural and magnetic properties of La1-xSrxCoO3. Magnetics, IEEE Transactions on,2005,41(10): 2772-2774.
    [185]K. Nischala, Tata N. Rao, Neha Hebalkar. Silica-silver core-shell particles for antibacterial textile application. Colloids and Surfaces B:Biointerfaces,2011,82(1):203-208.
    [186]E. Streicher, Leung Chi, R. Bevington, S. Allen. Press-sinter-repress Ag-SnO2 contacts with lithium and copper sintering additives for contactor applications. Electrical Contacts, Proceedings of the Forty-Seventh IEEE Holm Conference on,2001,27-34.
    [187]R. H. Palma, V. Martinez, J. J. Urcola. Sintering behaviour of T42 water atomised high speed steel powder under vacuum and industrial atmospheres with free carbon addition. Powder Metallurgy,1989,32(4):291-299.
    [188]C. Voisin, D. Christofilos, N. Del Fatti, F. Vallee, B. Prevel, E. Cottancin, J. Lerme,M. Pellarin, M. Broyer. Size-Dependent Electron-Electron Interactions in Metal Nanoparticles. Physical Review Letters,2000,85(10):2200-2203.
    [189]Da Hai He, Rafael Manory. A novel electrical contact material with improved self-lubrication for railway current collectors. Wear,2001,249(7):626-636.
    [190]Wenge CHEN, Zhanying KANG, Hongfang SHEN, Bingjun DING. Arc erosion behavior of a nanocomposite W-Cu electrical contact material. Rare Metals,2006,25(1):37-42.
    [191]M. Taniguchi, H. Sone, T. Takagi. A holographic measurement of microscopical sliding of electrical contact due to contact spring thermal deformation. Components, Hybrids, and Manufacturing Technology, IEEE Transactions on,1990,13(1):20-26.
    [192]凌国平,王尚军,孟亮.化学镀法制备超细Ag-SnO2粉末的烧结.粉末冶金技术,2005,23(3):204-207.
    [193]凌国平,王尚军,孟亮.杂质对化学镀AgSnO2粉末烧结组织及性能的影响.稀有金属材料与工程,2005,34(6):886-890.
    [194]郑冀,高晶,李松林,李群英.新型银氧化锡电接触材料.稀有金属材料与工程,2005,34(3):483-485.
    [195]张昆华.大变形制备Ag/Ni纤维复合电接触材料研究[博士学位论文].昆明:昆明理工大学,2008.
    [196]J. W. McBride, K. J. Cross, S. M. Abu Sharkh. The evaluation of arc erosion on electrical contacts using three-dimensional surface profiles. Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on,1996,19(1):87-97.
    [197]H. Sone, T. Takagi. Role of the metallic phase arc discharge on arc erosion in Ag contacts. Components, Hybrids, and Manufacturing Technology, IEEE Transactions on,1990,13(1): 13-19.
    [198]李玉桐.化学包覆法AgNi (10)触头材料的电弧侵蚀特性.电工材料,2009,(1):10-12.
    [199]凌国平,薛天,倪孟良,刘远廷.银-金属氧化物触头材料电弧侵蚀产物的研究.贵金属,2008,29(3):1-5.
    [200]L. Doublet, N. B. Jemaa, F. Hauner, D. Jeannot. Electrical arc phenomena and its interaction on contact material at 42 volts DC for automotive applications. Electrical Contacts, Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts,2004,8-14.
    [201]郭凤仪,王国强,董讷,F. W. Leuschner.银基触头材料电弧侵蚀特性及裂纹形成机理分析(英文).中国电机工程学报,2004,9:37.
    [202]荣命哲,万江文,含微量添加剂的AgSnO2触头材料电弧侵蚀机理.西安交通大学学报,1997,31(11):1-7.
    [203]S. N. Kharin, H. Nouri, B. Miedzinsky. Phenomena of Arc Root Immobility in Electrical Contacts. Electrical Contacts (Holm), IEEE 58th Holm Conference on,2012,1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700