用户名: 密码: 验证码:
BiOX(X=Cl、I)/TiO_2纳米复合阵列的可控构筑及其有机污染物降解性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体光催化技术具有解决环境污染和能源短缺问题的潜在能力,是当今材料、环境和能源等领域的研究前沿和热点。高性能光催化材料的研发一直是制约该技术应用的难点与瓶颈,如何增强其光催化性能和拓展其可见光响应范围成为亟待解决的两大关键科学问题。本文以铋系层状化合物BiOX(X=Cl、Br、I)和有序TiO2纳米管阵列(TiO2nanotube arrays,TNTAs)应用于光催化技术为目的,进行新型高性能光催化材料的可控制备与有机污染物降解性能研究:采用有效方法将BiOX(X=Cl、I)纳米结构导入有序TiO2纳米管阵列,发展了新型BiOX(X=Cl、I)/TiO2纳米复合阵列薄膜光催化材料;针对BiOCl/TiO2体系仅对紫外光响应的应用瓶颈,将Ag纳米颗粒进一步导入BiOCl/TiO2体系,调控构筑了可见光响应的新型Ag-BiOCl/TiO2纳米复合阵列薄膜光催化材料;此外,通过引入可生物降解的表面活性剂PVA,发展了一种简易且环境友好的微纳分级结构BiOCl光催化材料的合成方法。全文主要研究结果如下:
     1、采用电化学阳极氧化法,通过增大电解液中H2O含量至10vol.%,制备出适于负载改性、超大比表面、管与管相互分离的有序TiO2纳米管阵列薄膜基体;进而采用化学浴循环浸渍沉积法,通过调节浸渍温度、单次浸渍时间和浸渍循环次数等参数调控制备了具有独特片–管结构的BiOCl/TiO2纳米复合阵列薄膜光催化材料;通过对模拟有机污染物甲基橙(MO)的光催化降解实验来评价目标材料的有机污染物降解性能,利用瞬时光电流响应测试进一步分析目标材料的光电性能,结果表明:浸渍温度为60℃、单次浸渍时间为5min条件下,循环浸渍2次所获得的BiOCl/TNTAs-2样品的紫外光催化活性和效率最高,明显优于TNTAs基体,并且其性质稳定、可重复利用,相同测试条件下的光电流密度最大,其原因主要是:①BiOCl/TiO2异质结构促进了光生电子-空穴对的有效分离;②BiOCl/TNTAs-2样品中不仅BiOCl负载适量,负载分布均匀弥散,而且其负载后的微观结构(纳米管中空结构和基本连通的纳米管间隙)不仅有效提高了催化剂表面对入射光的吸收和利用,并且有利于后续待降解有机物溶液的浸入与扩散;③BiOCl纳米片的适量负载显著增大了TNTAs基体的比表面积,从而有效增大了待降解有机物分子与催化剂表面的接触面积。
     2、沿用化学浴循环浸渍沉积法将窄带隙BiOI纳米片负载于TiO2纳米管内外表面,调控制备了新型片–管结构、可见光响应的BiOI/TiO2纳米复合阵列薄膜光催化材料。通过调节循环浸渍次数来调控BiOI负载效果,其中经过5个浸渍循环所获得的5-BiOI/TNTAs样品在可见光范围内表现出最高的光学吸收特性,对模拟有机污染物MO的光电催化降解活性和效率最高,并且性质稳定、可重复利用,相同测试条件下的光电流密度最大,其主要原因是:①负载的窄带隙BiOI纳米片对可见光的有效吸收提高了可见光条件下的载流子产率;②BiOI/TiO2异质结构对光生电子-空穴对的分离作用有效降低了光生载流子的复合几率;③5-BiOI/TNTAs样品中BiOI负载适量,负载分布均匀弥散,其负载后的微观结构(纳米管中空结构和基本连通的纳米管间隙)不仅可以提高催化剂表面对入射光的吸收与利用,而且也有利于待降解有机物溶液的浸入与扩散;④适量BiOI纳米片的弥散负载有效增大了TNTAs基体的比表面积,从而增大了待降解有机物分子与催化剂表面的接触面积;⑤外加电场作用可以有效促进光生载流子分离与迁移。
     3、采用原位光还原法和化学浴循环浸渍沉积法将Ag纳米颗粒和BiOCl纳米片先后负载于有序TiO2纳米管内外表面,调控制备了可见光响应的新型Ag-BiOCl/TiO2纳米复合阵列(Ag-BiOCl/TNTAs)薄膜光催化材料:Ag-BiOCl/TNTAs具有由fcc结构Ag0、锐钛矿TiO2和四方相BiOCl组成的Ag/TiO2、Ag/BiOCl和BiOCl/TiO2多种复合结构,Ag颗粒粒径主要集中在10~15nm,BiOCl纳米片尺寸约20~30nm;与TNTAs、BiOCl/TNTAs-2和Ag/TNTAs相比,Ag-BiOCl/TNTAs在可见光范围内表现出最高的光学吸收特性,在紫外和模拟日光条件下对模拟有机污染物MO的光催化降解活性最高,其主要原因是:①Ag纳米颗粒的SPR效应及其对光生电子的俘获作用显著提高了TNTAs基体对可见光的吸收及光催化活性;②BiOCl纳米片进一步导入后使目标Ag-BiOCl/TNTAs中新增Ag/BiOCl复合结构,从而增大了Ag/半导体(TiO2与BiOCl)接触面积,可以更高效地发挥Ag的SPR效应及其对光生电子的俘获作用;③BiOCl纳米片进一步导入后新增的BiOCl/TiO2异质结构对光生载流子的分离作用以及使目标Ag-BiOCl/TNTAs比表面积的进一步增大均有利于光催化活性的进一步提高。
     4、通过在NaCl水溶液滴入Bi(NO3)3-HNO3溶液过程中引入一种可生物降解的表面活性剂PVA,发展了一种简易且环境友好的三维微纳分级结构BiOCl光催化材料的合成方法:与常规BiOCl纳米片相比,所合成的花状分级结构BiOCl具有多孔特性、更大的比表面积以及更强的光吸收能力,因而对模拟有机污染物MO表现出更高的紫外光催化降解活性与效率,并且性质稳定,可重复利用;PVA引入量会显著影响目标分级结构BiOCl材料的微结构和光催化活性,根据光催化性能测试结果确定了优选的PVA引入量。
Semiconductor photocatalysis promises great potential in solving environmentalpollution and energy shortage problems, and has become the research forefront andhotspot in the fields of materials, environment and energy. However, shortage of highperformance photocatalyst has been the bottleneck in booming the photocatalysisapplications. Hence, how to enhance the photocatalytic performance and expand thevisible-light response range of the catalyst have been the two key scientific issues.This research work is mainly focused on the controllable synthesis and organicpollutant degradation performance of novel high performance photocatalysts byhybridizing layered bismuth-based compounds of BiOX(X=Cl, Br, I) andhighly-ordered TiO2nanotube arrays (TNTAs) for photocatalysis application. Novelhigh performance film catalyst of BiOX(X=Cl, I)/TiO2nanocomposite arrays aredeveloped by introducing nanostructured BiOX(X=Cl, I) into highly-ordered TNTAs.Considering the application bottleneck of BiOCl/TiO2system which only responses toUV light, Ag nanoparticles are introduced into the BiOCl/TiO2system to obtainAg-BiOCl/TiO2nanocomposite arrays with highly enhanced visible-lightphotocatalytic performance. In addition, a facile and environment friendly approach tosynthesize unique hierarchical BiOCl photocatalyst is developed with the assistance ofa biodegradable surfactant Polyvinyl Alcohol (PVA). Main research results in thiswork can be summarized as following:
     1. Novel flake-tube structured film catalyst of BiOCl/TiO2nanocomposite arrays(BiOCl/TNTAs) is successfully prepared by uniformly loading BiOCl nanoflakes ontoboth outer and inner walls of well-separated TiO2nanotubes (NTs) via anodization inthe10vol.%H2O electrolyte followed by sequential chemical bath deposition(S-CBD) method. The loading effect can be fine-tuned by adjusting depositiontemperature, deposition time and cycle times. The organic pollutant degradationperformance of as-prepared BiOCl/TNTAs samples is evaluated by the photocatalytic(PC) degradation test toward the methyl orange (MO) solutions under UV lightirradiation. In addition, the UV light PC performance of BiOCl/TNTAs samples isfurther confirmed by the transient photocurrent response test. The results from thecurrent study reveal that the BiOCl/TNTAs-2sample prepared with depositiontemperature of60℃, single deposition time of5min and2deposition cycles exhibits the best PC activity, favorable stability and the highest photocurrent density among allthe BiOCl/TNTAs samples, revealing that loading proper amount of BiOCl nanoflakescan effectively improve the PC performance and photoelectric properties of TNTAs,and over loading may lead to the decline of PC activity and photoelectric performance.Synergistic effect of the following factors may contribute to the remarkably enhancedPC activity and photoelectric property for the BiOCl/TNTAs-2sample including:①the formation of BiOCl/TiO2heterojunction for promoting the separation ofphoto-induced electron-hole pairs;②3D connected intertube spacing system andopen tube-mouth structure may benefit the light absorption and utilization, as well asthe convenient immersion and diffusion of the solution to be degraded;③largerspecific surface area resulted from the dispersion of tiny nanosized BiOCl nanoflakesonto the surface of TiO2NTs for increasing the contact area between the organicmolecules and catalyst.
     2. Flake-tube structured film catalyst of BiOI/TiO2nanocomposite arrays(BiOI/TNTAs) is successfully prepared by loading large amounts of narrow band gapBiOI nanoflakes onto both outer and inner walls of well-separated TiO2NTs usinganodization followed by S-CBD method. The loading effect can be fine-tuned byadjusting deposition cycle times. The results from the current study reveal that undervisible-light irradiation (λ>420nm), the5-BiOI/TNTAs sample with five depositioncycles exhibits the best photoelectrocatalytic (PEC) activity and efficiency, favorablestability in the MO degradation test, and shows the highest photocurrent densityamong all the BiOI/TNTAs heterostructured samples. The combined effects of severalfactors may contribute to the remarkable visible-light PEC performance for the5-BiOI/TNTAs sample including:①strong visible-light absorption by BiOI forraising the carriers yield;②the formation of BiOI/TiO2heterojunction for promotingthe separation of photo-induced electron-hole pairs;③3D connected intertubespacing system and open tube-mouth structure benefit the light absorption andutilization, as well as the convenient immersion of the organic solution;④largerspecific surface area resulted from the dispersion of tiny BiOI nanoflakes on thesurface of TiO2NTs for increasing the contact area between the organic molecules andcatalyst;⑤the applied external electrostatic field for promoting the separation andtransfer of carriers.
     3. Novel film photocatalyst of Ag-BiOCl/TiO2nanocomposite arrays(Ag-BiOCl/TNTAs) is successfully prepared by loading Ag nanoparticles and BiOCl nanoflakes successively onto the surface of TiO2NTs via in situ light reductionfollowed by S-CBD method. Ag-BiOCl/TNTAs film catalyst contains Ag/TiO2,Ag/BiOCl and BiOCl/TiO2composite structures comprised of fcc structure Ag,anatase phaseTiO2and tetragonal phase BiOCl. Ag nanoparticle size is about10~15nm, and the BiOCl nanflake size is about20~30nm. Compared with TNTAs,BiOCl/TNTAs-2and Ag/TNTAs samples, Ag-BiOCl/TNTA sample shows the highestoptical absorption properties in the visible light region, and exhibits the highest PCactivity under both UV and simulated sunlight irradiation towards the degradation ofMO solution. Main causes are proposed as follows:①SPR effect and electroncapturing function of Ag nanoparticles enhance the visible light absorption and PCactivity of Ag/TNTAs;②The contact area of Ag/semiconductor increases due to theformation of Ag/BiOCl junction in the Ag-BiOCl/TNTAs by further introducingBiOCl nanoflakes into Ag/TNTAs, thus full playing the SPR effect and electroncapturing function of Ag nanoparticles;③larger specific surface area and theformation of BiOCl/TiO2junction may further enhance the PC activity of theAg-BiOCl/TNTAs by further introducing BiOCl nanoflakes into Ag/TNTAs.
     4. A facile and environment friendly approach to synthesize unique hierarchicalBiOCl photocatalyst is developed with the assistance of a biodegradable surfactantPolyvinyl Alcohol (PVA). Compared with common BiOCl nanosheets synthesized inthe absence of PVA, the resulting hierarchical BiOCl photocatalyst demonstratessignificantly enhanced PC activity towards the degradation of MO solution due to itslarge specific surface area, porosity, and suitable band gap for improving the lightabsorption and utilization, dye molecules adsorption, and the transportation ofreactants and products. The amount of PVA has obvious influence on themicrostructures and PC performance of the target hierarchical BiOCl catalytst. Theoptimized amount of PVA added into the reaction system is determined according tothe results of the PC performance test.
引文
[1]钱易,唐孝炎.环境保护与可持续发展[M].北京:高等教育出版社,2010.
    [2]林爱文,胡将军,章玲,张滨.资源环境与可持续发展[M].武汉:武汉大学出版社,2005.
    [3]张喜.新型卤化氧铋BiOX(X=Cl、Br、I)光催化剂的合成、表征及催化性能研究[D].武汉:华中师范大学化学学院有机化学系,2010.
    [4]程杨,杨林生,李海蓉.全球环境变化与人类健康[J].地理科学进展,2006,5(2):46-58.
    [5]鄂学礼,凌波.饮水污染对健康的影响[J].中国卫生工程学,2006,5(1):3-5.
    [6]吴国琳.水污染的监测与控制[M].北京:科学出版社,2004.
    [7]郭亚丹.新型复合光催化剂的构筑、微结构调控及其降解有机污染物研究[D].武汉:武汉理工大学环境工程专业,2013.
    [8]邱志群,舒为群,曹佳.我国水中有机物及部分持久性有机物污染现状[J].癌变.畸变.突变,2007,19(3):188-193.
    [9]刘征涛.持久性有机污染物的主要特征和研究进展[J].环境科学研究,2005,18(3):93-102.
    [10]王宝贞,王琳.水污染治理新技术:新工艺、新概念、新理论[M].北京:科学出版社,2004.
    [11] Grady C. P. L., Daigger G. T., Love N.G., Filipe C. D. M. Biological waste water treatment[M].Iwa Publishing,2011.
    [12]祖彬.环境保护基础[M].哈尔滨:哈尔滨工程大学,2007.
    [13]张光明.水处理高级氧化技术[M].哈尔滨:哈尔滨工业大学出版社,2007.
    [14] Gogate P.R., Pandit A. B. A review of imperative technologies for wastewater treatment I:oxidation technologies at ambient conditions[J].Advances in Environmental Research,2004,8(3-4):501-551.
    [15] Ali I., Gupta V. K. Advances in water treatment by adsorption technology[J]. Nature Protocols,2007,1:2661-2667.
    [16] Fujishima A., Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J].Nature,1972,238(5358):37-38.
    [17] Frank S. N., Bard A. J. Heterogeneous photocatalytic oxidation of cyanide and sulfite inaqueous solutions at semiconductor powders[J].The Journal of Physical Chemistry,1977,81(15):1484-1488.
    [18] Carey J. H., Lawrence J., Tosine H. M. Photodechlorination of PCB's in the presence oftitanium dioxide in aqueous suspensions[J].Bulletin of Environmental Contamination andToxicology,1976,16(6):697-701.
    [19] Pruden A. L., D. F. Ollis.Photoassisted heterogeneous catalysis: The degradation oftrichloroethylene in water[J]. Journal of Catalysis,1983,82(2):404-417.
    [20] Pruden A. L., D. F. Ollis. Degradation of chloroform by photoassisted heterogeneous catalysisin dilute aqueous suspensions of titanium dioxide[J]. Environmental Science&technology,1983,17(10):628-631.
    [21] Goswami D. Y. A Review of Engineering Developments of Aqueous Phase Solar PhotocatalyticDetoxification and Disinfection Processes[J].Journal of Solar Energy Engineering,1997,119(2):101-107.
    [22]黄昆.固体物理学[M].北京:北京大学出版社,2009.
    [23]刘春艳.纳米光催化及光催化环境净化材料[M].北京:化学工业出版社,2008.
    [24] Linsebigler A. L., Lu G. Q., Yates J. T. Photocatalysis on TiO2Surfaces: Principles,Mechanisms, and Selected Results[J]. Chemical reviews.1995,95(3):735-75.
    [25] Mills A., Le Hunte S. An overview of semiconductor photocatalysis[J]. Journal ofPhotochemistry and Photobiology A: Chemistry.1997,108(1):1-35.
    [26] Hashimoto K., Irie H., Fujishima A. TiO2Photocatalysis: A Historical Overview and FutureProspects[J].Japanese Journal of Applied Physics,2005,44:8269-8285.
    [27] HoffmanM.R., MartinS. T., Choi W., Bahnemann W. D. Environmental Applications ofSemiconductor Photocatalysis[J]. Chemical Reviews,1995,95(1):69-96.
    [28] Mclaren A., Valdes-Solis T., LiG. Q., Tsang S. C. Shape and Size Effects of ZnO Nanocrystalson Photocatalytic Activity[J].Journal of the American Chemistry Society,2009,131(35):12540-12541.
    [29] Sakthivel S., Neppolian B., Shankar M.V., Arabindoo B., Palanichamy M., MurugesanV. Solarphotocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO andTiO2[J]. Solar Energy Materials and Solar Cells,2003,77(1):65-82.
    [30] Chen D., Ye J. H. Hierarchical WO3Hollow Shells: Dendrite, Sphere, Dumbbell, and TheirPhotocatalytic Properties[J].Advanced Functional Materials,2008,18(13):1922-1928.
    [31] Baeck S. H., Choi K. S., Jaramillo T. F., Stucky G. D., McFarland E. W. Enhancement ofPhotocatalytic and Electrochromic Properties of Electrochemically Fabricated MesoporousWO3Thin Films[J]. Advanced Materials,2003,15(15):1269-1273.
    [32] Guo Y. F.,Quan X., Lu N., Zhao H. M., Chen S. High Photocatalytic Capability ofSelf-Assembled Nanoporous WO3with Preferential Orientation of (002) Planes[J].Environmental Science&Technology,2007,41(12):4422-4427.
    [33] Cao S. W., Zhu Y. J. Hierarchically Nanostructured α-Fe2O3Hollow Spheres: Preparation,Growth Mechanism, Photocatalytic Property, and Application in Water Treatment[J]. Journal ofPhysical Chemistry C,2008,112(16):6253-6257.
    [34] Xu H. L., Wang W. Z., Zhu W. Shape Evolution and Size-Controllable Synthesis of Cu2OOctahedra and Their Morphology-Dependent Photocatalytic Properties[J]. Journal of PhysicalChemistry B,2006,110(28):13829-13834.
    [35] Q. Li, B. D. Guo, J. G. Yu, J. R. Ran, B. H. Zhang, H. J. Yan, J. R. Gong. Highly EfficientVisible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated GrapheneNanosheets[J]. J. Am. Chem. Soc.,2011,133(28):10878–10884.
    [36] Yao W. T., Yu S. H., Liu S. J., Chen J. P., Liu X. M., Li F. Q. Architectural Control Syntheses ofCdS and CdSe Nanoflowers, Branched Nanowires, and Nanotrees via a Solvothermal Approachin a Mixed Solution and Their Photocatalytic Property[J].J. Phys. Chem. B,2006,110(24):11704-11710.
    [37] Hu J. S., Ren L. L., Guo Y. G., Liang H. P., Cao A. M., Wan L. J., Bai C. L. Mass Productionand High Photocatalytic Activity of ZnS Nanoporous Nanoparticles[J].Angewandte Chemie,2005,117(8):1295-1299.
    [38] Wu W. Q., He Yi. M., Wu Y., Wu T. H. Self-template synthesis of PbSnanodendrites and itsphotocatalytic performance[J]. Journal of Alloys and Compounds,2011,509(38):9356-9362.
    [39] Hu K. H., Hu X. G., Xu Y. F., Pan X. Z. The effect of morphology and size on the photocatalyticproperties of MoS2, Reaction Kinetics[J]. Mechanisms and Catalysis,2010,100(1):153-163.
    [40] Warrier M., Lo M. K. F., Monbouquette H., Garcia-Garibay M. A. Photocatalytic reduction ofaromatic azides to amines using CdS and CdSe nanoparticles[J]. Photochemical&Photobiology Sciences,2004,3,859-863.
    [41] Jung H. S., Hong Y. J., Li Y., Cho J., Kim Y. J., Yi G. C.. Photocatalysis Using GaNNanowires[J]. ACS Nano,2008,2(4):637-642.
    [42] Zhang Q. H., Gao L. Ta3N5Nanoparticles with Enhanced Photocatalytic Efficiency underVisible Light Irradiation[J]. Langmuir,2004,20(22):9821-9827.
    [43] Feng X. J., LaTempa T. J., J. I. Basham, G. K. Mor, O. K. Varghese, C. A. Grimes, Ta3N5Nanotube Arrays for Visible Light Water Photoelectrolysis[J]. Nano Letters,2010,10(3):948-952.
    [44] Kudo A., Tanaka A., Domen K., Onishi T. The effects of the calcination temperature of SrTiO3powder on photocatalytic activities[J]. Journal of Catalysis,1988,111(2):296-301.
    [45] Miyauchi M., Takashio M., Tobimatsu H. Photocatalytic Activity of SrTiO3Codoped withNitrogen and Lanthanum under Visible Light illumination[J]. Langmuir,2004,20(1):232-236.
    [46] Wei X., Xu G., Ren Z. H., Xu C. X., Shen G., Han G. R. PVA-Assisted Hydrothermal Synthesisof SrTiO3Nanoparticles with Enhanced Photocatalytic Activity for Degradation of RhB[J].Journal of the American Ceramic Society,2008,91(11):3795-3799.
    [47] Zhang, X.; An Z. H., Jia F. L., Zhang, L. Z. Generalized One-Pot Synthesis, Characterization,and Photocatalytic Activity of Hierarchical BiOX (X=Cl, Br, I) Nanoplate Microspheres[J].Journal of Physical Chemistry C,2008,112(3):747–753.
    [48] An H. Z., Du Y., Wang T. M., Wang C., Hao W. C., Zhang J. Y. Photocatalytic properties ofBiOX (X=Cl, Br, and I)[J]. Rare Metals,2008,27(3):243-250.
    [49] Chang X. F., Huang J., Cheng C., Sui Q., Sha W., Ji G. B., Deng S. B. BiOX (X=Cl, Br, I)photocatalysts prepared using NaBiO3as the Bi source: Characterization and catalyticperformance[J]. Catalysis Communications,2010,11(5):460-464.
    [50] Henle J., Simon P., Frenzel A., Scholz S., Kaskel S. NanosizedBiOX (X=Cl, Br, I) ParticlesSynthesized in Reverse Microemulsions[J]. Chemistry of Materials,2007,19(3):366-373.
    [51] Zhou L., Wang W. Z., Xu H. L., Sun S. M., Shang M. Bi2O3Hierarchical Nanostructures:Controllable Synthesis, Growth Mechanism, and their Application in Photocatalysis[J].Chemistry-A European Journal,2009,15(7):1776-1782.
    [52] Saison T., Chemin N., Chanéac C., Durupthy O., Ruaux V., Mariey L., Maugé F.,Beaunier P.,Jolivet J. P. Bi2O3, BiVO4, and Bi2WO6: Impact of Surface Properties on Photocatalytic Activityunder Visible Light[J]. Journal of Physical Chemistry C,2011,115(13):5657-5666.
    [53] Kohtani S., Koshiko M., Kudo A., Tokumura K., Ishigaki Y., Toriba A., Hayakawa K., NakagakiR. Photodegradation of4-alkylphenols using BiVO4photocatalyst under irradiation with visiblelight from a solar simulator[J]. Applied Catalysis B: Environmental,2003,46(3):573-586.
    [54] Tokunaga S., Kato H., Kudo A. Selective Preparation of Monoclinic and Tetragonal BiVO4withScheelite Structure and Their PhotocatalyticProperties[J].Chemistry of Materials,2001,13(12):4624-4628.
    [55] Zhang L., Chen D. R., Jiao X. L. Monoclinic Structured BiVO4Nanosheets: HydrothermalPreparation, Formation Mechanism, and Coloristic and Photocatalytic Properties[J].Journal ofPhysical Chemistry B,2006,110(6):2668-2673.
    [56] Tang J. W., Zou Z. G., Ye J. H. Photocatalytic Decomposition of Organic Contaminants byBi2WO6Under Visible Light irradiation[J]. Catalysis Letters,2004,92(1-2):53-56.
    [57] Zhang C., Zhu Y. F. Synthesis of Square Bi2WO6Nanoplates as High-ActivityVisible-Light-Driven Photocatalyst [J]. Chemistry of Materials,2005,17(13),3537-3545.
    [58] Fu H. B., Pan C. S., Yao W.Q., Zhu Y. F. Visible-Light-Induced Degradation of Rhodamine B byNanosized Bi2WO6[J]. Journal of Physical Chemistry B,2005,109(47):22432-22439.
    [59] Yao W. F., Wang H., Xu X. H., Shang S. X., Hou Y., Zhang Y., Wang M. Synthesis andphotocatalytic property of bismuth titanate Bi4Ti3O12[J]. Materials Letters,2003,57(13-14):1899-1902.
    [60] Hou D. F., Luo W., Huang Y. H., Jimmy C.Y., Hu X. L. Synthesis of porous Bi4Ti3O12nanofibers by electrospinning and their enhanced visible-light-driven photocatalyticproperties[J]. Nanoscale,2013,5:2028-2035.
    [61] Martínez-de la Cruz A., Obregón Alfaro S., Marcos Villarreal S. M. G. Photocatalytic behaviorof α-Bi2Mo3O12prepared by the Pechini method: degradation of organic dyes undervisible-light irradiation[J]. Research on Chemical Intermediates,2010,36(8):925-936.
    [62] Xiong J. Y., Chen G., Qin F., Wang R. M., Sun H. Z., Chen R. Tunable BiOCl hierarchicalnanostructures for high-efficient photocatalysis under visible light irradiation[J]. ChemicalEngineering Journal,2013,220:228-236.
    [63] Huang W. L. Electronic structures and optical properties of BiOX (X=F, Cl, Br, I) via DFTcalculations[J]. Journal of Computational Chemistry,2009,30(12):1882-1891.
    [64] Huang W. L., Zhu Q. S. DFT calculations on the electronic structures of BiOX (X=F, Cl, Br, I)photocatalysts with and without semicore Bi5d states[J]. Journal of Computational Chemistry,2009,30(2):183-190.
    [65] Zhang K. L., Liu C. M., Huang F. Q., ZhengC., Wang W. D. Study of the electronic structureand photocatalytic activity of the BiOCl photocatalyst[J]. Applied Catalysis B: Environmental,2006,68(3-4):125-129.
    [66] Chang X. F., Huang J., Tan Q. Y., Wang M., Ji G. B., Deng S. B., Yu G. Photocatalyticdegradation of PCP-Na over BiOI nanosheets under simulated sunlight irradiation[J].CatalysisCommunications,2009,10(15):1957-1961.
    [67] Pare B., Sarwan B., Jonnalagadda S. B. The characteristics and photocatalytic activities ofBiOCl as highly efficient photocatalyst[J]. Journal of Molecular Structure,2012,1007:196-202.
    [68] Cao C. B., Lv R. T., Zhu H. S. Preparation of single-crystal BiOCl nanorods via surfactantsoft-template inducing growth[J].J. Metastab. Nanocryst.Mater.2005,23:79-82.
    [69] Dellinger T. M., Braun P. V. BiOCl nanoparticles synthesized in lyotropic liquid crystalnanoreactors[J].Scripta materialia,2001,44:1893-1897.
    [70] Jiang J., Zhao K., Xiao X. Y., Zhang L. Z. Synthesis and Facet-Dependent Photoreactivity ofBiOCl Single-Crystalline Nanosheets[J]. Journal of the American Chemistry Society,2012,134(10):4473-4476.
    [71] Perera S., Zelenski N. A., Pho R. E., Gillan E. G. Rapid and exothermic solid-state synthesis ofmetal oxyhalides and their solid solutions via energetic metathesis reactions[J]. Journal of SolidState Chemistry,2007,180(10):2916-2925.
    [72] Wang C. H., Shao C. L., Liu Y. C., Zhang L. N. Photocatalytic properties BiOCl and Bi2O3nanofibers prepared by electrospinning[J].Scripta Mater.,2008,59(3):332-335.
    [73] Henle J., Simon P., Frenzel A., Scholz S., Kaskel S. Nanosized BiOX (X=Cl, Br, I) particlessynthesized in reverse microemulsions[J].Chemistry of Materials,2007,19(3):366-373.
    [74] Shang M., Wang W. Z., Zhang L. Preparation of BiOBr lamellar structure with highphotocatalytic activity by CTAB as Br source and template[J]. Journal of Hazardous Materials,2009,167(1-3):803-809.
    [75] Zhang J., Shi F. J., Lin J., Chen D. F., Gao J. M., Huang Z. X., Ding X. X., Tang C. C.Self-Assembled3-D Architectures of BiOBr as a Visible Light-Driven Photocatalyst[J].Chemistry of Materials,2008,20(9):2937-2941.
    [76] Xiao X., Zhang W. D. Facile synthesis of nanostructured BiOI microspheres with high visiblelight-induced photocatalytic activity[J]. Journal of Materials Chemistry,2010,20,5866-5870.
    [77] Lei Y. Q., Wang G. H., Song S. Y., Fan W. Q., Pang M., Tang J. K., Zhang H. J. Roomtemperature, template-free synthesis of BiOI hierarchical structures: Visible-light photocatalyticand electrochemical hydrogen storage properties[J]. Dalton Trans.,2010,39:3273-3278.
    [78] Deng H., Wang J. W., Peng Q., Wang X., Li Y. D. Controlled Hydrothermal Synthesis ofBismuth Oxyhalide Nanobelts and Nanotubes[J]. Chemistry-A European Journal,2005,11(22):6519-6524.
    [79] Ye L. Q., Zan L., Tian L. H., Peng T. Y., Zhang J. J. The {001} facets-dependent highphotoactivity of BiOCl nanosheets[J].Chemical Communications,2011,47:6951-6953.
    [80] Ye L. Q., Deng K. J., Xu F., Tian L. H., Peng T. Y., Zan L. Increasing visible-light absorption forphotocatalysis with black BiOCl[J]. Phys. Chem. Chem. Phys.,2012,14,82-85.
    [81] Zhu L. P., Liao G. H., Bing N. C., et al. Self-assembled3D BiOCl hierarchitectures: tunablesynthesis and characterization[J].Cryst. Eng. Comm.,2010,12:3791-3796.
    [82] Xia J. X., Yin S., Li H. M., Xu H., Xu L., Xu Y. G. Improved visible light photocatalytic activityof sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid[J].Dalton Trans.,2011,40:5249-5258.
    [83]于洪涛,全燮.纳米异质结光催化材料在环境污染控制领域的研究进展[J].化学进展,2009,21(2/3):406-419.
    [84] Chai S. Y., Kim Y. J., Jung M. H., Chakraborty A. K., et al. Heterojunctioned BiOCl/Bi2O3, anew visible light photocatalyst[J]. J. Catal.,2009,262(1):144-149.
    [85] Shamaila S., Sajjad A. K. L., Chen F., Zhang J. L. WO3/BiOCl, a novel heterojunction as visiblelight photocatalyst[J]. J. Colloid Interface Sci.,2011,356(2):465-472.
    [86] Kong L., Jiang Z., Lai H. H., Nicholls R. J., T. C. Xiao, Jones M. O., Edwards P. P. Unusualreactivity of visible-light-responsive AgBr-BiOBr heterojunction photocatalysts[J]. J. Catal.,2012,293:116-125.
    [87] Zhang X., Zhang L. Z., Xie T. F., Wang D. J. Low-Temperature Synthesis and HighVisible-Light-Induced Photocatalytic Activity of BiOI/TiO2Heterostructures[J]. J. Phys. Chem.C,2009,113(17):7371-7378.
    [88] Wang W. D., Huang F. Q., Lin X. P. xBiOI-(1-x)BiOCl as efficient visible light drivenphotocatalysts[J].Scripta Mater.,2007,56(8):669-672.
    [89] Liu Y. Y., Son W. J., Lu J. B., Huang B. B., Dai Y., WhangboM. H. Composition Dependence ofthe Photocatalytic Activities of BiOCl1xBrxSolid Solutions under Visible Light[J]. Chemistry-A European Journal,2011,17(34):9342-9349.
    [90] Chen H., Chen S., Quan X., Zhang Y. Structuring a TiO2-based photonic crystal photocatalystwith schottky junction for efficient photocatalysis[J]. Environ. Sci. Technol.,2010,44(1):451-455.
    [91] Yu C. L., Cao F. F., Shu Q., Bao Y. L., et al. Preparation, Characterization and PhotocatalyticPerformance of Ag/BiOX (X=Cl, Br, I) Composite Photocatalysts[J].Acta Phys-Chim Sin.,2012,28(3):647-653.
    [92] Yu C.L., Cao F. F., Li G., Wei R. F., Yu J. C., Jin R. C., Fan Q. Z., Wang C.Y. Novel noble metal(Rh, Pd, Pt)/BiOX(Cl, Br, I) composite photocatalysts with enhanced photocatalyticperformance in dye degradation[J]. Separation and Purification Technology,2013,120:110-122.
    [93] Pare B., Sarwan B., Jonnalagadda S. B. Photocatalytic mineralization study of malachite greenon the surface of Mn-doped BiOCl activated by visible light under ambient condition[J]. Appl.Surf. Sci.,2011,258(1):247-253.
    [94] Ye L. Q., Gong C. Q., Liu J. Y., Tian L. H., Peng T. Y., Deng K. J., Zan L. Bin(Tu)xCl3n: a novelsensitizer and its enhancement of BiOCl nanosheets’s photocatalytic activity[J]. J. Mater.Chem.,2012,22:8354-8360.
    [95] Li K., Tang Y.P., XuY. L., Wang Y.L., Huo Y.N., Li H.X., JiaJ.P. A BiOCl film synthesis fromBi2O3film and its UV and visible light photocatalytic activity[J].Applied Catalysis B:Environmental,2013,140-141:179-188.
    [96] Cao S. H., Guo C. F., Lv Y., Guo Y. J., Liu Q. A novel BiOCl film with flowerlike hierarchicalstructures and its optical properties[J]. Nanotechnology,2009,20(27):275702.
    [97] Grimes C. A. Synthesis and application of highly ordered arrays of TiO2nanotubes[J]. J. Mater.Chem.,2007,17:1451-1457.
    [98] Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y. Visible-light photocatalysis innitrogen-doped titanium oxides[J]. Science,2001,293(5528):269-271.
    [99] Chen X.B., Mao S. S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications,and Applications[J]. Chemical Reviews,2007,107,2891-2959.
    [100] Ni M., Leung M. K. H., Leung D.Y. C., Sumathy K. A review and recent developments inphotocatalytic water-splitting using TiO2for hydrogen production[J].Renewable andSustainable Energy Reviews,2007,11(3):401-425.
    [101] Gupta S. M., Tripathi M. A review of TiO2nanoparticles[J]. Chinese Science Bulletin,2011,56(16):1639-1657.
    [102] Kuang D., Brillet J., Chen P., Takata M., et al. Application of Highly Ordered TiO2NanotubeArrays in Flexible Dye-Sensitized Solar Cells[J]. ACS Nano,2008,2(6):1113–1116.
    [103]吴玉程,王岩,崔接武,秦永强,黄新民.一维纳米TiO2的可控合成及其应用的研究进展[J].中国有色金属学报,2011,10(21),2430-2447.
    [104]吴玉程,刘晓璐,叶敏,解挺,黄新民.碳纳米管负载纳米TiO2复合材料的制备及其性能[J].物理化学学报,2008,24(1):97-102.
    [105]黄绵峰,郑治祥,徐光青,吴玉程.氮和硫共掺杂纳米TiO2光催化剂的制备及可见光活性研究[J].材料热处理学报,2009,30(3):14-18.
    [106]宋林云,李云,吴玉程,叶敏,解挺,黄新民.介孔TiO2的制备及其光催化性能研究[J].武汉理工大学学报,2007,29(10):66-69.
    [107]盘荣俊. TiO2纳米管阵列的可控沉积改性及其性能研究[D].合肥:合肥工业大学,2010.
    [108] Michailowski A., AlMawlawi D., Cheng G. S., Moskovits M. Highly regular anatasenanotubule arrays fabricated in porous anodic templates[J]. Chemical Physics Letters,2001,349(1-2):1-5.
    [109]李晓红,张校刚,力虎林. TiO2纳米管的模板法制备及表征[J].高等学校化学学报,2001,22(1):130-132.
    [110] Charoensirithavorn P., Ogomi Y., Sagawa T., Hayase S., Yoshikawa S. A facile route to TiO2nanotube arrays for dye-sensitized solar cells[J]. Journal of Crystal Growth,2009,311(3):757-759.
    [111] Gong D. W., Grimes C. A., Varghse O. K., Hu W.C., Singh R. S., Chen Z., Dickey E. Titaniumoxide nanotube arrays prepared by anodic oxidation[J]. Journal of Materials Research,2001,16(12):3331-3334.
    [112] Grimes C. A., Mor G. K. TiO2Nanotube Arrays: Synthesis, Properties, and Applications[M].Springer,2009.
    [113] G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee, C. A. Grimes. Fabrication of tapered,conical-shaped titaniana notubes[J]. Journal of Materials Research,2003,18(11):2588-2593.
    [114] Varghese O. K., Gong D. W., Paulose M., Grimes C. A., Dickey E. C. Crystallization andhigh-temperature structural stability of titanium oxide nanotube arrays[J]. Journal of MaterialsResearch,2003,18(1):156-165.
    [115] Adachi M., Murata Y., Okada I., Yoshikawa S. Formation of titania nanotubes and applicationsfor dye-sensitized solar cells[J]. Journal of Electrochemical Society,2003,150: G488-G493.
    [116] Beranek R., Hildebrand H., Schmuki P. Self-organized porous titanium oxide prepared inH2SO4/HF electrolytes[J]. Electrochem. Solid-State Lett.,2003,6: B12-B14.
    [117] Cai Q.Y., Pauloseb M., Varghesea O. K., Grimes C. A. The effect of electrolyte composition onthe fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation[J].Journal of Materials Research,2005,20(1):230-235.
    [118] Ghicov A., Tsuchiya H., Macak J. M., Schmuki P. Titanium oxide nanotubes prepared inphosphate electrolytes[J]. Electrochemistry Communications,2005,7(5):505-509.
    [119] Andrei G, Bernd S, Julia K, Partrik S. Photoresponse in the visible range from Cr doped TiO2nanotubes[J]. Chem. Phys. Lett.,2007,433:323-326.
    [120] Xu Z. H., Yu J. G.Visible-light-induced photoelectrochemical behaviors of Fe-modified TiO2nanotube arrays[J]. Nanoscale,2011,3:3138-3144.
    [121] Kim D, Fujimoto S, Schmuki P, Tsuchiya H. Nitrogen doped anodic TiO2nanotubes grownfrom nitrogen-containing Ti alloys[J]. ElectrochemCommun,2008,10(6):910-913.
    [122] Li Q., Shang J. K. Composite photocatalyst of nitrogen and fluorine codoped titanium oxidenanotube arrays with dispersed palladium oxide nanoparticles for enhanced visible lightphotocatalytic performance[J]. Environ. Sci. Technol.,2010,44(9):3493-3499.
    [123] Lei L., Su Y., Zhou M., et al. Fabrication of multi-non-metal-doped TiO2nanotubes byanodization in mixed acid electrolyte[J]. Materials Research Bulletin,2007,42:2230-2236.
    [124] Vitiellob R. P., Macaka J. M., Ghicova A., Tsuchiyaa H., Dickb L. F. P., Schmuki P. N-dopingof anodic TiO2nanotubes using heat treatment in ammonia[J]. Electrochem. Commun.,2006,8(4):544-548.
    [125] Li Q., Shang J. K. Composite photocatalyst of nitrogen and fluorine codoped titanium oxidenanotube arrays with dispersed palladium oxide nanoparticles for enhanced visible lightphotocatalytic performance[J]. Environ. Sci. Technol.,2010,44(9):3493-3499.
    [126] Zhang J. W., Wang Y., Jin Z. S., Wu Z. S., Zhang Z. J. Visible-light photocatalytic behavior oftwo different N-doped TiO2[J]. Appl. Surf. Sci.,2008,254(15):4462-4466.
    [127] Liu D. W., Xiao P., Zhang Y. H., Garcia B. B., Zhang Q. F., et al. TiO2nanotube arraysannealed in N2for efficient lithium-ion intercalation[J]. J. Phys. Chem. C,2008,112(30):11175-11180.
    [128]石健,李军,蔡云法.具有可见光响应的C、N共掺杂TiO2纳米管光催化剂的制备[J].物理化学学报.2008,7:1283-1286.
    [129] Mohapatra S. K., Misra M., Mahajan V. K., Raja K. S. Design of a highly efficientphotoelectrolytic cell for hydrogen generation by water splitting: Application of TiO2-xCxnanotubes as a photoanode and Pt/TiO2nanotubes as a cathode[J]. J. Phys. Chem. C,2007,111(24):8677-8685.
    [130] Park J. H., Kim S., Bard A. J. Novel carbon-doped TiO2nanotube arrays with high aspectratios for efficient solar water splitting[J]. Nano Lett.,2006,6(1):24-28.
    [131] Chen X., Zhang X., Su Y., Lei L. Preparation of visible-light responsive P-F-codoped TiO2nanotubes[J]. Appl Surf Sci,2008,254(20):6693-6696.
    [132]陈秀琴,苏雅玲,张兴旺,雷乐成.可见光响应型S, F共掺杂TiO2纳米管的制备[J].科学通报.2008,53(11):1274-1278.
    [133] Tang X., Li D. Sulfur-doped highly ordered TiO2nanotubular arrays with visible lightresponse[J]. J. Phys. Chem. C,2008,112(14):5405-5409.
    [134] Zhang Y., Fu W., Yang H., et al. Synthesis and characterization of P-doped TiO2nanotubes[J].Thin Solid Films,2009,518(1):99-103.
    [135] Ruan C. M., Paulose M., Varghese O. K., Grimes C. A. Enhanced photoelectrochemical-response in highly ordered TiO2nanotbue-arrays anodized in boric acid containingelectrolyte[J]. Solar Energy Materials and Solar Cells,2006,90:1283-1295.
    [136] Li J., Lu N., Quan X., Chen S., Zhao H. M. Facile method for fabricating boron-doped TiO2nanotube array with enhanced photoelectrocatalytic properties[J]. Ind. Eng. Chem. Res.,2008,47(11):3804-3808.
    [137] Lu N., Quan X., Li J. Y., Chen S., Yu H. T., Chen G. H. Fabrication of boron-doped TiO2nanotube array electrode and investigation of its photoelectrochemical capability[J]. J. Phys.Chem. C,2007,111(32):11836-11842.
    [138] Lin C. J., Yu Y. H., Liou Y. H. Free-standing TiO2nanotube array films sensitized with CdS ashighly active solar light-driven photocatalysts[J]. ApplCatal B: Environ,2009,93(1-2):119-125.
    [139] Bai J., Li J., Liu Y., et al. A new glass substrate photoelectrocatalytic electrode for efficientvisible-light hydrogen production: CdS sensitized TiO2nanotube arrays[J]. Appl Catal B:Environ,2010,95(3-4):408-413.
    [140] Chen S., Paulose M., Ruan C., et al. Electrochemically synthesized CdS nanoparticle-modifiedTiO2nanotube-array photoelectrodes: Preparation, characterization, and application tophotoelectrochemical cells[J]. J Photochem Photobiol A: Chem,2006,177(2-3):177-184.
    [141] Wang D, Liu Y, Wang C, F Zhou, Liu W. Highly Flexible Coaxial Nanohybrids Made fromPorous TiO2Nanotubes[J]. ACS Nano,2009,3(5):1249–1257.
    [142] Baker D. R., Kamat P. V. Photosensitization of TiO2nanostructures with CdS quantum dots:particulate versus tubular support architectures[J]. AdvFunct Mater,2009,19(5):805-811.
    [143] Lai Y., Lin Z., Chen Z., et al. Fabrication of patterned CdS/TiO2heterojunction by wettabilitytemplate-assisted electrodeposition[J]. Mater Lett,2010,64(11):1309-1312.
    [144] Zhu W., Liu X., Liu H., et al. Coaxial heterogeneous structure of TiO2nanotube arrays withCdS as a superthin coating Synthesized via modified electrochemical atomic layerdeposition[J]. J. Am. Chem. Soc.,2010,132:12619-12626.
    [145] Shen Q., Sato T., Hashimoto M., Chen C., Toyoda T. Photoacoustic and photoelectrochemicalcharacterization of CdSe-sensitized TiO2electrodes composed of nanotubes and nanowires[J].Thin Solid Films,2006,499(1-2):299-305.
    [146] Lee W., Kang S. H., Min S. K., et al. Co-sensitization of vertically aligned TiO2nanotubeswith two different sizes of CdSe quantum dots for broad spectrum[J]. Electrochem. Commun.,2008,10(10):1579-1582.
    [147] Yang L., Luo S., Liu R., et al. Fabrication of CdSe nanoparticles sensitized long TiO2nanotubearrays for photocatalytic degradation of anthracene-9-carbonxylic acid under greenmonochromatic light[J]. J. Phys. Chem. C,2010,114:4783-4789.
    [148] Hou Y., Li X., Zou X., et al. Photoeletrocatalytic activity of a Cu2O-loaded self-organizedhighly oriented TiO2nanotube array electrode for4-chlorophenol degradation[J]. Environ. Sci.Technol.,2009,43(3):858-863.
    [149] Zhang Y. G., Ma L. L., Li J. L., Yu Y. In situ fenton reagent generated from TiO2/Cu2Ocomposite film: a new way to utilize TiO2under visible light irradiation[J]. Environ. Sci.Technol.,2007,41(17):6264-6269.
    [150] Kang Q., Liu S. H., Yang L. X., Cai Q.Y., Grimes C. A. Fabrication of PbSNanoparticle-Sensitized TiO2Nanotube Arrays and Their Photoelectrochemical Properties[J].ACS Appl. Mater. Interfaces,2011,3(3):746-749.
    [151] Ratanatawanate C., Tao Y., Balkus K. J. Photocatalytic Activity of PbS Quantum Dot/TiO2Nanotube Composites[J]. J. Phys. Chem. C,2009,113(24):10755-10760.
    [152] Hou L. R., Yuan C. Z., Peng Y. Synthesis and photocatalytic property of SnO2/TiO2nanotubescomposites[J]. Journal of Hazardous Materials,2007,139(2):310-315.
    [153] Wu X. M., Zhang S. C., Wang L. L., Du Z. J., et al. Coaxial SnO2@TiO2Nanotube Hybrids:From Robust Assembly Strategies to Potential Application in Li+Storage[J]. J. Mater. Chem.,2012,22:11151-11158.
    [154] Yang L. X., Xiao Y., Liu S. H., Li Y., Cai Q. Y., Luo S. L., Zeng G. M. Photocatalytic reductionof Cr(VI) on WO3doped long TiO2nanotube arrays in the presence of citric acid[J]. AppliedCatalysis B: Environmental,2010,94(1-2):142-149.
    [155] Paramasivam I., Nah Y. C., Das C., Shrestha N. K., Schmuki P. WO3/TiO2Nanotubes withStrongly Enhanced photocatalytic Activity[J]. Chem. Eur. J.2010,16:8993-8997.
    [156] Nah Y. C., Ghicov A., Kim D., Berger S., Schmuki P. TiO2-WO3Composite Nanotubes byAlloy Anodization: Growth and Enhanced Electrochromic Properties[J] J. Am. Chem. Soc.,2008,130(48):16154-16155.
    [157] Liu L. J., Lv J., Xu G. Q., et al. Uniformly dispersed CdS nanoparticles sensitized TiO2nanotube arrays with enhanced visible-light photocatalytic activity and stability, Journal ofsolid state chemistry,2013,208:27-34.
    [158] Lv J., Su L. L., Wang H. E., et al. Enhanced visible light photocatalytic activity of TiO2nanotube arrays modified with CdSe nanoparticles by electrodeposition method[J]. Surface&Coatings Technology,2014,242:20-28.
    [159] Yang L. X., Xiao Y., Zeng G. M., et al. Fabrication and characterization of Pt/C-TiO2nanotubearrays as anode materials for methanol electrocatalytic oxidation[J]. Energy Fuels,2009,23(6):3134-3138.
    [160] Macak J. M., Barczuk P. J., Tsuchiya H., et al. Self-organized nanotubular TiO2matrix assupport for dispersed Pt/Ru nanoparticles: Enhancement of the electrocatalytic oxidation ofmethanol[J]. Electrochem Commun,2005,7(12):1417-1422.
    [161] Chien S. H., Liou Y. C., Kuo M. C. Preparation and characterization of nanosized Pt/Auparticles on TiO2-nanotubes[J]. Synthetic Metals,2005,152(1-3):333-336.
    [162] Mahshid S., Li C., S. S. Mahshid et al. Sensitive determination of dopamine in the presence ofuric acid and ascorbic acid using TiO2nanotubes modified with Pd, Pt and Au nanoparticles[J].Analyst,2011,136:2322-2329.
    [163] Song Y. Y., Gao Z. D., Schmuki P. Highly uniform Pt nanoparticle decoration on TiO2nanotube arrays: A refreshable platform for methanol electrooxidation[J]. ElectrochemistryCommunications,2011:13290-293.
    [164] Macak J.M., Schmidt-Stein F., Schmuki P. Efficient oxygen reduction on layers of orderedTiO2nanotubes loaded with Au nanoparticles[J]. ElectrochemCommun,2007,9(7):1783-1787.
    [165] Kafi A. K. M., Wu G., Chen A.A novel hydrogen peroxide biosensor based on theimmobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotubearrays[J]. Biosensors and Bioelectronics,2008,24(4):566-571.
    [166] Paramasivam I., Macak J.M., Schmuki P. Photocatalytic activity of TiO2nanotube layersloaded with Ag and Au nanoparticles[J]. Electrochemistry Communications,2008,10(1):71-75.
    [167] Liu Z. H., Chen J. Z., Zhang Y. Y., Wu L. P., Li X. J. The effect of sandwiched Ag in the wallof TiO2nanotube on the photo-catalytic performance[J]. Materials Chemistry and Physics,2011,128(1-2):1-5.
    [168] Liang Y. C., Wang C. C., Kei C. C., Hsueh Y. C., et al. Photocatalysis of Ag-Loaded TiO2Nanotube Arrays Formed by Atomic Layer Deposition[J]. J. Phys. Chem. C2011,115:9498-9502.
    [169] Hou Y., Li X, Y., Zhao Q. D., Quan X., Chen G. H. TiO2nanotube/Ag-AgBr three-componentnanojunction for efficient photoconversion [J]. J. Mater. Chem.,2011,21:18067-18076.
    [170] Zhang S. S., Peng F., Wang H. J., Yu H., Zhang S. Q., et al. Electrodeposition preparation ofAg loaded N-doped TiO2nanotube arrays with enhanced visible light photocatalyticperformance[J]. Catalysis Communications,2011,12:689-693.
    [171] Haidong Bian, Xia Shu, Jianfang Zhang, et al. Uniformly Dispersed and ControllableLigand-Free Silver-Nanoparticle-Decorated TiO2Nanotube Arrays with EnhancedPhotoelectrochemical Behaviors[J]. Chemistry-An Asian Journal,2013,8(11):2746-2754.
    [172] Mohapatra S. K., Kondamudi N., Banerjee S, Misra M. Functionalization of self-organizedTiO2nanotubes with Pd nanoparticles for photocatalytic decomposition of dyes under solarlight illumination[J].Langmuir,2008,24(19):11276-11281.
    [173] Gr tzel M. Photoelectrochemical cells[J]. Nature,2001,414:338-344.
    [174] Gr tzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solarcells[J]. J Photochem Photobiol A: Chem,2004,164:3-14.
    [175] Mor G. K., Shankar K., Paulose M., Varghese O. K., Grimes C. A. Use of Highly-Ordered TiO2Nanotube Arrays in Dye-Sensitized Solar Cells, Nano Lett.,2006,6(2):215-218.
    [176] Wang Y, Yang H, Liu Y, et al. The use of Ti meshes with self-organized TiO2nanotubes asphotoanodes of all-Ti dye-sensitized solar cells[J]. Progress in Photovoltaics: Research andApplications.2010,18(4):285-290.
    [177] Kuang D, Brillet J, Chen P, et al. Application of highly ordered TiO2nanotube arrays inflexible dye-sensitized solar cells[J]. ACS Nano,2008,2(6):1113-1116.
    [178] Ghicov A, Albu S P, Hahn R, Kim D, T Stergiopoulos, J Kunze, C-A Schiller, P Falaras, PSchmuki. TiO2nanotubes in dye-sensitized solar cells: Critical factors for the conversionefficiency[J]. Chemistry-An Asian Journal,2009,4(4):520-525.
    [179] Tachikawa T., Fujitsuka M., Majima T. Mechanistic Insight into the TiO2PhotocatalyticReactions: Design of New Photocatalysts[J]. J. Phys. Chem. C,2007,111(14):5259-5275.
    [180] Morgan W. E., Stec W. J., Van Wazer J. R. Inner-orbital binding-energy shifts of antimony andbismuth compounds[J].Inorg. Chem.,1973,12(4):953-955.
    [181] Ettema A. R. H. F., Haas C. An X-ray photoemission spectroscopy study of interlayer chargetransfer in some misfit layer compounds[J].J. Phys.: Conden. Matter.,1993,5(23):3817-3826.
    [182] Wang C. H., Shao C. L., Liu Y. C., Zhang L. N. Photocatalytic properties BiOCl and Bi2O3nanofibers prepared by electrospinning[J].ScriptaMaterialia,2008,59(3):332-335.
    [183] S dergren S., Siegbahn H., Rensmo H., et al. Lithium intercalation in nanoporous anatase TiO2studied with XPS[J]. J. Phys. Chem. B,1997,101(16):3087-3090.
    [184] Diebold U., Madey T. E.TiO2by XPS[J].Surf. Sci. Spectra,1996,4:227-231.
    [185] Cheng G., Xiong J. Y., Stadler F. J. Facile template-free and fast refluxing synthesis of3Ddesertrose-like BiOCl nanoarchitectures with superior photocatalytic activity[J]. New J. Chem.,2013,37:3207-3213.
    [186] Chou Y. C., Shao C. L., Li X. H., et al. BiOCl nanosheets immobilized on electrospunpolyacrylonitrile nanofibers with high photocatalytic activity and reusable property[J]. Appl.Surf. Sci.,2013,285:509-516.
    [187] Wu S. J., Wang C., Cui Y. F. Controllable growth of BiOCl film with high percentage ofexposed {001} facets[J]. Applied Surface Science,2014,289(15):266-273.
    [188]阎子峰.纳米催化技术[M].北京:化学工业出版社,2003.
    [189] Zhang K., Liang J., Wang S., et al. BiOCl Sub-Microcrystals Induced by Citric Acid and TheirHigh Photocatalytic Activities [J]. Cryst. Growth Des.,2012,12(2):793-803.
    [190] Zhu K., Neale N. R., Miedaner A., Frank A. J. Enhanced Charge-Collection Efficiencies andLight Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2NanotubesArrays[J].Nano Lett.,2007,7(1):69-74.
    [191] Yu J. G., Wang B. Effect of calcination temperature on morphology and photoelectrochemicalproperties of anodized titanium dioxide nanotube arrays[J].Appl. Catal. B: Environ,2010,94(3-4):295-302.
    [192] Li Y. Y., Wang J. S., Yao H. C., Dang L. Y., Li Z. J. Efficient decomposition of organiccompounds and reaction mechanism with BiOI photocatalyst under visible lightirradiation[J].Journal of Molecular Catalysis A: Chemical,2011,334(1-2):116-122.
    [193] Dai G. P., Yu J. G., Liu G. Synthesis and Enhanced Visible-Light Photoelectrocatalytic Activityof p-n Junction BiOI/TiO2Nanotube Arrays[J]. J. Phys. Chem. C,2011,115(15):7339-7346.
    [194] Yu C. L., Yu J. C., Fan C. F., Wen H. R., Hu S. J. Synthesis and characterization of Pt/BiOInanoplate catalyst with enhanced activity under visible light irradiation[J]. Materials Scienceand Engineering: B,2010,116(3):213-219.
    [195] Peng S. J., Li L. L., Zhu P. N. et al. Controlled Synthesis of BiOCl HierarchicalSelf-Assemblies with Highly Efficient Photocatalytic Properties[J]. Chemistry-An AsianJournal,2013,8(1):258-268.
    [196] Yu J. G., Yu H. G., Cheng B., et al. The Effect of Calcination Temperature on the SurfaceMicrostructure and Photocatalytic Activity of TiO2Thin Films Prepared by Liquid PhaseDeposition[J]. J. Phys. Chem. B,2003,107(50):13871-13879.
    [197] Butler M. A., Ginley D. S. Prediction of Flatband Potentials at Semiconductor‐ElectrolyteInterfaces from Atomic Electronegativities[J]. J. Electrochem. Soc.,1978,125(2):228-232.
    [198] Lin X. P., Xing J. C., Wang W. D., Shan Z. C., Xu F. F., Huang F. Q. Photocatalytic Activitiesof Heterojunction Semiconductors Bi2O3/BaTiO3: A Strategy for the Design of EfficientCombined Photocatalysts[J]. J. Phys. Chem. C,2007,111(49):18288-18293.
    [199] Yu J. G., Wang W. G., Cheng B. Synthesis and Enhanced Photocatalytic Activity of aHierarchical Porous Flowerlike p-n Junction NiO/TiO2Photocatalyst[J]. Chem. Asian J.,2010,5(12):2499-2506.
    [200] Jiang J., Zhang X., Sun P. B., Zhang L. Z. ZnO/BiOI Heterostructures: PhotoinducedCharge-Transfer Property and Enhanced Visible-Light Photocatalytic Activity[J].J. Phys.Chem. C,2011,115(42):20555-20564.
    [201] Eustis S., El-Sayed M. A. Why gold nanoparticles are more precious than pretty gold: Noblemetal surface plasmon resonance and its enhancement of the radiative and nonradiativeproperties of nanocrystals of different shapes[J].Chem. Soc. Rev.,2006,35:209-217.
    [202] Jain P. K., Huang X., El-Sayed I. H., El-Sayed M. A. Review of Some Interesting SurfacePlasmon Resonance-enhanced Properties of Noble Metal Nanoparticles and TheirApplications to Biosystems[J].Plasmonics,2007,2(3):107-118.
    [203] Kelly K. L., Coronado E., Zhao L. L., Schatz G. C. The Optical Properties of MetalNanoparticles: The Influence of Size, Shape, and Dielectric Environment[J]. J. Phys. Chem. B,2003,107(3):668-677.
    [204] Homola J., Yee S. S., Gauglitz G. Surface plasmon resonance sensors: review[J]. Sensors andActuators B: Chemical,1999,54(1-2):3-15.
    [205] Choi H., Chen W.T., Kamat P. V. Know thy nano neighbor. Plasmonic versus electron chargingeffects of metal nanoparticles in dye-sensitized solar cells[J]. ACS Nano,2012,6(5):4418-4427.
    [206] Guo K. M., Li M.Y., Fang X. L., et al. Preparation and enhanced properties of dye-sensitizedsolar cells by surface plasmon resonance of Ag nanoparticles in nanocomposite photoanode[J].Journal of Power Sources,2013,230:155-160.
    [207] Lee K.C., Lin S. J., Lin C. H., Tsai C. S., Lu Y. J. Size effect of Ag nanoparticles on surfaceplasmon resonance[J].Surface and Coatings Technology,2008,202(22-23):5339-5342.
    [208] Linic, S, Christopher, P, Ingram, D B. Plasmonic-metal nanostructures for efficient conversionof solar to chemical energy[J]. Nature Materials,2011,10(12),911-921.
    [209] Sun, Y; Xia, Y, Gold and silver nanoparticles: A class of chromophores with colors tunable inthe range from400to750nm [J]. Analyst,2003,128(6),686-691.
    [210] Awazu K., Fujimaki M., Rockstuhl C. A plasmonic photocatalyst consisting of silvernanoparticles embedded in titanium dioxide[J]. J. Am. Chem. Soc.,2008,130(5):1676-1680.
    [211]卞海东. Ag纳米颗粒负载TiO2纳米管阵列及其光电性能[D].合肥:合肥工业大学材料科学与工程学院,2013.
    [212] Haidong Bian, Yan Wang, Bao Yuan, et al. Flow-through TiO2nanotube arrays: a modifiedsupport with homogeneous distribution of Ag nanoparticles and their photocatalyticactivities[J]. New J. Chem.,2013,37:752-760.
    [213] Ye L. Q., Liu J. Y., Gong C. Q., et al. Two Different Roles of Metallic Ag on Ag/AgX/BiOX(X=Cl, Br) Visible Light Photocatalysts: Surface Plasmon Resonance and Z-SchemeBridge[J]. ACS Catal.,2012,2(8):1677-1683.
    [214] Liu H., Cao W. R., Su Y., et al. Synthesis, characterization and photocatalytic performance ofnovel visible-light-induced Ag/BiOI[J]. Applied Catalysis B: Environmental,2012,111-112:271-279.
    [215] Zhang L., Cao X. F., Chen X. T., Xue Z. L. BiOBr hierarchical microspheres: microwave-assisted solvothermal synthesis, strong adsorption and excellent photocatalytic properties[J].Journal of Colloid and Interface Science,2011,354(2):630-636.
    [216] Xiong J. Y., Jiao Z. B., Lu G. X., et al. Facile and Rapid Oxidation Fabrication of BiOClHierarchical Nanostructures with Enhanced Photocatalytic Properties[J]. Chemistry-AEuropean Journal,2013,19(29):9472-9475.
    [217] Zhang D. Q., Wen M. C., Jiang B. et al. Ionothermal synthesis of hierarchical BiOBrmicrospheres for water treatment[J]. J. Hazard. Mater.,2012,211-212:104-111.
    [218] Chakraborty S, Shukla D, Vuddanda P. R et al. Utilization of adsorption technique in thedevelopment of oral delivery system of lipid based nanoparticles[J]. Colloids and Surfaces B:Biointerfaces,2010,81:(2):563-569.
    [219] Reddy N. K., Reddy K. T. R. Optical behaviour of sprayed tin sulphide thin films[J]. Mater.Res. Bull.,2006,41(2):414-422.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700