脲酶抑制剂LIMUS对我国农田氨减排及作物产量和氮素利用的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尿素是我国目前最普遍施用的氮肥形态,占我国氮肥用量的50%以上,对保障我国粮食安全起到重要作用。但我国较低的氮肥利用率(平均35%)导致氮肥资源浪费和环境问题,其中氨挥发是主要损失途径之一,在一些石灰性土壤上氨挥发损失高达30%以上。脲酶抑制剂通过抑制脲酶活性减缓尿素的水解,从而起到降低尿素氨挥发损失的有效手段,但脲酶抑制剂的田间效果受到产品本身活性以及土壤环境因素的影响。LIMUS是德国巴斯夫(BASF SE)公司研发的一种新型脲酶抑制剂,该产品是在N-丁基硫代磷酰三胺(NBPT)基础上改进而成。目前,我国尚缺乏针对这一新产品农田氨减排、氮肥利用率以及作物产量效果的系统研究。对此,本研究通过中国河南西平、河北曲周、陕西杨凌的冬小麦以及北京上庄、河北曲周和吉林梨树的玉米田间试验,结合全国不同地区多个农田土壤室内培养试验,来探索新型脲酶抑制剂LIMUS对尿素氨挥发的减排效果及对作物产量和氮素利用的影响。论文的主要结果总结如下:
     (1)采用德尔格氨管法(DTM法)对不同施氮处理下的农田氨挥发进行了原位监测。发现,小麦季普通尿素处理氨挥发占施氮量的10~25%,添加LIMUS的尿素优化处理氨挥发仅占施氮量的0~6%;玉米季普通尿素处理氨挥发占施氮量的3~57%,添加LIMUS的尿素优化处理氨挥发仅占施氮量的0~26%。与普通尿素相比,添加LIMUS的尿素能显著减少氮肥氨挥发损失,氨的减排率高达65~100%。
     (2)和常规尿素(农民传统)处理相比,施用添加LIMUS的尿素优化处理各试验点的小麦、玉米产量均没有表现出显著的增产效应,但增加了氮肥利用率。在曲周点,施用添加LIMUS的尿素处理能提高氮肥利用率11~23个百分点,在优化施氮基础上,进一步减氮20%并添加LIMUS的处理可以在保障作物产量的同时,氮肥利用率高达65~76%。分析表明,LIMUS在增加产量及氮肥利用率上的效果主要取决于土壤本身的供氮量及氨挥发损失的潜力。
     (3)小麦和玉米体系的氮素表观平衡结果显示,与优化处理相比,农民传统处理因施氮量过高,氮增产效应不显著,导致0~1m土壤中大量的硝态氮残留(平均120~170kg N ha-1),氮素表观损失严重(平均100~120kg N ha-1),其中氨挥发损失(30~40kg N ha-1)约占总损失的1/3,而其他损失途径(淋洗、硝化、反硝化等)约占总损失的2/3。与农民传统处理比较,小麦季氮肥优化潜力为38~44%,玉米季氮肥优化潜力为25~50%。
     (4)通过室内培养试验探讨了我国不同地区37个农田土壤表施尿素后的氨挥发潜力及LIMUS对氨减排的效果,研究发现多数中性和石灰性土壤表施尿素后均迅速产生较高的氨挥发,而LIMUS均能显著推迟氨排放出现时间、并降低氨排放强度,体现良好的减排效果。此外,通过比较不同浓度下的NBPT及LIMUS对德国Lihof、我国曲周和上庄三种土壤的氨减排效果,发现在相对较低的浓度下LIMUS表现出比NBPT更好的氨减排效果,说明LIMUS对尿素水解的抑制效果优于常用的脲酶抑制剂产品。
Urea is a main chemical nitrogen (N) fertilizer in China, accounting for more than50%of total N fertilizer consumption. Urea plays an important role in food security; while overuse of N fertilizer can also cause lower N use efficiency (NUE, averaged35%) and numerous environmental problems in China. Ammonia (NH3) volatilization is a significant N loss pathway for urea, which is often more than30%of applied N in calcareous and alkaline soils. Thus it is very significant to decrease NH3loss in order to achieve a higher NUE and to increase grain yields. The use of a urease inhibitorwould be an appropriate measure to achieve these goals, as it could inhibit urease activity and thereby delay the hydrolysis of urea and reduce the potential for NH3loss. A new urease inhibitor LIMUS (Limus(?)) was developed by the BASF SE, Germany, which was modified on the basis of N-(n-butyl) thiophosphoric triamide (NBPT). Currently no systematic study has been conducted to identify the effect of LIMUS on reducing NH3loss and increasing NUE and crop yields in China. Therefore this paper dealed with LIMUS impacts on winter wheat (3field experiments at Xiping (XP), Quzhou (QZ) and Yangling (YL) sites) and maize (3field experiments at Shangzhuang (SZ), QZ and Lishu (LS) sites) and37arable soils across China through comparing plain urea and urea amended with LIMUS treatments. NH3loss alone or NH3loss together with NUE, crop yields, and apparent N balance in all treatments were evaluated to investigate the effects of LIMUS either in lab or field conditions. The main results were summarized as follows:
     (1) Using the calibrated Drager-Tube Method (DTM), I found cumulative NH3losses after two weeks for conventional urea treatment (Ncon) were10~25%of applied N while those for urea amended with LIMUS (Nopt/L-1, Nopt/L-2) were only0~6%of applied N during winter wheat growing season. The cumulative NH3losses for Ncon were3~57%of applied N while NH3losses for urea amended with LIMUS were0~26%of applied N during maize growing season. The results proved the high potential of LIMUS for substantially mitigating65%to100%of NH3loss across all field experiment sites.
     (2) Crop yields were not significantly different between optimized N treatmnts with (Nopt/L1, Nopt/L2) or without (Nopt-1, Nopt-2) LIMUS compared with Neon at any winter-wheat or maize experimental sites. However, a clear11~23%increase in apparent nitrogen recovery (REN) with LIMUS resulted at the QZ site, with an increase in REN up to65~76%under a further20%N-reduced urea plus LIMUS treatment (N80%opt/L). Whether or not a beneficial effect on crop yield was realized mainly depends on initial indigenous soil N status and the amount of NH3loss.
     (3) Estimated apparent N balance also demonstrated that farmer's conventional urea-N fertilization at all sites had no positive effect on grain yield compared to the optimized treatments (with lower N rates), but led to significantly high residual NO3-N with average120~170kg N ha-1and apparent N loss by100~120kg N ha-1, including one third of which lost as NH3volatilization (30~40kg N ha-1). The rest two thirds of N loss may be lost due to N leaching and/or nitrification/denitrification. Our results reveal an N saving potential in farmer's conventional N rate by38~44%for wheat and 25~50%for maize in major croplands of China without yield loss but significant less N loss to the environment.
     (4) Controlled lab experiments were conducted for investigating efficiency of LIMUS in reducing NH3loss from surface applied urea on different soils in China and Germany. In one lab experiment, most of37Chinese arable soils (e.g., neutral and calcareous soils) had high potential of NH3loss for surface applied urea, while the presence of LIMUS decreased NH3loss significantly through delaying urea hydrolysis in all37arable soils. Another lab experiment was conducted to check the concentration effect of two urease inhibitors (NBPT and LIMUS) on reduction of NH3loss from the German Lihof soil and Chinese Shuangzhuang also Quzhou soils. The LIMUS had better effect on reduction of NH3loss compared with the NBPT, especially under lower concentration levels.
引文
蔡贵信.氨挥发//朱兆良,文启孝主编.1992.中国土壤氮素.南京:江苏科技出版社,171-185.
    曹兵,李新慧,张琳,邹国元,高祥照,赵春江.2001.冬小麦不同基肥施用方式对土壤氨挥发的影响.华北农学报,16:83-86.
    陈利军,史奕,李荣华,胡连生,周礼恺.1995.脲酶抑制剂和硝化抑制剂的协同作用对尿素氮转化和N2O排放的影响.应用生态学报,6:365-372.
    杜建军,毋永龙,田吉林,王益权,崔英德.2007.控/缓释肥料减少氨挥发和氮淋溶的效果研究.水土保持学报,21:49-52.
    董华君.2008.准动态箱法测定农田氨挥发初探:[硕士学位论文].北京:中国科学院.
    董文旭,胡春喜,张玉铭.2006.华北农田土壤氨挥发原位测定研究.中国生态农业学报,14:46-48.
    黄彬香,苏芳,丁新泉,胡小康,高志岭,陈新平,张福锁,Martin Kogge, Volker Romheld.2006.田间土壤氨挥发的原位测定-风洞法.土壤,38:712-716.
    黄进宝,范晓辉,张绍林.2006.太湖地区铁渗水耕人为水稻季上氮肥的氨挥发.土壤学报,43:786-792.
    柯福来,黄瑞冬,马兴林,王进军,蒋文春.2007.化学抑制型氮素释放延缓剂对玉米产量和品质的影响.玉米科学,15:111-113.
    廖先岑.1983.氮肥气态损失的研究方法.土壤学进展,5:49-55.
    李晓鸣.2002.氢醌在小麦吸收利用氮素中的作用.黑龙江农业科学,4:4-6.
    李涛,石元亮,李学文,林国林2006. NBPT在土壤中的降解及其影响因子.生态学杂志,9:1082-1086.
    李贵桐,李保国,陈德立.2002.大面积冬小麦夏玉米农田土壤的氨挥发.华北农学报,17:76-81.
    吕婧.2011.脲酶结构与功能的动力学研究及其抑制剂的设计筛选:[博士学位论文].浙江大学.
    苏芳,丁新泉,高志岭,黄彬香,陈新平,张福锁,Martin Kogge, Volker Romheld.2007.华北平原冬小麦-夏玉米轮作体系氮肥的氨挥发.中国环境科学,27:409-413.
    苏芳,黄彬香,丁新泉,高志岭,陈新平,张福锁,Martin Kogge, Volker Romheld.2006.不同氮肥形态的氨挥发损失比较.土壤,38:682-686.
    闫湘,金继运,何萍.2008.提高肥料利用率技术研究进展.中国农业科学,41:450-459.
    王朝晖,刘学军,巨晓棠,张福锁.2002.田间土壤氨挥发的原位测定-通气法.植物营养与肥料学报,8:205-209.
    王小彬,Bailey L.D., Grant C.A., Klein K.K.1998.关于几种土壤脲酶抑制剂的作用条件.植物营养与肥料学报,4:211-218.
    王小彬,辛景峰,Grant C.A., Bailey L.D.1998.尿素与脲酶抑制剂配用对春小麦植株氮吸收的影响.干旱地区农业研究,16:6-10.
    王艳杰,邹国元,付桦,刘宏斌.2005.土壤氮素矿化研究进展.中国农学通报,21:203-208.
    吴进.2009.不同氮肥品种对农田氨挥发及冬小麦产量的影响:[硕士学位论文].中国农业科学院.
    赵圣国,王加启,刘开朗,李旦,于萍,卜登攀,魏宏阳,周凌云,李发弟.2009.脲酶在生物工程中的应用.生物技术通报,3:37-41.
    张福锁,江荣风,杨相东,张卫峰.2005.缓/控释肥料发展中的问题及对策.中国农资,10:51-52.
    张淑艳,松中照夫.2003.不同施肥法及土壤对氨挥发影响的比较研究.中国农学通报,19:671-681.
    张永科,孙茂,张雪君,吴金平,何仲阳,马永平.2005.玉米密植和营养改良之研究Ⅰ.密度对玉米产量和营养的效应.玉米科学,13:87-90.
    周礼恺,赵小燕.1992.脲酶抑制剂氢醌对土壤尿素氮转化的影响.应用生态学报,3:36-41
    朱兆良.2000.农田中氮肥的损失与对策.土壤与环境,9:1-6.
    中华人民共和国国家统计局.2012.中国统计年鉴,北京:中国统计出版社.
    邹长明,颜晓元,八木一行.2005.淹水条件下的氨挥发研究.中国农学通报,21:167-170.
    Abalos D., Sanz-Cobena A., Misselbrook T., Vallejo A.2012. Effectiveness of urease inhibition on the abatement of ammonia, nitrous oxide and nitric oxide emissions in a non-irrigated Mediterranean barley field. Chemosphere,89:310-318.
    Akiyama H., Yan X.Y., Yagi K.,2010. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils:meta-analysis. Global Change Biology,16:1837-1846.
    Amtul Z., Atta-ur-Rahman., Siddiqui R.A., Choudhary M.I.2002. Chemistry and mechanism of urease inhibition. Current Medicinal Chemisty.9:1323-1348.
    Anderson J.R.1962. Urease activity, ammonia volatilization and related microbiological aspects in some south African soils. Proceedings of the South African Sugar Technologists' Association,97-105.
    Aneja V P, Roelle P A, Murray G C, Southerland J, Erisman J W, Fowler D, Asman W A H, Patni N. 2001. Atmospheric Nitrogen compounds Ⅱ:emissions, transport, transformation, deposition and assessment. Atmospheric Environment,35:1903-1911.
    Black A.S., Sherlock R.R., Smith N.P.1987. Effect of timing of simulated rainfall on ammonia volatilization from urea applied to soil of varying moisture content. European Journal of Soil Science.38:679-687.
    Bouwman A.F., Van Der Hoek K.W.1997. Scenarios of animal waste production and fertilizer use and associated ammonia emission for the developing countries. Atmospheric Environment, 31:4095-4102.
    Bouwman A.F., Lee D.S., Asman W.A.H., Dentener F.J., Van Der Hoek K.W., Olivier J.G.J.1997. A global high-resolution emission inventory for ammonia. Global Biogeochemical Cycles,11: 561-587.
    Bouwmeester R.J., Velk RL.G.1981. Wind-tunnel simulation and assessment of ammonia volatilization from ponded water. Agronomy Journal,73:546-552.
    Bouwmeester, R.J.B., Vlek, P.L.G., Stumpe, J.M.,1985. Effect of environmental factors on ammonia volatilization from a urea fertilized soil. Soil Science Society of America Journal,49:376-381.
    Bremner J.M., Mulvaney R.L.1978. Urease activity in soils. In:Burns R.J.(ed.), Soil Enzymes pp.149-196. Academic Press, London.
    Bremner J.M.1995. Recent research on problems in the use of urea as an nitrogen fertilizer. Fretilizer Research,42:321-329.
    Bremner J.M. and Krogmeier M.J.1988. Elimination of the advance effects of urea fertilizer on seed germination, seedling growth and early plant growth in soil. Proceedings of the National Academy of Sciences,85:4601-4604.
    Bremner J.M., McCarty G.W., Higuchi T.1991. Persistence of the inhibitory effects of phosphoroamides on urea hydrolysis in soils. Communications in Soil Science and Plant Analysis. 22:1519-1526.
    Bremner J.M., McCarty G.W., Yeomans J.C., Chai H.S.1986. Effects of phosphoroamides on nitrification, denitrification, and mineralization of organic nitrogen in soil. Communications in Soil Science and Plant Analysis,17:369-384.
    Broadbent F.E., Nakashima T., Chang G.Y.1985. Performance of some urease inhibitor in field trials with corn. Soil Science Society of America Journal,49:348-351.
    Byrnes B.H., Freney J.R.1995. Recent developments on the use of urease inhibitors in the tropics. Fretilizer Research,42:251-259.
    Cai G.X., Chen D.L., Ding H., Pacholski A., Fan X.H., Zhu Z. L.2002. Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain. Nutrient Cycling in Agroecosystems,63: 187-195.
    Cai G.X., Fan X.H., Yang Z., Zhu Z.L.1998. Gaseous loss of nitrogen from fertilizers applied to wheat on a calcareous soil in North China Plain. Pedosphere,8:45-52.
    Cai G.X., Yang N.C., Lu W.F., Chen W., Xia B.Q., Wang X.Z., Zhu Z.L.,1992. Gaseous loss of nitrogen from fertilizers applied to a paddy soil in Southeastern China. Pedosphere,2:209-217.
    Cantarella H., Quaggio J. A., Gallo P. B., Bolonhezi D., Rossetto R., Martins J. L. M., Paulino V. J., Alcantara, P. B.2005. Ammonia losses of NBPT-treated urea under Brazilian soil conditions. In "IFA International Workshop on Enhanced-Efficiency Fertilizers", Frankfurt, Germany,28-30.
    Cantarella H., Bolonhezi D., Gallo P.B., Martins A.L.M., and Marcelino R.2009. Ammonia volatilization and yield of maize with urea treated with urease inhibitor.16th Nitrogen Workshop, Turin, Italy.
    Carmona C., Christianson C.B. Byrnes B.H.1990. Temperature and low concentration effects of the urease inhibitor N-(n-butyl) thiophosphoric triarnide (nBTPT)on ammonia volatilization from urea. Soil Biology and Biochemistry,22:933-937.
    Chai H.H., Hou T.T.1975. Studies on the volatilization of gaseous nitrogen from ammonium sulfate, urea and sodium nitrate applied to soils. Soils Fertilizer. Taiwan,12-31.
    Chien S.H., Prochnow L.I., Cantarella H.2009. Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Advances in Agronomy,102: 267-322.
    Chu H.Y., Hosen Y., Yagi K., Okada O.I.2005. Soil microbial biomass and activities in a Japanese Andisol as affected by controlled release and application depth of urea. Biology and Fertility of Soils,42:89-96.
    Christianson C. B., Byrnes B. H., and Carmona G.1990. A comparison of the sulfur and oxygen analogs of phosphoric trimide urease inhibitors in reducing urea hydrolysis and ammonia volatilization. Fertilizer Research,26:21-27.
    Clarke M., Grierson D., Edwards K.J., Jellis G.J., Jones J.D., Knapp S., Oldroyd G., Poppy G., Temple P., Williams R., Bastow R.2011. One hundred important questions facing plant science research. New Phytologist,192:6-12.
    Clark, C.M., Tilman, D.,2008. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature,451:712-715.
    Collins C.M., D'Orazio S.E.F.1993. Bacterial ureases:structure, regulation of expression and role in pathogenesis. Molecular microbiology,9:907-913.
    Craig J.R. Wollum A.G.1982. Ammonia Volatilization and Soil Nitrogen Changes after Urea and Ammonium Nitrate Fertilization of Pinus Taeda L. Soil Science Society of America Journal,46: 409-414.
    Cui S.H., Shi Y.A., Groffman P.M., Schlesinger W.H., Zhu Y.G.2013. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910-2010). Proceedings of the National Academy of Sciences,110,2052-2057.
    Dawar K., Zaman M., Rowarth J.S., Blennerhassett J., Turnbull M.H.2011. Urease inhibitor reduces N losses and improves plant-bioavailability of urea applied in fine particle and granular forms under field conditions. Agriculture Ecosystems & Environment,144:41-50.
    Deng S.P., Tabatabai M.A.1997. Effect of tillage and residue management on enzyme activities in soils. Ⅲ. Phosphatases and arylsulfatase. Biology and Fertility of Soils,24:141-146.
    Ding W.X., Yu H.Y., Cai Z.C. 2011. Impact of urease and nitrification inhibitors on nitrous oxide emissions from fluvo-aquic soil in the North China Plain. Biology and Fertility of Soils,47:91-99.
    Dixon N.E., Gazzola C., Blakeley R.L., Zerner B.1975. Jack bean urease:the first nickel enzyme.Journal of the American Chemical Society,97:4131-4133.
    Ellis B.G., Knezek B.D.1972. Adsorption reactions of micronutrients in soils. In:Mortvedt J.J., Giordano P.M., Lindsay W.L.(eds.). Micronutrients in Agriculture. Soil Science Society America Inc., Madison, pp.59-78.
    Engel R., Jones C., Wallander R.2011. Ammonia volatilization from urea and mitigation by NBPT following surface application to cold soils. Soil Science Society of America Journal,75: 2348-2357.
    Ernst J.W., Massey H.F.1960. The effects of several factors on volatilization of ammonia formed from urea in the soil. Soil Science Society Proceedings,24:87-90.
    Erisman J.W., Mols H., Fonteijn P., Geusebroek M., Draaijers G., Bleeker A., Van der Veen D.2003. Field intercomparison of precipitation measurements performed within the framework of the Pan European Intensive Monitoring Program of EU/ICP Forest. Environmental Pollution,125: 139-155.
    Erisman J.W., Bleeker A., Hensen A., Vermeulen A.2008. Agricultural air quality in Europe and the future perspectives. Atmospheric Environment,42:3209-3217.
    FAO.2011. Available at:http://faostat3.fao.org/home/index.html#DOWNLOAD
    FAO.2012. FAO Statistical Yearbook 2012 World Food and Agriculture, Food and Agriculture Organization of the United Nations, Rome.
    Fenn L.B., Kissel D.E.1973. Ammonia volatilization from surface applications of ammonium compounds on calcareous soils. Soil Science Society America Proceedings,37:855-859
    Fenn, L.B., Miyamoto, S.1981. Ammonia loss and associated reactions of urea in calcareous soils. Soil Science Society of America Journal.45:537-540.
    Francisco S.S., Urrutia O., Martin V., Peristeropoulos A., Garcia-Mina J.M.2011. Efficiency of urease and nitrification inhibitors in reducing ammonia volatilization from diverse nitrogen fertilizers applied to different soil types and wheat straw mulching. Journal of the Science of Food and Agriculture,91:1569-1575.
    Freney, J. R., Keerthisinghe, D. G., Chaiwanakupt, P., Phongpan, S., and Harrington, K. (1995b). Effect of cyclohexylphosphoric triamide and N-(n-butyl) thiophosphoric triamide on ammonia loss and grain yield of flooded rice in Thailand following urea application. Fertilizer Research,40:225-233.
    Freney J.R., Keerthisinghe D.G., Phongpan S., Chaiwanakupt P., Harrington K.J.1995. Effect of urease, nitrofocation and algal inhibitors on ammonia loss and grain yield of flooded rice in Thailand. Fertilizer Research,40:225-233.
    Galloway J.N., Dentener F.J., Capone D.G., Boyer E.W., Howarth R.W., Seitzinger S.P., Asner G.P., Cleveland C.C., Green P.A., Holland E.A., Karl D.M., Michaels A.F., Porter J.H., Towmsend A.R., Vorosmarty C.J.2004. Nitrogen cycles:Past, present, and future. Biogeochemistry,70:153-226.
    Galloway J.N., Aber J.D., Erisman J.W., Seitzinger S.P., Howarth R.W., Cowling E.B. Cosby B.J.2003. The nitrogen cascade. Bioscience,53:341-356.
    Gericke D., Pacholski A., Kage H.2011. Measurement of ammonia emissions in multi-plot field experiments. Biosystems Engineering.108:164-173.
    Gill J.S., Singh B., Khind C.S., Singh Y.1999. Efficiency of N-(n-butyl) thiophosphoric triamide in retarding hydrolysis of urea and ammonia volatilization losses in a flooded sandy loam soil amended with organic materials. Nutrient Cycling in Agroecosystems,53:203-207.
    Gioacchini P., Marzadori A.C., Antisari L.V., Gessa C.2002. Influence of urease and nitrification inhibitors on N losses from soils fertilized with urea. Biology and Fertility of Soils,36:129-135.
    Grant CA. and Bailey L.D.1999. Effect of seed-placed urea fertilizer and N-(n-butyl) thiophosphoric triamide (NBPT) on emergence and grain yield of barley. Canadian Journal of Plant Science, 79:491-496.
    Guertal E.A.2000. Preplant slow-release nitrogen fertilizers produce similar bell pepper yields as split application of soluble fertilizer. Agronomy Journal,92:388-393.
    Guo J.H., Liu X.J., Zhang Y., Shen J.L., Han W.X., Zhang W.F., Christie P., Goulding K., Vitousek P., Zhang F.S.,2010. Significant acidification in major Chinese croplands. Science,327:1008-1010.
    Harrison R., Webb J.2001. A review on the effect of N fertilizer type on gaseous emissions. Advances in Agronomy,73:66-108.
    Hausinger R.P.1993. In Bioehemistry of Nickel. Plenum Press, New York
    Henning S.W., Branham B.E., Mulvaney R.L.,2013. Response of turfgrass to urea-based fertilizers formulated to reduce ammonia volatilization and nitrate conversion. Biology and Fertility of Soils, 49:51-60.
    Hou X.K., Hua J.F., Liang W.J., Yang D.F.2006. Effect of combined application of urease and nitrification inhibitors on yield and quality of wheat. Agricultural Journal,1:109-112.
    IPCC,2007. Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC (ISBN:978052188009-1 Hardback; 978 05210070596-7 Paperback)
    Joo Y.K., Christians N.E. Blackmer A.M.1991. Kentucky bluegrass recovery of urea-derived nitrogen-15 amended with urease inhibitor. Soil Science Society of America Journal,55:528-530.
    Ju X.T., Xing G.X., Chen X.P., Zhang S.L., Zhang L.J., Liu X.J., Cui Z.L., Tin B., Christie P., Zhu Z.L., Zhang F.S.,2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences,106:3041-3046.
    Khalil M.I., Gutser R., Schmidhalter U.2009. Effects of urease and nitrification inhibitors added to urea on nitrous oxide emissions from a loess soil. Journal of Plant Nutrition and Soil Science,172: 651-660.
    Kiss S., Simihaian M.2002. Improving efficiency of urea fertilizers by inhibition of soil urease activity. Kluwer Academic Publishers, Dordrecht, The Netherlands.
    Klose S., Tabatabai M.A.2000. Urease activity of microbial biomass in soil as affected by cropping systems. Biology and Fertility of Soils,31:191-199.
    Kowalenko C.G., Cameron D.R.1976. Nitrogen transformations in an incubated soil as affected by combinations of moisture content and temperature and adsorption-fixation of ammonium. Canada Journal Soil Society,56:63-70.
    Krupa.2003. Effects of atmospheric ammonia (NH3) on terrestrial vegetation:a review. Environmental Pollution,124:179-221.
    Lefer B.L., Talbot R.W., Munger J.W.1999. Nitric acid and ammonia at a rural northeastern US site. Journal of Geophysical Research-Atmospheres,104:1645-1661.
    Liu G.D., Li Y.C., Migliaccio K.W., Ying O.Y., Alva A.K.2011. Identification of factors most important for ammonia emission from fertilized soils for potato production using principal component analysis. Journal of Sustainable Watershed Science and Management,1:21-30
    Liu X.J., Zhang Y., Han W.X., Tang A.H., Shen J.L., Cui Z. L., Vitousek P., Erisman J.W., Goulding K., Christie P., Fangmeier A., Zhang F.S.,2013. Enhanced nitrogen deposition over China. Nature,494: 459-462.
    Liu X.J., Duan L., Mo J.M., Du E.Z., Shen J.L., Lu X.K., Zhang Y., Zhou X.B., He C.E., Zhang F.S., 2011. Nitrogen deposition and its ecological impact in China:An overview. Environmental Pollution,159:2251-2264.
    Liu X.J., Ju X.T., Zhang F.S., Pan J.R., Christie P.,2003. Nitrogen dynamics and budgets in a winter wheat-maize cropping system in the North China Plain. Field Crops Research,83:111-124.
    Lonsdale C.R., Stevens R.G., Brock C.R., Makar P.A., Knipping E.M., Pierce J.R.2012. The effect of coal-fired power-plant SO2 and NOX control technologies on aerosol nucleation in the source plumes. Atmospheric Chemistry and Physics,12:11519-11531.
    Manunza B., Deiana S., Pintore M., Gessa C.1999. The binding mechanism of urea, hydroxamic acid and N-(n-butyl) thiophosphoric triamide to the urease activi site. A comparative molecular dynamics study. Soil Biology and Biochemistry,31:789-796.
    Marchetto A., Rogora M., Arisci S.2013. Trend analysis of atmospheric deposition data:A comparison of statistical approaches. Atmospheric Environment,64:95-102.
    Martens D.A., Bremner J.M.1984. Effectiveness of phosphoroamides for retardation of urea hydrolysis in soils. Soil Science Society of America Journal,48:302-305.
    McCarty G. W., Bremner J. M., and Chai H. S.1989. Effect of N-(n-butyl) thiophosphoric triamide on hydrolysis of urea by plant, microbial and soil urease. Biology and Fertility of Soils,8:515-519.
    Mclnnes K.J., Ferguson R.B., Kissel D.E., Kanemasu E.T.1986. Ammonia loss for applications of urea-ammonium nitrate solution to straw residue. Soil Science Society of America Journal, 50:969-974.
    McGee D.J., Mobley H.L.T.2000. Pathogenesis of Helicobacter pylori infection. Current opinion in gastroenterology,16:24-31.
    Medina R., Radel R.J.1988. Mechanisms of urease inhibiton. In:Bock, B.R., Kissel D.E.(Eds). Ammonia volatilization from urea fertilizers, pp:137-174. Bulletin Y-206, Alabama:National Fertilizer Development Center.
    Mikkelsen R.2009. Ammonia emissions from agricultural operations:fertilizer. Better crops,93:9-11
    Misselbrook T.H., Nicholson F.A., Chambers B.J., Johnson R.A.2005. Measuring ammonia emissions from land applied manure:an intercomparison of commonly used techniques. Environmental Pollution,135:389-397.
    Pacholski A., Cai G.X., Fan X.H., Ding H., Chen D.L., Nieder R., Roelcke M.2008. Comparison of different methods for the measurement of ammonia volatilization after urea application in Henan Province, China. J. Journal of Plant Nutrition and Soil Science,171:361-369.
    Pacholski A., Cai G.X., Nieder R., Richter J., Fan X.H., Zhu Z.L., Roelcke M.2006. Calibration of a simple method for determining ammonia volatilization in the field-comparative measurements in Henan Province, China. Nutrient Cycling in Agroecosystems,74:259-273.
    Pearson J, Stewart GR.1993. The deposition of atmospheric ammonia and its effects on plants. New Phytologist,125:283-305.
    Phongpan S., Freney J.R., Keerthisinghe D.G., Chaiwanakupt P.1995. Use of phenyl phosphorodiamidate and N-(n-butyl) thiophosphoric triamide to reduce ammonia loss and increase grain yield following application of urea to flooded rice. Fertilizer Research,41:59-66.
    Polacco J.C., Holland M.A.1993. Roles of urease in plant cells. International review of cytology-a survey of cell biology,145:65-103.
    Price Department of National Development and Reform Commission (PDNDRC),2006. National Agricultural Production Cost and Revenue Information Summary 2006. China Statistics Press, Beijing.
    Raison R.J., McGarity J.W.1978. Effect of plant ash on nitrogen fertilizer transformations and ammonia volatilization. Soil Science Society of America Journal,42:140-143.
    Reche R., Viana M., Pandolfi M., Alastuey A., Moreno T., Amato F., Ripoll A., Querol X.2012. Urban NH3 levels and sources in a Mediterranean environment. Atmospheric Environment,57:153-164.
    Rees R.M., Roelcke M., Li S.X., Wang X.Q., Li S.Q., Stockdale E.A., Mc-Taggart I., Smith K.A., Richter J.1997. The effect of fertilizer placement on nitrogen uptake and yield of wheat and maize in Chinese loess soils. Nutrient Cycling in Agroecosystems,47:81-91.
    Robbink R., Hicks K., Galloway J., Spranger T., Alkemade R., Ashmore M., Bustamante M., Cinderby S., Davidson E., Dentener F., Emmett B., Erisman J.W., Fenn M., Gilliam F., Nordin A., Pardo L., De Vries W.2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity:a synthesis. Ecological Applications,20:30-59.
    Rochette P., Angers D.A., Chantigny J.D., MacDonald J.D., Bissonnette N., Bertrand N.2009. Ammonia volatilization following surface application of urea to tilled and no-till soils:A laboratory comparison. Soil & Tillage research,103:310-315.
    Roelcke M., Li S.X., Tian X.H., Gao Y.J., Richter J.,2002. In situ comparisons of ammonia volatilization from N fertilizers in Chinese loess soils. Nutrient Cycling in Agroecosystems,62, 73-88.
    Roelcke M., Han Y., Li S.X., Richter J.1996. Laboratory measurements and simulations of ammonia volatilization from urea applied to calcareous Chinese loess soils. Plant and Soil,181:123-129.
    Ryan J., Curtin D., Safi I.1981. Ammonia volatilization as influenced by calcium carbonate particle size and iron oxides. Soil Science Society of America Journal,45:338-341.
    Sanz-Cobena A., Misselbrook T.H., Arce A., Mingot J.I., Diezc J.A., Vallejo A.2008. An inhibitor of urease activity effectively reduces ammonia emissions from soil treated with urea under Mediterranean conditions. Agriculture Ecosystems & Environment,126:243-249.
    Sanz-Cobena A., Misselbrook T., Camp V., Vallejo A.2011. Effect of water addition and the urease inhibitor NBPT on the abatement of ammonia emission from surface applied urea. Atmosphic Environment,45:1517-1524.
    Schlesinger W.H., Hartley A.E.1992. A global budget atomospheric NH3. Biogeochemistry,15:191-211.
    Sharpe R.R., Harper L.A.2002. Nitrous oxide and ammonia fluxes in a soybean field irrigated with swine effluent. Journal of Environmental Quality,31:524-532.
    Smoot D.T., Mobley H.L., Chippendale G.R., Lewison J.F., Resau J.H.1990. Helicobacter pylroi urease activity is toxic to human gastric epithelial cells. Infection and Immunity,58:1992-1994.
    Soares J.R., Cantarella H.2012. Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors. Soil Biology and Biochemistry,52:82-89.
    Sommer S.G., Schjoerring, J.K., Denmead O.T.2004. Ammonia emission from mineral fertilizers and fertilized crops. Advances in Agronomy,82:557-622.
    Sumner J.B.1926. The isolation and crystallization of the enzyme urease. Journal of Biological Chemistry,69:435-441.
    Suter H., Sultana H., Turner D., Davies R., Walker C., Chen D.L.2013. Influence of urea fertiliser formulation, urease inhibitor and season on ammonia loss from ryegrass. Nutrient Cycling in Agroecosystems,95:175-185.
    Sutton M.A., Oenema O., Erisman, J.W., Leip A., van Grinsven H., Winiwarter W.2011.Too much of a good thing. Nature,472:159-161.
    Sutton M.A., Pitcairn C.E., Fowler D.1993. The exchange of ammonia between the atmosphere and plant communities. Ecological Research,24:301-393.
    Terman G.L.1979. Volatilization losses of nitrogen as ammonia from surface-applied fertilizers, organic amendments, and crop residues. Advances in Agronomy,31:189-223.
    Tomlinson T.E.1970. Urea:Agronomic applications. Proceedings of the Fertiliser Society,113:1-76.
    Trebkel M.E.1997. Improving fertilizer use efficiency. Controlled-release and stabilized fertilizers in agriculture. International Fertilizer Industry Association, Paris.
    Trebkel M.E.2010. An option for enhancing nutrient use efficiency in agriculture. Slow and Controlled-release and stabilized fertilizers. International Fertilizer Industry Association, Paris.
    Turner D.A., Edis R.B., Chen D., Freney J.R. Denmead O.T., Christie R.2010. Determination and mitigation of ammonia loss from urea applied to winter wheat with N-(n-butyl) thiophosphorictriamide. Agriculture, Ecosystems and Environment,137:261-266.
    Verma V., Ning Z., Arthur K., James C., Schauer J.J., Shafer M.M., Sioutas C.,2009. Redox activity of urban quasi-ultrafine particles from primary and secondary sources. Atmospheric Environment,43: 6360-6368.
    Wang X.C., Lu Q.2006. Beta-glucosidase activity in paddy soils of the Taihu Lake region, China. Pedosphere,16:118-124.
    Watson C.J.1990a. The influence of soil properties on the effectiveness of phenyl-phosphorodiamidate (PPD) in reducing ammonia volatilization from surface applied urea. Fertilizer Research,24:1-10.
    Watson C.J.2005. Urease inhibitors. IFA International Workshop on Enhanced Efficiency Fertilizers, Frankfurt. International Fertilizer Industry Association, Paris, France.
    Watson C.J., Miller H., Poland P., Kilpatrick D.J., Allen M.D.B., Garrett M.K., Christianson C.B.1994. Soil properties and the ability of the urease inhibuitor N-(n-butyl) thiophosphoric Triamide (nBTPT) to reduce ammonia volatilization from surface-applied urea. Soil Biology and Biochemistry,26:1165-1171.
    Watson C.J., Stevens R.J., Laughlin R.J.1990c. Effectiveness of the urease inhibitor NBPT (N-(n-butyl) thiophosphoric triamide) for improving the efficiency of urea for ryegrass production. Fertilizer Research,24:11-15.
    Winkler R.G., Blevins D.G., Polacco J.C., Randall D.D.1988. Ureide eatabolism in nitrogen-fixing legumes.Trends Bioehemical Sciences,13:97-100.
    Xu X., Boeckx P., Cleemput O.V., Zhou L.K.2002. Urease and nitrification inhibitors to reduce emissions of CH4 and N2O in rice production. Nutrient Cycling in Agroecosystems,64:203-211.
    Zaman M., Saggar S., Blennerhassett J.D., Singh J.2009. Effect of urease and nitrification inhibitors on N transformation, gaseous emissions of ammonia and nitrous oxide, pasture yield and N uptake in grazed pasture system. Soil Biology & Biochemistry,41:1270-1280.
    Zaman M., J.D. Blennerhassett.2010. Effects of the different rates of urease and nitrification inhibitors on gaseous emissions of ammonia and nitro-us oxide, nitrate leaching and pasture production from urine patches in an intensive grazed pasture system. Agriculture, Ecosystems and Environment, 136:236-246.
    Zhang Y.S, Luan S.J, Chen L.L., Shao M.2011. Estimating the volatilization of ammonia from synthetic nitrogenous fertilizers used in China. Journal of Environmental Management,92:480-493.
    Zhu Z.L.,1997. Nitrogen balance and cycling in agroecosystems of China, in:Zhu, Z.L., Wen, Q.X., Freney, J.R. (Eds.), Nitrogen in Soils of China. Kluwer Academic Publishers, Dordrecht, pp. 323-338.
    Zonia L.E., Stebbins N. E., Polacco J.C.1995. Essential role of urease in germination of nitrogen-limited Arabidopsis thaliana seeds. Plant Physiology,107:1097-1103.