养殖仿刺参对环境因子和病原的免疫应答及抗病分子机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了完善刺参病害发生的理论和探讨生态防治的方法,本文利用常规技术从患病仿刺参中分离了致病菌,并初步分析了其致病性;此外,模拟刺参养殖环境,测定了感染病菌后刺参相关非特异性免疫指标的变化;利用病菌感染刺参构建的cDNA文库进行EST分析,并鉴定了若干免疫相关基因;筛选了病原菌的拮抗菌,并对其拮抗特性进行了研究。试验结果如下:
     采用微生物学方法鉴定了假交替单胞菌属2株细菌和1株病毒,其中病菌Pseudoalteromonas sp和病毒粒子对刺参有较强的感染性和致病性。实验表明,随着病原菌感染浓度升高,刺参体腔液溶菌酶活性和AKP活性、SOD和CAT及PO的诱导活性、补体C3含量和呼吸爆发活性均显著下降,而体腔液ACP活性和补体C4含量稍微上升;刺参体表粘液的SOD活性和溶菌酶活性对病菌感染较敏感,含量明显受到抑制;而体表粘液中的CAT活性、ACP活性和补体C4含量在病原菌感染浓度较低时增加、在感染浓度较高时减少。病毒感染条件下,刺参体液中的溶菌酶、酸性磷酸酶、SOD和PO活性降低,而CAT活性增强,体腔液中的免疫酶活性比体表粘液中的免疫酶活性变化更明显。
     当水体中氨氮浓度较高时,刺参体腔液中的超氧物歧化酶(SOD)和碱性磷酸酶(ALP)活性降低、溶菌酶(LSZ)活性升高;而在感染病菌的情况下,体腔液SOD、ALP和LSZ活性下降,而GPx活性持续上升;在中等氨氮浓度时,体腔液酶活性减少幅度最小或增加幅度最大。硒可诱导动物的抗病毒和抗病菌活性,亚硒酸钠浓度较低时,随着亚硒酸钠浓度增加,刺参体液超氧物岐化酶(SOD)、谷胱甘肽过氧化物酶(GP、)、溶菌酶(LSZ)、酚氧化酶(PO)和碱性磷酸酶(ALP)活性升高;而在感染病原菌的情况下,体液SOD、GPX和LYZ的活性表现为先升高后下降的趋势,PO和ALP的活性则持续上升。在高浓度NO2-条件下,刺参体腔液SOD、CAT、AKP和P0的诱导活性下降,LSZ和GPx活性显著被抑制;病原菌感染时加剧刺参体腔液CAT、GPx、LSZ和P0活性被抑制,但体腔液SOD活性被诱导升高;缺氧处理刺参时,体腔液ACP诱导活性被抑制,而AKP活性被促进;分析表明,病原菌感染可促进体腔液ACP诱导活性,明显拮抗高浓度NO2-对AKP活性的抑制。在较低的适宜盐度条件下,病原菌感染可促进刺参体液SOD、GPx和AKP活性的诱导水平,而盐度过高时,病原菌感染加剧使刺参体液SOD、GPx和AKP活性水平降低;此外,适宜盐度处理下,刺参体液LSZ活性均可被诱导,而病原菌感染后,体液LSZ的诱导活性被抑制。水温低于23℃时,升温和病原菌感染均可促进刺参体液SOD、GPx、LSZ和P0的活性;高温胁迫条件下,病原菌感染可明显抑制体液上述酶的活性;此外,水温上升可抑制刺参体液AKP活性,而病原菌感染诱导AKP活性。缓慢升高温度可以增强刺参体液的SOD和PO活性,但体液GPx和LSZ活性变化不大,而高温预处理后刺参体液SOD和LSZ活性明显下降;因此,适当的温度刺激可减少刺参的发病。
     构建的cDNA文库库容为3.24×105cfu/mL,插入片段大小为0.8-2.5kb,文库质量较高。对文库进行测序和初步的生物信息学处理,得到了高质量的表达序列标签(ESTs)1106条。经过软件拼接,共得到533条单基因簇,包含165个序列重叠群和368条单一序列。同源序列基因分析表明,仿刺参cDNA文库中有25种免疫相关的基因。采用real-time PCR技术对免疫相关基因进行分析,证明了体腔液中血清凝集素、补体C3和补体3类似蛋白基因的表达水平显著升高,提示其在刺参免疫防御中发挥作用。
     为了开发更多有效的病原拮抗菌用于刺参疾病防治,本文利用点种法和滤纸片法筛选到了5株拮抗菌,利用牛津杯法进一步确认YAAJ6和YASM12拮抗菌株的活性最高。活体试验表明,该2株拮抗菌是通过促进体腔液SOD、ALP、LSZ活性和细胞吞噬活性而提高刺参对病原菌的抗性。深入的研究表明,拮抗菌胞外产物在28℃或pH8.0时抑菌活性最高,但对蛋白酶K和链霉素蛋白酶敏感。
     本研究证实,病原细菌和病毒病原均可导致刺参非特异性免疫力的下降;水环境的变化会加剧刺参受病原菌感染的可能性,但适宜的环境条件可诱导刺参免疫反应;水温驯化处理可一定程度提高刺参的免疫能力;筛选有效拮抗菌并加以应用,是刺参病害防治的有效手段之一。
In order to supplement the theory that diseases occurred to sea cucumber, and to explore the technique of safe prevention and cure for its diseases, the pathogens are isolated from diseased sea cucumbers and primarily assayed its pathogenicity by general methods. Moreover, the change of some related non-specific immune indexes about sea cucumbers exposed to germs is detected under the simulated culture surroundings. Several genes related to the immune response are identified by analyzing constructed cDNA library and EST data in bacterial infected sea cucumbers. And then, the antagonistic bacterium is chosen from prepared various bacteria, but also its antagonistic characteristics are tested. The most results are as follows:
     The pathogens are identified as two psedoaltermonas bacteria and one undetailed virus respectively by microbiological assay. As virus particle, the bacterium Pseudoalteromonas sp shows more severe infectiosity and pathogenicity. The LSZ activity and AKP activity, induced SOD activity, CAT activity and PO activity, complement component C3contents and respiratory burst activity all significantly decrease, and that ACP activity and complement component C4contents show a little increase in the coelomic fluid of sea cucumbers suffering from bacterial infection with elevated concentration. However, the SOD activity and LSZ activity in the epimucus are sensitive to and obviously suppressed by bacterial infection. And furthermore, the epimucous CAT activity, ACP activity and complement component C4contents all rise when infecting bacteria is under low concentrations, but that decline during bacterial infecting with high concentrations. Under virus infecting conditions, the alteration of immune enzymes activity in the coelomic fluid is more evident than that in the epimucus, and the LSZ activity, ACP activity, SOD activity and PO activity are all reduced, and only CAT activity enhanced.
     The SOD activity and ALP activity are depressed, and but the LSZ activity raised in the coelomic fluid under high ammonia-N concentrations, and yet the above enzymes activity decline, the GPx activity continuously increase with additional bacterial infection, and as well the altering amplitude of coelomic enzymes activity decrease least or increase most under medium ammonia-N concentrations. The humoral SOD activity, GPx activity, LSZ activity, PO activity and ALP activity are raised with the increasing Na2SeO3concentrations under low Na2SeO3conditions, and that the humoral SOD activity, GPx activity and LSZ activity firstly ascend then decline at certain time, and yet PO activity and ALP activity keep rise during the additional bacterial infecting treatments. The induced SOD, CAT, AKP and PO activity decrease, and GPx activity and LSZ activity are markedly suppressed in the coelomic fluid under high nitrite-N concentrations, and additional hypoxia or bacterial infection aggravate depressing the CAT, GPx, LSZ and PO activity, but may induce SOD activity in the coelomic fluid. And besides, additional hypoxia treatments slow down induced ACP activity, but promote AKP activity, and that additional bacterial infection strengthen the induced ACP activity and obviously counteracts the suppression of AKP activity by high nitrite-N concentrations. The inducement of humoral SOD, GPx and AKP activity in the sea cucumbers is facilitated by additional bacterial infection under moderately low salinity. However, the reduction of above enzymes activity is quickened by additional bacterial infection under high salinity. Moreover, optimized saline treatments may induce humoral LSZ activity, but bacterial infection impairs the induced humoral LSZ activity. The induced humoral SOD, GPx, LSZ and PO activity all are mutually promoted by elevated temperature and bacterial infection during the seawater is below23℃, and that the above enzymes activity is apparently suppressed by bacterial infection under seawater high temperature stress. And then, the humoral AKP activity is repressed with risen seawater temperature and induced by bacterial infection respectively. The humoral SOD and PO activity may be reinforced, and the humoral GPx and LSZ activity alters insignificantly when the seawater temperature is slowly raised, but high temperature pretreatments lead to obvious decrease of humoral SOD and LSZ activity. And so, proper stimulus of temperature can alleviate disease severity of sea cucumbers despite the low stability of inducement on sea cucumbers.
     The cDNA library with an inserted fragment of0.8-2.5kb and also high quality is constructed, and its capacity is3.24×105cfu/mL.1106ESTs with high quality are obtained according to the results of library sequences assaying and elementarily bioinformatics processing.533single gene clusters including165overlapping sequence groups and368single sequences are confirmed by using related software to splice the EST.25immunity-related genes are found after analyzing the genes with homologous sequences. The results of analyzing immunity-related genes by real-time PCR technique indicate that genes encoding serum lectin isoform, complement component C3and complement component3-like protein in the coelomic fluid of infected A. japonicus showed most remarkable increase, which demonstrates their important effect in the immune defending of holothurian A. japonicus.
     Five antagonistic bacteria are selected by solid culture of dot-inoculating and filter paper piece-inoculating, and then further research by Niujin cup method validates the bacterium both YAAJ6and YASM12show highest antagonistic activity. Furthermore, the test in vivo demonstrates the above bacteria enhance disease resistance of A. japonicus to pathogenic infection by increasing SOD, ALP and LSZ activity in coelomic fluid and promoting the phagocytic activity of coelomocytes. Besides, the ECP of antagonistic bacteria shows the most resistant activity to pathogens at28℃or pH8.0, and yet the ECP is sensitive to protease K or streptomycin-protease.
     In conclusion, bacteria and virus can lead to the decrease of non-specific immunity in A. japonicus., and so cause the related symptoms about "skin ulceration" in holothurian, and unmoderate change of seawater environment advances the possibility of bacterial infecting on A. japonicus., but immune response is induced under reasonable environmental conditions, and also acclimatization treating may temporarily enhance the immune capacity. Otherwise, selecting and then applying the antagonistic bacteria on holothurian is feasible measures of disease prevention and cure.
引文
[1]姜健,杨宝灵,邰阳.海参资源及其生物活性物质的研究[J].生物技术通讯,2004,15(5):537-538.
    [2]廖玉麟.中国动物志,棘皮动物门,海参纲[M].北京:科学出版社,1997.
    [3]隋锡林,邓欢.刺参池塘养殖的病害及防治对策[J].水产科学,2004,23(6):22-23.
    [4]王颖,仇雪梅,王娟,等.刺参病害现状及其生物技术检测的研究进展[J].生物技术通报,2009,11:60-64.
    [5]Kang K H, Kwon J Y, Kim Y M. A beneficial coculture:charm abalone Haliotis discus Hannai and sea cucumber Stichopus japonicus [J]. Aquaculture,2003,216:87-93.
    [6]黄华伟.养殖刺参(Apostichopus japonicus)腐皮综合症的发生与异养菌区系间的关系[D].中国海洋大学,2007.
    [7]黄华伟,王印庚,陈霞,等.低温期养殖刺参腐皮综合征的发生与环境因子间的关系[J].水产科技情报,2011,38(6):292-297.
    [8]邢殿楼,李强,曲健凤,等.刺参苗种越冬期水环境因子变化及对刺参急性效应的研究.渔业现代化,2011,38(2):6-9(16)
    [9]于东祥,宋本祥.池塘养殖刺参幼参的成活率变化和生长特点[J].中国水产科学,1999,6(3):109-110.
    [10]于明志,常亚青.低温对不同群体仿刺参幼参某些生理现象的影响[J].大连水产学院院报,2008,23(1):31-36.
    [11]李宝泉,杨红生,张涛,等.温度和体重对刺参呼吸和排泄的影响[J].海洋与湖沼,2002,33(2):182-187.
    [12]董云伟,董双林,田相利,等.不同水温对刺参幼参生长、呼吸及体组成的影响[J].中国水产科学,2005,12(1):33-37.
    [13]Dong Y W, Dong S L. Growth and oxygen consumption of the juvenile sea cucumber Apostichopus japonicus (Selenka) at constant and fluctuating water temperature [J]. Aquaculture Research,2006,37:1327-1333.
    [14]Yang H S, Yuan X T, Zhou Y, et al. Effects of body size and water temperature on food consumption and growth in the sea cucumber Apostichopus japonicus(Selenka)with special reference to aestivation [J]. Aquaculture Research,2005,36:1085-1092.
    [15]An Z H, Dong Y W, Dong S L. Effects of high temperature and ration on the growth of juvenile sea cucumber Apostichopus japonicus (Selenka)[J].Aquaculture,2007,272:644-648.
    [16]Ji T T, Dong Y W, Dong S L. Growth and physiological responses in the sea cucumber, Apostichopus japonicus (Selenka):aestivation and temperature [J]. Aquaculture,2008,283: 180-187.
    [17]Choe S. Study of Sea Cucumber:morphology, Ecology and Propagation of Sea Cucumber[M].Tokyo:Kaibundo Publishing House,1963:219.
    [18]邓欢,隋锡林,陈俅,等.大连地区越冬期剌参一种新病症[J].水产科学,2005,24(2):40-41.
    [19]邓欢.刺参体内的新病原—一种球状病毒[J].水产科学,2006,25(1):30-31.
    [20]Dong Y W, Dong S L, Tian X L, et al. Effects of diel temperature fluctuation on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus (Selenka)[J]. Aquaculture,2006,255:514-521.
    [21]Dong Y W, Dong, S L. Induced thermotolerance and the expression of heat shock protein 70 in sea cucumber Apostichopus japonicus (Selenka)[J]. Fisheries Science,2008,74:573-578.
    [22]Dong Y W, Dong S L, Ji T T. Effect of different thermal regimes on growth and physiological performance of the sea cucumber Apostichopus japonicus (Selenka)[J]. Aquaculture,2008,275:329-334.
    [23]Dong Y W, Dong S L, Meng X L. Effects of thermal and osmotic stress on growth, osmoregulation and Hsp70 in sea cucumber(Apostichopus japonicus Selenka)[J]. Aquaculture, 2008,276:179-186.
    [24]Hochachka P W, Somero G N. Biochemical Adaptation:Mechanism and Process in Physiological Evolution [M]. Oxford University Press U S,2002.
    [25]董云伟,董双林.刺参对温度适应的生理生态学研究进展[J].中国海洋大学学报,2009,39(5):908-912.
    [26]Meng X L, Ji T T, Dong Y W, et al. Thermal resistance in sea cucumbers (Apostichopus japonicus) with differing thermal history:The role of Hsp70 [J]. Aquaculture,2009,294(3-4): 314-318.
    [27]Feder J H, Hofmann G E. Heat shock protein, molecular chaperones, and the stress responses: evolutionary and ecological physiology [J]. Annual Review of Physiology,1999,61:243-282.
    [28]陈勇,高峰,刘国山,等.温度、盐度和光照周期对剌参生长及行为的影响.水产学报,2007,31(5):687-691.
    [29]常亚青,丁君,宋坚,等.海参海胆生物学研究与养殖[M].北京:海洋出版社,2004.
    [30]包杰.环境因子对青刺参和红刺参(Apostichopus japonicus)代谢与生长及其机制的影响[D].青岛:中国海洋大学,2008.
    [31]薛素燕,方建光,毛王泽,等.高温下不同盐度对刺参幼参和1龄参呼吸排泄的影响.中国水产科学,2009,16(6):975-980.
    [32]Talbot T D, and Lawrence J M. The effect of salinity on respiration, excretion, regeneration and production in Ophiophragmus lograneus (Echinodermata:Ophiuroidea). J. Exp. Mar. Biol. Ecol.,2002,275(1):1-14.
    [33]Diehl W J. Osmoregulation in Echinoderms. Comp. Biochem. Physiol.,1986,84(2):199-201.
    [34]胡炜,李成林,赵斌,等.低盐胁迫对刺参存活、摄食和生长的影响.渔业科学进 展,2012,33(2):92-96.
    [35]胡美艳.刺参的种群杂交及环境因子对稚参生长与存活的影响研究[D].中国海洋大学,2009.
    [36]Yamamoto K, Handa T, and Fujimoto K. Differences in tolerance to low salinity among red, blue and black (color pattern) of the Japanese common sea cucumber, Apostichopus japonicus from ventilation in the respiratory tree. Suisan Zoshoku,2003,51(3):321-326.
    [37]袁秀堂,杨红生,周毅,等.盐度对刺参(Apostichopus japonicus)呼吸和排泄的影响[J].海洋与湖沼,2006,37(4):348-354.
    [38]Diehl W J, and Lawrence J M. The effect of salinity on the intracellular osmolytes in the pyloriccaeca and tube feet of Luidiaclathrata (Echinodermata:Asteroidea). Comp. Biochem. Physiol.,1985,82(2):559-566.
    [39]王国利,付荣恕,李兆智,等.温度与盐度对刺参(Apostichopus japonicus)生长的影响.山东科学,2007,20(3):6-9.
    [40]吕伟志,戴晓军,李东站.低盐海水池塘养殖刺参试验.齐鲁渔业,2006,23(6):3-4.
    [41]李莉.中国青刺参和日本红刺参苗种培育的生物学研究[D].中国海洋大学,2009.
    [42]胡利华,张炯明,周朝生.浙江南部沿海养殖刺参幼体对生态因子的适应性.浙江海洋学院学报(自然科学版),2011,30(1):22-26(39).
    [43]赵峰,庄平,章龙珍,等.不同盐度驯化模式对施氏鲟生长及摄食的影响.中国水产科学,2006,13(6):945-950.
    [44]班红琴,吴垠,李阳,等.盐度驯化过程中虹鳟血清渗透压、激素水平及离子组成的变化.大连海洋大学学报,2010,25(6):551-555.
    [45]赵峰,庄平,章龙珍,等.盐度驯化对史氏鲟鳃]Na+/K+-ATP酶活力、血清渗透压及离子浓度的影响.水产学报,2006,30(4):444-449.
    [46]张春云,陈国福,徐仲,等.养殖刺参附着期“化板症”病原菌的分离鉴定及来源分析[J].微生物学报,2009,49(5):631-637.
    [47]王印庚,孙素凤,荣小军.仿刺参幼体烂胃病及其致病原鉴定[J].中国水产科学,2006,13(6):908-916.
    [48]Becker P, Gillan D, Lanterbecq D,et al. The skin ulceration disease in cultivated juveniles of Holothuria scabra (Holothuroidea, Echonodermata) [J]. Aquaculture,2004,24(1-4):13-30.
    [49]马悦欣,徐高蓉,常亚青,等.大连地区刺参幼参溃烂病细菌性病原的初步研究[J].大连水产学院学报,2006,21(1):13-18.
    [50]王印庚,荣小军,张春云.养殖海参主要疾病及防治技术[J].海洋科学,2005,29(3):1-7.
    [51]孟庆国,吴刘记,吴信忠,等.养殖刺参溃疡病病原学研究.水产科学,2006,25(2):635-639.
    [52]工印庚,方波,张春云,等.养殖刺参保苗期重大疾病“腐皮综合征”病原及其感染源分析.中国水产科学,2006,13(4):610-616.
    [53]叶林,俞开康,王如才,等.皱纹盘纹鲍溃烂病病原菌的研究[J].中国水产科学,1997,4(4):43-48.
    [54]陶宝华,石和荣,黄俊文,等.假单胞菌引起罗氏沼虾黄鳃、黑鳃病的研究[J].中山大学学报(自然科学版),2000,39:255-259.
    [55]余为一,李槿年,祖国掌.一株中华绒螯蟹病原菌的研究初报[J].安徽农业大学学报,1999,26(2):174-177.
    [56]张春云,王印庚,荣小军.养殖刺参腐皮综合征病原菌的分离与鉴定.水产学报,2006, 30(1):118-123.
    [57]徐怀恕,杨学宋,李筠.对虾苗期细菌病害的诊断与控制[M].北京:海洋出版社,1999.166-190.
    [58]徐海圣,舒妙安,占秀安,等.养殖河螃蟹弧菌病病原菌分离鉴定及其胞外产物的致病性[J].水产学报,2002,26(4):357-362.
    [59]杨嘉龙,周丽,绳秀珍,等.养殖剌参溃疡病病原菌RH2的鉴定及其生物学特性分析.水产学报,2007,31(4):504-511.
    [60]Austin B, Stobi M, Robertson P A W, et al. Vibrio alginolyticus:the cause of gill disease leading to progressive low-level mortalities among juvenile turbot Scophthalmus maximus L. in a Scottish aquarium[J]. J Fish Disease,1993,16:277-280.
    [61]杨嘉龙,周丽,邢婧,等.养殖剌参溃疡病杀鲑气单胞菌的分离、致病性及胞外产物特性分析.中国水产科学,2007,14(6):981-989.
    [62]王高学,原居林,赵云奎,等.刺参表皮溃烂病病原菌的分离鉴定与药敏试验.西北农林科技大学学报(自然科学版),2007,35(8):87-90(96).
    [63]McCarthy D H, Rawle C T. Rapid serological diagnosis of fish furunculosis caused by smooth and rough strains of Aeromonas salmonicida [J].J Gen Microbiol.,1975,86:185-187.
    [64]顾继东,范延臻.土著致病菌及其胞外物在生物防治斑马贝中的作用[J].应用与环境生物学报,2001,7(11):572-576.
    [65]常亚青,高绪生.中间球海胆的人工育苗及增养殖技术[J].水产科学,2004,23(12):49-50.
    [66]Li H, Qiao G, Li Q, et al. Biological characteristics and pathogenicity of a highly pathogenic Shewanella marisflavi infected sea cucumber (Apostichopus japonicus) [J]. J. Fish Disease, 2010,33:865-877.
    [67]骆艺文,郝志凯,王印庚,等.一株引起刺参“腐皮综合征”的腊样芽孢杆菌[J].水产科技情报,2009,36(2):60-62.
    [68]刘晓云,范瑞青,谭金山,等.纤毛虫与养殖刺参的腐皮综合征[J].电子显微学报,2005,24(4):248.
    [69]Deng H, He C B, Zhou Z C, et al. Isolation on and pathogenicity of pathogens from skin ulceration disease and viscera ejection syndrome of sea cucumber Apostichopus japonicus[J]. Aquaculture,2009,287(1-2):18-27.
    [70]王品虹,常亚青,徐高蓉,等.刺参一种囊膜病毒的分离及其超微结构观察[J].中国水产科学,2005,12(6):766-771.
    [71]宋坚,王品虹,李春艳,等.仿刺参稚参脱板病超微病理的研究[J].大连水产学院学报,2007,22(3):221-225.
    [72]邓欢,周遵春,韩家波.胃萎缩症仿刺参幼体及亲参组织中病毒观察[J].水产学报,2008,32(2):315-320.
    [73]Deng H, Zhou Z C, Wang N B, et al. The syndrome of sea cucumber Apostichopus japonicus infected by virus and bacteria[J]. Virologica Sinica,2008,23(1):63-67.
    [74]Muller W E, R inkevich B. Invertebrate immunology[M]. Berlin Tokyo:Springer, 1996:235-247.
    [75]李霞,王斌,刘静.虾夷马粪海胆体腔细胞的类型及功能[J].中国水产科学,2003,10(5):381-385.
    [76]刘晓云,谭金山,包振民.刺参体腔细胞的超微结构观察[J].电子显微学报,2005,24(6):613-615.
    [77]Eliseikina M G, Magarlamov T Y. Coelomocyte morphology in the holothurians Apostichopus japonicus (Aspidochirota:Stichopodidae) and Cucumaria japonica (Dendrochirota:Cucumariidae)[J]. Russian J Marine Biol.,2002,28(3):197-202.
    [78]Smith V J. The echinoderms. In:Ratcliffe N A, Rowley A F, eds. Invertebrate Blood Cells [M]. New York:Academic Press,1981:513-562.
    [79]Henson J H, Svitkina T M, Burns A R, et al. Two components of actin-based retrograde flow in sea urchin coelomocytes [J]. Mol. Biol. Cell,1999,10(12):4075-4090.
    [80]Gross P S, Clow L A, Smith L C. SpC3, the complement homologue from the purple sea urchin, Strongylocentrotus purpuratus, is expressed in two subpopulations of the phagocytic coelomocytes [J]. Immunogenetics,2000,51(12):1034-1044.
    [81]Matranga V, Pinsino A, Celi M, et al. Impacts of UV-B radiation on short-term cultures of sea urchin coelomocytes [J]. Mar. Biol.,2006,149(1):25-34.
    [82]Cohen N, Sigel M M. The reticuloendothelial system [M]. London:Plenum Publ Corp,1982. 257-282.
    [83]Silva J R M C, Peck L. Induced in vitro phagocytosis of the Antarctic starfish Odontaster validus (Koehler 1906) at 0℃[J]. Polar Biology,2000,23 (4):225-230.
    [84]Smith L C, Clow L A, Terwilliger D P. The ancestral complement system in sea urchins [J]. Immunological Reviews,2001,180:16-34.
    [85]Johanson P T. The coelomic elements of sea urchins(Strongylocentrotus):Ⅲ. In vitro reaction to bacteria[J]. J Invert. Pathol.,1969,13:42-62.
    [86]David A R, Jennifer R, Rebecca A N, et al. A complement component C3-like peptide stimulates chemotaxis by hemocytes from an invertebrate chordate, the tunicate, Pyura stolonifera [J].Comp Biochem Physiol.,2003,134(2):377-386.
    [87]Smith L C. The sea urchin immune system [J]. J Immunol.,2006,3(l):25-39.
    [88]Pagllar A P, Canicatti C. Isolation of cytolytic granules from sea urchin amoebocytes[J]. Eur J Cell Biol,1993,60:179-184.
    [89]Smith L C, Davidson E H. The echinoid immune system and the phylogenic occurrence of immune mechanisms in deuterostomes [J]. Immunol Today,1992,13:356-362.
    [90]Coteur G,Warnau M, Jangoux M, et al. Reactive oxygen species (ROS) production by amoebocytes of Asterias rubens (Echinodermata). Fish Shellfish Immunol.,2002,12:187-200.
    [91]Wheatley K, Brown RG, Scheibling RE, et al. Coelomocyte oxidative activity of the green sea urchin(Strongylocentrotus droebochiensis) following challenge by bacterial and amoebic pathogens. In:Mooi R,Telford M (eds) Echinoderms:San Francisco.AA Balkema, Rotterdam, 1998,881-886.
    [92]Stabili L, Pagliara P, Roch P. Antibacterial activity in the coelomocytes of the sea urchin Paracentrotus lividus [J]. Comparative Biochemistry and Physiology Part B, Biochemistry and Molecular Biology,1996,113 (3):639-644.
    [93]Arizza V, Giaramita F T, Parrinello D, et al. Cell cooperation in coelomocyte cytotoxic activity of Paracentrotus lividus coelomocytes [J].Comp Biochem Physiol.,2007,147 (2):389-394.
    [94]Pagliara P, Canicatti C. Isolation of cytolytic granules from sea urchin amoebocytes [J]. Eur J Cell Biol.,1993,60(1):179-184.
    [95]Kudriavtsev I, Polevshchikov A. Comparative immunological analysis of echinodern cellular and humoral defense factors [J].Zh Obshch Biol.,2004,65(3):218-231.
    [96]Ratcliffe N A, Rowley A F. Invertebrate blood cells[M]. New York:Academic PressNew York,1981,513-526.
    [97]孟繁伊.仿刺参(Apostichopus japonicus, Selenka)体腔液中调理索样分了的研究:[博士学位论文][D].青岛:中国海洋大学,2009.
    [98]Canicatti C, Pagliara P, Stabili L. Sea urcin coelomic fluid agglutinin mediates coelomocyte adhesion [J]. Eur. J Cell Biol.,1992(58):291-295.
    [99]Canicatti C. Hemolysins:pore-forming proteins in invertebrates [J]. Experientia,1990,46: 239-244.
    [100]Burker D, Watkins R F. Stimulation of starfish coelomocytes by interleukin-1[J]. Biochem Biophys Res Commun,1991,180 (2):579-584.
    [101]Canicatti C. Binding properties of Paracentrotus lividus(Echinoidea) hemolysin[J]. J Comp Biochem Physiol.,1991,98A:463-468.
    [102]Leonard L A, Strandberg J D, Winkelstein J A. Complement-like activity in the sea star Asteria forbesi[J]. Dev Comp Immunol.,1990,14:19-30.
    [103]Gross P S, Al-Sharifw Z, Clowl A, et al. Echinoderm immunity and the evolution of the complement system [J]. Dev Comp Immunol.,1999,23 (4-5):429-442.
    [104]Clowl A, Gross P S, Shihc S, et al. Exp ression of SpC3, the sea urchin complement component, in response to lipopolysaccharide [J]. Immunogenetics,2000,51:1043-1044.
    [105]Roch P, Canicatti C, Sammarco S. Tetrameric structure of the active phenoloxidase evidenced in the coelomocytes of the echinoderm Holothuria tubulosa[J].Comp Biochem Physiol.,1992,102B(2):349-355.
    [106]SoE derhaE ⅡK, Smith V J. Prophenoloxidaes-activating cascade as a recognition and defense system in arthropods. In:Gupta AP, ed. Hemolytic and Humoral Immunity in Arthropods [M].New York:John Wiley,1986,251-285.
    [107]Glinski Z, Jarosz J. Immune phenomena in echinoderms [J]. Archivum Immunologicae et Therapiae Experimentalis,2000,48:189-193.
    [108]Smith V J, Sderhll K A. A comparison of phenoloxidase activity in the blood of marine invertebrates[J]. Dev.Comp.Immunol.,1991(4):251-261.
    [109]王轶南,刘学伟,刘艳萍,等.虾夷马粪海胆(Strongylocentrotus intermedius)体腔液的酚氧化酶活性分析[J].中国农业科技导报,2011,13(2):116-120.
    [110]Jans D, Dubois P, Jangoux M. Defensive mechanisms of holothuroids (Echinodermata) Formation, role, and fate of intracoelomic brown bodies in the sea cucumber Holothuria tubulosa [J]. J Cell Tissue Res.,1996,283:99-106.
    [111]Canicatti C, D'Ancona G. Cellular aspects of Holothuriapolii immune response[J]. J Invert Pathol.,1989,53:152-158.
    [112]Haug T, Kjuul A K, Styrvold O B, et al. Antibacterial activity in S trongylocentrotus droebachiensis (Echinoidea), Cucum aria frondosa (Holothuroidea), and Asteriasrubens (Asteroidea) [J]. J Invertebr Pathol.,2002,81:94-102.
    [113]Dybas L, Fankboner P V. Holothurian survival strategies:mechanisms for the maintenance of a bacteriostatic environment in the coelomic cavity of the sea cucumber,Parastichopus californicus[J]. J Dev Comp Immunol.,1986,10:311-330.
    [114]Canicatti C. Lysosomal enzyme pattern in Holothuria polii coelomocytes [J]. J Invert. Pathol.,1990,56:70-74.
    [115]张秋玉.活性氧—适应性免疫应答的调节分子[J]..现代免疫学,2008,28(1):75-78.
    [116]Villamor N, Montserrat E, Colomer D. Cytotoxic effect s of B lymphocytes mediated by reactive oxygen species[J]. Curr. Pharm. Des.,2004,10(8):841-853.
    [117]常杰,牛化欣,张文兵.刺参免疫系统及其免疫增强剂评价指标的研究进展.中国饲料,2011,6:8-12.
    [118]Kotamraju S, Tampo Y, Keszler A, et al. Nitric oxide inhibits H2O2-induced transferrin receptor dependent apoptosis in endothelial cells:role of ubiquitin-proteasome pathway[J].Proc Natl Acad Sci USA,2003,100(19):10653-10658.
    [119]Miranda C D, Zemelman R. Bacterial resistance to oxytetracycline in Chilean salmon farming. Aquaculture,2002,212(1):31-47.
    [120]Verschuere L, Rombaut G, Sorgeloos P,et al. Probiotic bacteria as biological control agents [J]. Microbiology and Molecular Biology Reviews,2000,64 (4):655-671.
    [121]Panigrahi A, Azad I S. Microbial intervention for better fish health in aquaculture:the Indian scenario[J]. Fish Physiol Biochem.,2007,33:429-440.
    [122]王亚敏,王印庚.微生态制剂在水产养殖中的作用机理及应用研究进展[J].动物医学进展,2008,29(6):72-75.
    [123]Gomez R, Geovanny D, Luis B J, et al. Probiotics as control agents in aquaculture [J]. Journal of Ocean University of China,2007,6 (1):76-79.
    [124]Y.B. Wang, J.R. Li, J.D. Lin. Probiotics in aquaculture:challenges and outlook. Aquaculture, 2008,28:11-14.
    [125]D.L. Merrifield, A. Dimitroglou, A. Foey, et al. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture,2010,302 (1-2):1-18.
    [126]S.K. Nayak. Probiotics and immunity:a fish perspective. Fish & Shellfish Immunology, 2010,29:2-14.
    [127]Y.B. Wang, Z.R. Xu, M.S. Xia. The effectiveness of commercial probiotics in Northern White Shrimp (Penaeus vannamei L.) ponds.Fisheries Science,2005,71:1034-1039.
    [128]J.Q. Li, B.P. Tan, K.S. Mai. Dietary probiotic Bacillus OJ and isomaltooligosaccharides influence the intestine microbial populations, immune responses and resistance to white spot syndrome virus in shrimp(Litopenaeus vannamei). Aquaculture,2009,291:35-40.
    [129]C.L. Daniels, D.L. Merrifield, D.P. Boothroyd, et al. Effect of dietary Bacillus spp. and mannan oligosaccharides (MOS) on European lobster (Homarus gammarus L.) larvae growth performance, gut morphology and gut microbiota.Aquaculture,2010,304:49-57.
    [130]Q. Zhang, H.M. Ma, K.S. Mai, et al. Interaction of dietary Bacillus subtilis and fructooligosaccharide on the growth performance, non-specific immunity of sea cucumber, Apostichopus japonicus. Fish & Shellfish Immunology,2010,29:204-211.
    [131]Ringo E, Gatesoupe F J. Lactobacillus in fish:A review. Aquaculture,1998,160 (3-4):177-203.
    [132]Todoriki K, Mukai T, Sato S. Inhibition of adhesion of food-borne pathogens to Caco-2 cells by Lactobacillus strains. Journal of Applied Microbiology,2001,91(1):154-159.
    [133]Sakai M, Yoshida T, Astuta S, et al. Enhancement of resistance to vibriosis in rainbow trout Oneothynchus mykiss(Walbaum) by oral administration of Clostridium butyricum bacteria[J].Fish Dis.,1995,18:187-190.
    [134]周金敏,吴志新,曾令兵,等.黄颡鱼肠道病原拮抗性芽孢杆菌的筛选与特性研究[J].水生生物学报,2012,36(1):78-84.
    [135]潘康成,杨金龙,王振华,等.枯草芽孢杆菌制剂在南美白对虾育苗上的应用.饲料研 究,2004,(12):33-34.
    [136]Newaj-Fyzul A, Adesiyun A A, Mutani A, et al. Bacillus subtilis AB1 controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss, Walbaum) [J]. Journal of Applied Microbiology,2007,103(5):1699-1706.
    [137]Rengpipat S, Rukpratanporn S, Piyatiratitivorakul S, et al. mmunity enhancement in black tiger shrimp (penaeusmonodon) by a probiont bacterium(Bacillus S11) [J]. Aquaculture, 2000,191:271-288.
    [138]Bachere E. Anti-infectious immune effectors in marine invertebrates:Potential tools for disease control in larvieulture [J].Aquaculture,2003,227:427-38.
    [139]Deng-Yu Tseng, Pei-Lin Ho, Sung-Yan Huang, et al. Enhancement of immunity and disease resistance in the white shrimp, Litopenaeus vannamei, by the probiotic, Bacillus subtilis E20. Fish & Shellfish Immunology,2009,26, (2):339-344.
    [140]Shimei Lin, Shuhong Mao, Yong Guan, et al. Effects of dietary chitosan oligosaccharides and Bacillus coagulans on the growth, innate immunity and resistance of koi (Cyprinus carpio koi). Aquaculture,2012,342-343:36-41.
    [141]Uma A, Abraham T J, Jeyaseelan M J, et al. Effect of probiotic feed supplement on performance and disease resistance of Indian white shrimp Penaeus indicus H.Milne Edwards. J Aqua.,1999,14:159-164.
    [142]Smith P,Davey S. Evidence for competitive exclusion of Aeromonas salmonicida from fish with stress induced furunculosis by a fluorescent pseudomonad[J]. Fish Dis.,1993,16 (6):521-524.
    [143]Gram L, Melchiorsen J, Spanggaard B,et al. Inhibition of Vibrio anguillarum by Pseudomonas fluorescens AH2, a possible probiotic treatment of fish [J]. Appl Environ Micro.,1999,65:969-973.
    [144]郭国军,覃映雪,陈强,等.大黄鱼病原副溶血弧菌拮抗菌的筛选.海洋学报,2008,30(1):127-134.
    [145]Chythanya R, KarunasagarL. Inhibition of shrimp pathogenic vibrios by a marine Pseudomonas 1-2 strain [J]. Aquaculture,2002,287:1-10.
    [146]Vnadenbegrhe L. Vibrios associated with Litopenaeus vannamei larvae, postlarvae, broodstock, and hatchery probionts. Appl.Environ.Microbiol.,1999,65:2592-2597.
    [147]黄华伟,邓时铭,廖伏初.蛭弧菌的生物学特性及其在刺参养殖中的应用前景[J].河北渔业,2008,5:1-4.
    [148]杨莉,马志宏,黄文,等.蛭弧菌对鲤感染嗜水气单胞菌预防效果的观察[J].大连水产学院学报,2000,15(4):288-292.
    [149]郭国军,鄢庆枇,邹文政,等.拮抗菌对病原性溶藻弧菌(Vibrio alginolyticus)粘附大黄色(Pseudosciaena crocea)表皮粘液的影响.海洋与湖沼,2009,40(6):738-744.
    [150]Direkbusarakom S, Yoshimizu M, Ezura Y, et al. Vibrio spp. the dominant flora in shrimp hatchery against some fish pathogenic viruses [J].Mar.Bioteehnol.,1998,6:266-267.
    [1]Becker P, Gillan D, Lanterbecq D, et al. The skin ulceration disease in cultivated juveniles of Holothuria scabra [J]. Aquaculture,2004,242:13-30.
    [2]张春云,王印庚,荣小军.养殖刺参腐皮综合征病原菌的分离与鉴定[J].水产学报,2006,30(1):118-123.
    [3]王印庚,方波,张春云,等.养殖刺参保苗期重大疾病“腐皮综合征”病原及其感染源分析[J].中国水产科学,2006,13(4):610-616.
    [4]杨嘉龙,周丽,邢婧,等.养殖刺参溃疡病病原茵RH2的鉴定及其生物学特性分析[J].水产学报,2007,31(4):504-511.
    [5]杨嘉龙,周丽,邢婧,等.养殖刺参溃疡病杀鲑气单胞菌的分离、致病性及胞外产物特性分析[J].中国水产科学,2007,14(6):981-989.
    [6]王高学,原居林,赵云奎,等.刺参表皮溃烂病病原菌的分离鉴定与药敏试验[J].西北农林科技大学学报(自然科学版)2007,35(8):87-90.
    [7]于明超,李卓佳,文国棵.芽孢杆菌在水产养殖应用中的研究进展[J].广东农业科学,2007(11):78-81.
    [8]骆艺文,郝志凯,王印庚,等.一株引起刺参“腐皮综合征”的蜡样芽孢杆菌[J].水产科技情报,2009,36(2):60-63.
    [9]马悦欣,徐高蓉,张恩鹏,等.仿刺参幼参急性口围肿胀症的细菌性病原.水产学报,2006.30(3):377-382.
    [10]莫照兰,茅云翔,陈师勇,等.一株牙鲆出血症病原菌的分子生物学鉴定[J].高技术通讯,2001,12:12-17.
    [11]戴欣,陈月琴,周惠,等.海洋细菌的分子鉴定分类[J].中山大学学报,2000,39(1):68-71.
    [12]邓欢.刺参体内的新病原-种球状病毒[J].水产科学,2006,25(1):30-31.
    [13]王品红,常亚青,徐高荣,等.刺参一种囊膜病毒的分离及其超微结构观察[J].中国水产科学,2005,12(6):767-771.
    [14]Huang, C.H., Zhang, X.B., Lin, Q.S, et al. Characterization of a novel envelop protein(VP281)of shrimp white spot syndrome virus by mass spectrometry. J. General Virology,2002a,83:2385-2392.
    [15]Huang, C.H., Zhang, X.B., Lin, Q.S. et al. Proteomic analysis of shrimp white spot syndrome viral proteins and characterization of a novel envelope protein VP466. Molecular& Cellular Proteomics,2002b,1:223-231.
    [16]Travis J, Maeda H. Bacterial proteases pathogenic factors[J]. Trends Microbiol,1995, (3):405-407.
    [17]Nilsson T, Carisson J, Sundqvist G. Inactivation ofkey factors of the Plasma Proteinase cascade systemsby Bacteroldes gingivalis[J]. Infection and Immunity,1985,50(2):467-471.
    [18]金珊.溶藻弧菌胞外产物对大黄鱼的致病性[J].中同兽医学报,2004,24(5):439-441.
    [19]李玉英.拟态弧菌毒力因子的分子生物学研究进展[J].水利渔业,2003,23(2):67-69.
    [20]蔡俊鹏,李春霞,林阿乞,等.广东汕尾患病黑稚鲍微生物胞外产物的分析[J].水利渔业,2008,28(1):102-104.
    [21]Bjorkling F, Godtfredsen S E, Kirk O. The future impact of industrial lipases[J]. Trends in Biotechnology,1991,9(10):360-363.
    [22]雷祚荣.细菌毒素分了生物学[M].北京:中国科学技术出版社,1 993.
    [23]覃映雪,苏永全,陈雅芳,等.哈维氏弧菌TS-628菌株胞外产物(ECP)蛋白酶活性的研究[J].海洋水产研究,2008,29(1):81-85.
    [24]阳涛,汪开毓,肖丹,等.南方鲇源豚鼠气单胞菌胞外产物活性与致病性研究[J].淡水渔业,2008,38(2):40-44.
    [25]Aoki, T. and Holland, B. I. The outer membrane proteins of the fish pathogen Aeromonas hydrophila Aeromonas salmonicida and Edward sielltarda [J]. FEMS Microbiology Letters, 1985,27:299-305.
    [26]Wagner,U.,Hadge,D.,and Gudmundsdotfir,B.K. Antibody response in salmonids against the 70 kDa serine protease of Aeromonas salmonicida studied by a monodonal antibody-based ELISA.Vet.Immunol. Immunop.,2001,82:121-135.
    [27]杨嘉龙,周丽,战文斌.杀鲑气单胞菌杀日本鲑亚种胞外产物毒性及免疫原性分析[J].淡水渔业,2009,30(3):20-24.
    [1]王印庚,张凤萍,李胜忠,等.刺参腐皮综合征重要病原灿烂弧菌DNA的探针制备及应用[J].水产学报,2009,33(1):119-125.
    [2]张凤萍,王印庚,李胜忠,等.应用PCR方法检测刺参腐皮综合症病原-灿烂弧菌[J].海洋水产研究,2008,29(5):100-106.
    [3]谢建军,王印庚,张正,等.养殖刺参腐皮综合症两种致病菌Dot-ELISA快速[J].检测海洋科学,2007,31(8):59-64.
    [4]孟庆国,吴刘记,吴信忠,等.养殖刺参溃疡病病原学研究[J].水产科学,2006,25(12):635-639.
    [5]马悦欣,徐高蓉,张恩鹏,等.仿刺参幼参急性口围肿胀病的细菌性病原[J].水产学报,2006,30(3):377-382.
    [6]王品红.刺参急性口围肿胀病和皱纹盘鲍肌肉萎缩症的病理学研究[D].中国科学院研究生院(海洋研究所),2007.
    [7]Liu Hongzhan, Zheng Fengrong, Sun Xiuqin, et al. Identification of the pathogens associated with skin ulceration and peristome tumescence in cultured sea cucumbers Apostichopus japonicus (Selenka) [J]. J Invertebr Pathol.,2010,105(3):236-242.
    [8]Canicatti C. Lysosomal enzyme pattern in Holothuria polii coelomocytes[J]. J Invert Pathol., 1990 (56):70-74.
    [9]Haug T, Kjuul A K, Styrvold O B, et al. Antibacterial activity in S trongylocentrotus droebachiensis (Echinoidea), Cucum aria frondosa (Holothuroidea), and Asteriasrubens (Asteroidea) [J]. J Invertebr Pathol.,2002 (81):94-102.
    [10]Gowda NM, Goswami U, Khan MI. Purification and characterization of a T-antigen specific lectin from the coelomic fluid of a marine invertebrate, sea cucumber (Holothuria scabra) [J]. Fish Shellfish Immunol.,2008,24(4):450-458.
    [11]Canicatti C, Parrinello N. Hemaglutinin and hemolysin level in coelomic fluid from Holothuria polii (Echinodermata) following sheep erythrocyte injection [J]. J Biol. Bull., 1985 (168):175-182.
    [12]KUDR IAVTSEV IV, POLEVSHCH IKOV A V. Comparative immunological analysis of echinoderm cellular and humoral defense factors [J]. Zh Obshch Biol.,2004,65(3):218-231.
    [13]Gowda NM, Goswami U, Khan MI.T-antigen binding lectin with antibacterial activity from marine invertebrate, sea cucumber (Holothuria scabra):possible involvement in differential recognition of bacteria[J]. J Invertebr. Pathol.,2008,99(2):141-145.
    [14]于善谦,王洪海,朱乃硕,等.免疫学导论[M].北京:高等教育出版社,1999:68-87.
    [15]Xing J, Chia F S. Opsonin-like molecule found in coelomic fluid of a sea cucumber, Holothuria leucospilota [J]. J Mar Bilo.,2000 (136):979-986.
    [16]Jenny R, Gilles L. M. State of the art of immunological tools and health control of penaeid shrimp. Aquaculture,2000,91:109-119.
    [17]张新明,李健,刘淇,等.细菌J-10对凡纳滨对虾非特异性免疫指标的影响.海洋水产研究,2004,25(4):6-12.
    [18]丁君,常亚青,王长海,等.不同种海胆体腔细胞类型及体液中的酶活力[J].中国水产科学,2006,13(1):33-38.
    [19]Dolmatova L S, Eliseikina M G, Romashina V V. Antioxidant enzymatic activity of coelomocytes of the Far East sea cucumber Eupentacta fraudatrix[J]. Journal of Evolutionary Biochemistry and Physiology,2004,40(2):126-135
    [20]马悦欣,许珂,王银华,等.K-卡拉胶寡糖对仿刺参溶菌酶、碱性磷酸酶和超氧化物歧化酶活性的影响.大连海洋大学学报,2010,25(3):224-227.
    [21]Tonya L Nichols, Chris A Whitehouse, Faye E Austin. Transcriptional analysis of a superoxide dismutase gene of Borrelia burgdorferi [J]. FEMS Microbiology Letters,2000, 183:37-42
    [22]刘志鸿,牟海津,王清印.软体动物免疫相关酶研究进展[J].海洋水产研究,2003,24(3):86-90.
    [23]张梁,沈建忠,敖茂权,等.蛭弧菌对草鱼免疫相关酶活性的影响[J].江西农业大学学报,2006,28(2):296-299.
    [24]郭伟荣,刘利平,张宗锋,等.感染鳗弧菌对花鲈非特异性免疫功能的影响[J].上海海洋大学学报,2011,20(1):89-95.
    [25]Paige A, George K I, Julian C T. Physiological and immunological effects of adjuvanted Aeromonas salmonicida vaccines on juvenile rainbow trout. Journal of Aquatic Animal Health,2000,12:157-164.
    [26]Chen H, Mai K, Zhang W, et al. Effects of dietary pyridoxine on immune responses in abalone, Haliotis discus hannai Ino [J].Fish & Shellfish Immunology,2005,19(3):241-252.
    [27]魏炜,张洪渊,石安静.育珠蚌酸性磷酸酶活力与免疫反应关系的研究[J].水生生物学报,2001,25(4):413-415.
    [28]牟海津,江晓路,刘树青,等.免疫多糖对栉孔扇贝酸性磷酸酶、碱性磷酸酶和超氧化物歧化酶活性的影响[J].青岛海洋大学学报,1999,29(3):463-468.
    [29]谢莉萍,林静瑜,肖锐,等.合浦珠母贝碱性磷酸酶的分离纯化与性质研究[J].海洋科学,2000,24(10):37-40.
    [30]Cheng T C. Selective induction of release of hydrolases from Crassotre virginica hemocytes by certain bacteria [J]. Journal of Invertebrate Pathology,1992,59(2):197-200.
    [31]刘云,孔伟丽,吴志强,等.2种免疫多糖对刺参组织主要免疫酶活性的影响[J].中国水产科学,2008,15(5):787-793.
    [32]CUESTA A, ESTEBAN M A, MESEGUER J. Cloning, distribution and up-regulation of the teleost MHC class II alpha suggests a role for acidophilic granulocytes and antigen-presenting cells [J]. Molecular Immunology,2006,43(8):1275-1285.
    [33]NEUMANN N F, STAFFORD J L, BARREDA D, et al. Antimicrobial mechanisms of fish phagocytes and their role in host defense [J]. Developmental and Comparative Immunology, 2001,25(8-9):807-825.
    [34]SECOMBES C J. The nonspecific immune system:cellular defenses[M]//IWAMA G, NAKANISHI T. The fish immune system. San biego, CA, USA:Academic Press, 1996:63-101.
    [35]LEIRO J, IGLESIAS R, PARAMA A, et al. Effect of Tetramicra brevifilum (Microspora) infection on respiratory-burst responses of turbot (Scophthalmus maximus L) phagocytes [J]. Fish&Shellfish Immunology,2001,11 (7):639-652.
    [36]VILLAMIL L, FIGUERAS A, ARANGUREN R, et al.Nonspecific immune response of turbot, Scophthalmus maximus (L), experimentally infected with a pathogenic Vibrio Pelagius[J]. Fish Dis.,2003,26 (6):321-329.
    [37]GROSS P S, AL-SHAR IFW Z, CLOW L A, et al. Echinoderm immunity and the evolution of the complement system [J]. Dev. Comp. Immunol.,1999,23 (4-5):429-442.
    [1]Wedemeyer G A. Effects of rearing conditions on the health and physiological quality of fish in intensive culture. In:Iwama G. ed., Fish stress and health in aquaculture. New York: Cambridge University Press,1997,35-71.
    [2]Bowers J M, Mustafa A, Speare D J, et al. The physiological response of Atlantic salmon, Salmo salar L, to a single experimental challenge with Sea lice, Lepeophtheiras salmonis. Journal of Fish Diseases,2000,23:165-172.
    [3]Mustafa A, Mac Williams C, Fernandez N, et al. Effects of sea lice (Lepeophtheirus salmonis Kroyer,1837) infestation fill macrophage functions in Atlantic salmon(Salmo salar L,) Fish&Shellfish Immunology,2000,10:47-59.
    [4]McDonald G, Milligan L. Ionic, osmotic and acid-base regulation in stress. In:Iwama G.ed., Fish stress and health in aquaculture. New York:Cambridge University Press,1997,119-144.
    [5]Tort L, Rotllant J, Rovira L. Immunological suppression in gilthead sea bream Sparus aurata of the North-West Mediterranean at low temperatures. Comparative Biochemistry and Physiology,1998,120(A):175-179.
    [6]Basu N, Nakano T, Grau E G, et al. The effects of cortisol on heat shock protein 70 levels in two fish species. General and Comparative Endocrinology,2001,124:97-105.
    [7]Jones S R M. The occurrence and mechanisms of innate immunity against parasites in fish. Developmental& Comparative Immunology,2001,25:841-852.
    [8]Neumann N F, Stafford J L, Barreda D, et al. Antimicrobial mechanisms of fish phagocytes and their role in host defense. Developmental& Comparative Immunology,2001,25:807-825
    [9]Boshra H, Li J, Sunyer J O. Recent advances on the complement system of teleost fish. Fish&Shellfish Immunology,2006,20:239-262.
    [10]Yano T. The nonspecific immune system:humoral defense. In:Iwama G. Ed., The fish Immune System. San Diego:Academic Press,1997,103-157.
    [11]张峰.棘皮动物体内防御机制的研究进展.大连水产学院学报,2005,20(4):340-344.
    [12]王文博.环境胁迫、中草药及基因转植对鱼体非特异性免疫功能的影响[D].武汉:华中农业大学,2005.
    [13]常雅宁.两种连苯三酚自氧化法测定超氧化物歧化酶的比较[J].药物分析杂志,2001(5):328-331.
    [14]Marks GW, Fox DL. The inactivation of mussel catalase by oxygen [J]. J Biol Chen., 1993,103:269-283.
    [15]邓修惠,黄学梅,李伟道,等.改良DTNB比色法测定血清GSH-Px舌力[J].重庆医学,2000,29(5):445.
    [16]肖婷,刘守柱,薛超彬,等.紫外分光光度计法与酶标仪微量法测定酚氧化酶蛋白含量及活力的比较.昆虫知识,2008,45(2):306-309.
    [17]宋善俊.临床医师手册[M].上海:上海科学技术出版社,1991:185-200
    [18]Hultmark D,Steiner H,Rasmuson T,et al. Insect immunity:purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupase of Hyalophera cecropia [J]. Eur J Biochem,1980,106:7-16.
    [19]Eliseikina M G, Magarlamov T Y. Coelomocyte Morphology in the Holothurians Apostichopus japonicus (Aspido chirota:Stichopodidae) and Cucum aria japonica (Dendrochirota:Cucumariidae) [J]. J Mar Biol,2002,28 (3):197-202.
    [20]Smith V J. The Echinoderms, in Invertebrate Blood Cells [M]. London:Academic Press, 1981:513-562.
    [21]Jans D, Dubois P, Jangoux M. Defensive mechanisms of holothuroids (Echinodermata) Formation, role, and fate of intracoelomic brown bodies in the sea cucumber Holothuria tubulosa [J]. J Cell Tissue Res.,1996 (283):99-106.
    [22]J.C. Hodgson, C.A. Watkins, C.W. Bayne. Contribution of respiratory burst activity to innate immune function and the effects of disease status and agent on chemiluminescence responses by ruminant phagocytes in vitro[J]. Veterinary Immunology and Immunopathology, 2006,112:12-23.
    [23]宋秀梅,韩宏岩,许维岸.外源微生物诱导中华绒螯蟹血清中一氧化氮合酶活性研究[J].安徽农业科学,2010,38(15):8247-8248.
    [24]Anna P. Nitric oxide in marine invertebrates:A comparative perspective [J]. Comparative Biochemistry and Physiology Part A,2005,142:241-248.
    [25]Jose'R. M. C. Silva, Francisco J. Hernandez-Blazquez, Lae' rcio R. Porto-Neto, et al. Comparative Study of in Vivo and in Vitro Phagocytosis Including Germicidal Capacity in Odontaster validus (Koehler,1906) at 0℃ [J]. Journal of Invertebrate Pathology,2001, 77:180-185.
    [26]Joachim Kurtz. Phagocytosis By Invertebrate Hemocytes:Causes of Individual Variation in Panorpa vulgaris Scorpionflies. Microscopy Research and Technique,2002,57:456-468.
    [27]张伟妮,刘巧红,陈其世,等.人工感染嗜水气单胞菌对日本鳗鲡非特异性免疫功能的影响[J].福建农业学报,2011,26(1):19-23.
    [28]高才全,李秀华,裴秀艳,白连英.“三氮”在水产养殖中的意义及其管理[J].河北渔业,2004,2:19,28.
    [29]蒋艾青,土晓华,郑陶生.不同类型山塘三氮含量的研究[J].饲料广角,2003,22:19-21.
    [30]Cheng W, Hsiao I S, Chen Jianchu. Effect of ammonia on the immune response of Taiwan abalone Haliotisdi versicolor supertexta and its susceptibility to Vibrio parahaemolyticus [J].Fish & Shellfish Immunol.,2004,3:193
    [31]WANG W N, WANG A L, ZHANG Y J, et al. Effects of nitrite on lethal immune response of Macrobrachium nipponense [J]. Aquaculture,2004,232:679-686.
    [32]Hong M L, Chen L Q, Sun X J, et al.Metabolic and immune responses in Chinese mitten-handed crab(Eriocheir sinensis) juveniles exposed to elevated ambient ammonia [J]. Comp Biochem Physiol.,2007,145C:363-369.
    [33]Lemarie G, Dosdat A, Coves D, et al. Effect of chronic ammonia exposure on growth of European seabass (Dicent rarchus labrax) juveniles [J]. Aquaculture,2004,229 (1):479-486.
    [34]Winston G W. Oxidants and antioxidants in aquatic animals[J]. Comp Biochem Physiol., 1991,100C:173-176.
    [35]Lackner R. Fish Ecotoxicology[M]. Basel, Switzerland:Birkhauser Publishers,1998, 203-224.
    [36]华雪铭,周洪琪,邱小琮,等.饲料中添加芽孢杆菌和硒酵母对异育银鲫的生长及抗病力的影响[J].水产学报,2001,25(5):448.-453.
    [37]Moyer R, Road K H, Sevatdal S,et al. Change in non-specific immune parameters in Atlantic salmon, Salmo salar L., induced by Aeromonas salmonicida infection[J]. Fish & Shellfish Immunol.,1993,3:253.
    [38]Mock A, Peters G. Lysozyme activity in rainbow trout, Oncorhynchus mykiss (Walbaum), stressed by handling, transport and water pollution [J]. Journal of Fish Biology,1990,37:873
    [39]王玥,胡义波,姜乃澄,等.氨态氮、亚硝态氮对罗氏沼虾免疫相关酶类的影响[J].浙江大学学报,理学版,2005,32(6):698-705.
    [40]吴垠,邢殿楼,祝国芹,等.中国对虾爆发性流行病的血液病理研究[J].中国水产科学,1998,5(3):53-57.
    [41]高冬余,李吕木,梁林,么洪斌,宋健宏.饲用有机硒的生理功能、生物合成途径及应用[J].饲料工业,2009,30(10):44-46.
    [42]程道胜.硒对细胞免疫功能影响的研究进展[J].国外医学临床生物化学与检验学分册,1999,20(4):177-179.
    [43]罗辉,周小秋.硒与水生动物免疫功能的关系[J].动物营养学报,2006,18/S:378-382.
    [44]Hilton J W, Hodson P V, Slinger S J. The requirement and toxicity of selenium in rainbow trout[J]. Journal of Nutrition,1980,110:2527-2535.
    [45]Safir N, Wendel A, Saile R, Chabraolli L. The effect of selenium on immune functions of J774.1 cells. Clinical Chemistry laboratory Medicine,2003,41(8):1005-1011.
    [46]艾春香,陈立侨,高露姣,等.Vc对河蟹血清和组织中超氧化物歧化酶及磷酸酶活性的影响[J].台湾海峡,2002,21(4):431-43.
    [47]Fang YZ, Yang S, Wu G. Free radicals, antioxidants, and nutrition [J]. Nutrition,2002,18: 872-879.
    [48]聂品.鱼类非特异性免疫研究进展[J].水产学报,1997,21(1):69-741
    [49]高春生,王春秀,范光丽,等.水体铜对黄河鲤非特异性免疫功能的影响[J].安全与环境学报,2008,8(4):1-4.
    [50]姚从祯,臧维玲,戴习林,等.铜、镉、敌敌畏和甲胺磷对南美白对虾幼虾的急性致毒及相互关系[J].上海水产大学学报,2003,12(2):11 8-122.
    [51]Soderhall K, Cerenius L. Role of the prophenoloxidase-activating system in invertebrate immunity[J]. Curr. Opin. Immunol.,1998,10(1):23-28.
    [52]Cheng W, Chen JC. Effects of pH,temperature and salinity on immune parameters of the freshwater prawn, Macrobrachium rosenbergii. Fish Shellfish Immunol 2000;10:387-91.
    [53]Hashimoto T, Ohno N, Adachi Y, Yadomae T. Nitric oxide synthesis in murine peritoneal macrophages by fungal beta-glucans. [J]. Biol Pharm Bull.1997,20(9):1006-1009.
    [54]王明学,吴卫东,刘福军.Cl-和Ca2+对亚硝酸盐氮作用于草鱼种毒性的影响[J].华中农业大学学报,1997,16(2):172-178.
    [55]葛立安,高明辉,徐海涛,等.亚硝酸盐对异育银鲫免疫功能的影响.饲料工业,2008,29(10):27-29.
    [56]Hong M L, Chen L Q, Qin J G, et al. Acute tolerance and metabolic responses of Chinese mitten crab(Eriocheir sinensis) juveniles to ambient nitrite [J]. Comparative Biochemistry and Physiology, Part C,2009,149(3):419-426.
    [57]Wang W N, Wang A L, Zhang Y J, et al. Effects of nitrite on lethal and immune response of Macrobrachium nipponense [J]. Aquaculture,2004,232:679-686.
    [58]陈萍,李健,李吉涛,等.不同地理群体三疣梭子蟹非特异性免疫功能的比较[J].中国农学通报,2008,24(11):496-498.
    [59]WINSTON G W. Oxidants and antioxidants in aquatic animals [J]. Comp Biochem Physiol., 1991,100C:173-176.
    [60]Steve W R, Dalto D A, Kramer S, et al. Physiological (antioxidant) responses of estuarine fishes to variability in dissolved oxygen[J]. Comparative Biochemistry and Physiology, Part C,2001,130 (2):289-303.
    [61]白秀娟,卢伙胜,张冰.亚硝酸盐对茂名海域文昌鱼生长及磷酸酶、酚氧化酶的影响[J].齐鲁渔业,2009,26(8):7-9.
    [62]吴中华,刘昌彬,刘存仁,等.中国对虾慢性亚硝酸盐和氨中毒的组织病理学研究[J].华中师范大学学报(自然科学版),1999,33(1):119-122.
    [63]沈文英,谢优刚,邵琴.铵态氮、亚硝酸盐氮对三角帆蚌免疫酶活性的影响.浙江农业学报,2007,19(5):364-367.
    [64]李天道,于佳,俞开康.中国对虾血清中酚氧化酶活力研究[J].海洋湖沼通报,1998,1:51-56.
    [65]余瑞兰,聂湘平,魏泰莉,等.分子氨和亚硝酸盐对鱼类的危害及其对策[J].中国水产科学,1999,(3):73-77.
    [66]李亚南,陈全震,邵健忠,等.鱼类免疫学研究进展.动物学研究,1995,16(1):83-94.
    [67]Le Moullac G, Haffner P. Environmental factors affecting immune responses in Crustacea [J].Aquaculture,2000,191:121-131.
    [68]Fridovich I. Superoxide radical and superoxide dismutases [J]. Annu Rev Biochem,1995, 64(1):97-112.
    [69]李桂峰,钱沛锋,孙际佳,等.维生素C对胡子鲶血清免疫相关酶活性的影响[J].大连水产学院学报,2004,19(4):301-305.
    [70]王晓杰,张秀梅,李文涛.盐度胁迫对许氏平鲉血液免疫酶活力的影响[J].海洋水产研究,2005,6(6):137-142.
    [71]Helene R, Grard B. Fish blood parameters as a potential tool for identification of stress caused by environmental factors and chemical intoxication[J]. Mar Environ Res.,1996, 41(1):27-43.
    [72]王瑞芳,庄平,冯广朋,等.盐度升高对中华绒螫蟹几种非特异性免疫因子的影响.水产学报,2012,36(4):546-552.
    [73]叶建生,王兴强,马甡,等.盐度突变对凡纳滨对虾非特异性免疫因子的影响.海洋水产研究,2008,29(1):38-43.
    [74]张龙岗,安丽,孙栋,等.盐度对澳洲宝石鲈幼鱼3个免疫因子活力的影响.水生态学杂志,2011,32(6):110-113.
    [75]马月钗,杨玉娇,王国良.盐度变化对锯缘青蟹Scylla serrata免疫因子的胁迫影响.浙江农业学报,2010,22(4):479-484.
    [76]王吉桥,张筱墀,姜玉声,等.盐度骤降对幼仿刺参生长、免疫指标及呼吸树组织结构的影响.大连水产学院学报,2009,24(5):387-392
    [77]Pipe R K, Po rte C, Livingstone D R. Antioxidant enzymes associated with the blood cells and haemolymph of the mussel Mytilusedlis [J]. Fish and Shellfish Immunology,1993(3): 221.
    [78]Wang FI, Chen JC. Effect of salinity on the immune response of tiger shrimp Penaeusmonodonand its susceptibility to Photobacterium damselae subsp.Damselae[J].Fish&Shellfish Immunology,2006,20:671-681.
    [79]孔祥会,王桂中,李少菁.低温驯化锯缘青蟹鳃抗氧化防护、ATPase及膜脂肪酸组成变化[J].水生生物学报,2007,31(1):59-66.
    [80]Roch P. Defense mechanisms and disease prevention in farmed marine invertebrate [J]. Aquaculture,1999,172 (1):125-145.
    [81]Jones S R M. The occurrence and mechanisms of innate immunity against Parasites in fish [J]. Developmental and Comparative Immunology,2001,22(8):841-852.
    [82]李强,李华,姜传俊,等.温度对凡纳滨对虾血淋巴免疫指标的影响.大连水产学院学报,2008,23(2):132-135.
    [83]Diegane N, Chen Y Y, Lin Y H, et al. The immune response of tilapia(Oreochromis mossambicu) and its susceptibility to Streptococcus iniae under stress in low and high temperatures [J]. Fish and Shellfish Immunology,2007,22(6):686-694.
    [84]Hermes -Lima M, Storey J M, Storey K B. Antioxidant defenses and metabolic depression: The hypothesis of preparation for oxidative stress in land snails [J]. Comparative Biochemistry and Physiology part B:Biochemistry and Molecular Biology,1998,120(3): 437-448.
    [85]支兵杰,刘伟,王立波,等.水温对怀头鲇血液学指标的影响[J].水产学杂志,2008,21(2):64-70.
    [86]Fevolden S E, Roed K H. Cortisol and immune characteristics in rainbow trou (Oncorhync hchus mykiss) selected for high or low tolerance to stress [J]. Journal of Fish Biology,1993, 43(6):919-930.
    [87]Cheng A C, Cheng S A, Chen Y Y, et al. Effects of temperature change on the innate cellular and humoral immune responses of orange-spotted grouper Epinephelus coioides and its susceptibility to Vibrio alginolyticus [J]. Fish and Shellfish Immunology,2009,26(5): 768-772.
    [88]陈家长,臧学磊,瞿建宏,等.温度胁迫下罗非鱼(GIFT Oreochromis niloticus)机体免疫力的变化及其对海豚链球菌易感性的影响.农业环境科学学报,2011,30(9):1896-1901.
    [89]姜令绪.环境因子对甲壳动物免疫力和抗氧化酶活力的影响[D].青岛:中国海洋大学,2004.
    [90]嘲李国荣,张士璀,李红岩,等.酚氧化酶研究概况Ⅰ-特性、功能、分布和在胚胎发育中的变化[J].海洋科学,2003,27(4):4-9.
    [91]丁小丰,杨玉娇,金珊,等.温度变化对锯缘青蟹免疫因子的胁迫影响.水产科 学,2010,29(1):1-6.
    [92]景福涛,潘鲁青,胡发文.凡纳滨对虾对温度变化的免疫响应.2006,36(Sup.):40-44.
    [93]An Z H, Dong Y W, Dong S L. A high-performance temperature-control scheme:growth of sea cucumber Apostichopus japonicus with different modes of diel temperature fluctuation[J]. Aquaculture Intenational,2009,17(5):459-467.
    [94]王晓燕,常亚青,丁君,等.降温对刺参免疫酶、可溶性蛋白及可溶性糖影响的初步研究[J].农学学报,2012,2(04):44-49.
    [1]Amabile-Cuevas C F, Gardenas-Garcia M, Ludga M. Antibiotic resistance [J]. Am. Sci., 1995.83:320-329.
    [2]Dopaz C P, Lemos C, Bolinches J, et al. Inhibitory activity of antibiotic-producing marine bacteria against fish pathogens [J]. Journal of Applied bacteriology,1998,65(2):97-101.
    [3]Kozasa M.Toyocerin(Bacillus toyoi) as growth promoter for animal feeding [J]. Microbiology Aliments, Nutrition,1986,4:121-135.
    [4]Fuller R. A review, probiotics in man and animals[J]Journal of Applied Bacteriology,1987, 66(5):365-378.
    [5]Spanggaard B, Huber I, Noelsen J, et al. The probiotic potential against vibriosis of the indigenous microflora of rainbow trout [J]. Environmental Microbiology,2001,3:755-765.
    [6]Gildberg A, Mikkelsen H. Effects of supplementing the feed to Atlantic cod (Gadus morhua) fry with lactic acid bacteria and immune stimulating peptides during a challenge trial with Vibrio anguillarum[J].Aguaculture,1998,167 (1/2):103-113
    [7]Byun J W, Park S Ch, Benno Y, et al. Probiotic effect of Lactobacillus sp. DS212 in flounder (Paralichthys olivaceus) [J]. J Gen Appl. Microbiol.,1997,43(5):305-308.
    [8]Rengpipat S, Phianphak W, Piyatiratitivorakul S, et al. Effects of a probiotic bacteriumon black tiger shrimp Penaeus monodon survival and growth[J].. Aquaculture,1998,167 (324): 301-313.
    [9]Moriarty DJW. Control of luminous Vibrio species in penaeid aquaculture ponds[J].. Aquaculture,1998,164 (124):351-358
    [10]Vaseeharan B, Ramasamy P. Control of pathogenic Vibrio spp. by Bacillus subtilis BT23, a possible probiotic treatment for black tiger shrimp Penaeus monodon[J]. Appl. Microbiol. Lett.,2003,36(2):83-87.
    [11]GUO Guojun, QIN Yinxue, CHEN Qiang, et al.Screening of antagonistic bacteria against pathogenic Vibrio parahaemolyticus of Pseudosciaena crocea[J]. Acta Oceanologica Sinica, 2008,30(1):127-134.
    [12]Ziaei-Nejad S, Rezaei M. H, Takami, G.A., et al. The effect of Bacillus spp.bacteria used a probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus[J]. Aquaculture,2006,252:516-524.
    [13]Gram L, Melchiorsen J, Spanggaard B, et al. Inhibition of Vibrio anguillarum by Pseudomonas fluorescens AH2, a possible probiotic treatment of fish [J]. Appl. Environ. Microbiol.,1999,65(3):969-973.
    [14]Bly J E, Quiniou S M A, Lawson L A, et al. Inhibition of Saprolegnia pathogenic for fish by Pseudomonas fluorescens. J Fish Dis.,1997,20:35-90.
    [15]Spanggaard B, Huber I, Nielsen J, et al. The probiotic potential against vibriosis of the indigenous microflora of rainbow trout [J]. Environ Microbiol.,2001,3(12):755-65.
    [16]Smith P, Daves S. Evidence for competitive exclusion of Aeromonas salmonicida from fish with stress induced furunculosis by a fluorescent pseudomonas [J]. Fish Dis.,1993,16(6):521-524.
    [17]Bettina S, Ingrid H, Janne N, et al.The probiotic potential vibriovsis of the indigenous microflora of rainbow trout[J]. Enviromental Microbiology,2001,3(12):755-765.
    [18]Smith P, Daves S. Evidence for the competitive exclusion ofAeromonas salmonicida from fish with stress-inducible furunculosis by a fluoscent pseudomonas [J]. Journal of Fish Diseases,2006,16(5):521-524.
    [19]Das B.K.S, Samal S.K, Samantaray B.R, et al. Antagonistic activity of cellular components of PseuJomonas species against Aeromonas hydrophila[J].Aquaculture,2006,253:17-24.
    [20]Austin B, Stuckey I.F, Robertson P.A.W, et al. A probiotic strain of Vibrio alginolyticus effective in reducing disease caused by Aeromonas salmonicida, Vibrio anguillarum and Vibrio ordalii[J]. J Fish Dis.,1995,18(1):93-96.
    [21]Riquelme C., Araya R., Vergara N., et al. Potential probiotic strains in culture of the Chilean scallop Argopecten purpuratus(Lamarck 1819)[J]. Aquaculture,1997,154:17-26.
    [22]Ferguson R.M., Merrifield D.L., Harper G.M., et al. The effect of Pediococcus acidilactici on the gut microbiota and immune status of on-growing red tilapia (Oreochromis niloticus) [J]. J Appl Microbiol.2010,109 (3):851-862.
    [23]Gibson,L., J.Woodworth, A.George. Probiotic activity of Aeromonas media on the Pacific oyster, Crassostrea gigas, when challenged with Vibrio tubiashii[J]. Aquaculture,1998,169 (1):111-120.
    [24]Ruanpgan, L., Naanan P., Direkbusarakom, S. Inhibitory Effect of Vibrioal ginolyticuson the growth of V. harveyi [J]. Fish Pathol.,1998,33:293-296.
    [25]Vandenbergh, P. Lactic acid bacteria, their metabolic products and interference with microbial growth[J]. FEMS Microbiol.Rev.,1993,12 (1-3):221-238.
    [26]Bergh, Φ. Bacteria associated with early life stages of halibut, Hippoglossus hippoglossus L., inhibit growth of a pathogenic Vibrio sp[J]. Journal of Fish Diseases,1995,18 (11):31-40.
    [27]Piard,J.C., M. Desmazeaud. Inhibiting factors produced by lactic acid bacteria[J]. Bacteriocins and other antibacterial substances. Lait 1992,72 (22):113-142.
    [28]Nair, S., K. Tsukamoto, U. Shimidu. Distrbution of bacteriolytic bacteria in the coastal marine environments of Japan[J].Bull.Jpn,Soc.Sci.Fish.,1985,51:1469-1473.
    [29]Imada, C., U. Simidu, N. Taga. Purification and characterization of the protease inhibitior "monastatin"from a marine Alteromonas sp. with reference to inhibition of the protease produced by a bacterium pathogenic to fish[J]. Can.J.Microbiol.,1985,31:1089-1094.
    [30]Sakai, M. Current research status of fish immunostimulants[J]. Aquaculture 1999,172 (1) 63-92.
    [31]杨吉霞,徐丽,蔡俊鹏.海水养殖中应用蛭弧菌控制病原菌的前景与问题[J].湛江海洋大学学报,2004,24(3):79-82
    [32]陈小红,林阿乞,蔡俊鹏.蛭弧菌对九孔鲍非特异性免疫力和抗病力的影响[J].现代食品科技,2011,27(5):502-505.
    [33]韩宇翔,邓璐,李圆圆,等.噬菌蛭弧菌对鲟鱼免疫相关酶活性的影响[J].饲料工业,2008,29(18):4042.
    [1]李娇,丁君,常亚青.刺参群体的遗传多样性分析及种质资源评价[A].2010年中国水产学会学术年会论文摘要集[C].2011
    [2]王颖,仇雪梅,王娟,等.刺参病害现状及其生物技术检测的研究进展[J].生物技术通报,2009,11:60-64.
    [3]王海山.仿刺参优良品系的筛选及杂交育种的初步研究[D].辽宁师范大学,2009年.
    [4]李成林,宋爱环,胡炜,等.刺参选育种技术体系的建立[J].齐鲁渔业,2008,25(6):47-48.
    [5]Fangli Lu, Hongying Jiang, Jinhui Ding. et al. cDNA sequences reveal considerable gene prediction inaccuracy in the Plasmodium falciparum genome[J]. BMC Genomics,2007,8:255.
    [6]Yueyun Ma, Xiaofei Qi, Jianjun Du, et al. Identification of candidate genes for human pituitary development by EST analysis [J]. BMC Genomics,2009,10:109.
    [7]Pablo A Ortiz-Pineda, Francisco Ramirez-Gomez, Judit Perez-Ortiz, et al. Gene expression profiling of intestinal regeneration in the sea cucumber[J]. BMC Genomics,2009,10:262.
    [8]周遵春,赫崇波,杨爱馥,等.仿刺参体壁、肠和呼吸树全长cDNA文库的构建及部分ESTs初步分析[J].水产科学,2009,28(2):55-58.
    [9]Ewing B, Hillier L, Wendl MC, et al. Base-calling ofautomated sequencer traces using Phred. Ⅰ. Accuracy assessment [J]. Genome Res.,1998(8):175-185.
    [10]Ewing B, Green P. Base-calling of automated sequencer traces using Phred.Ⅱ. Error probabilities [J]. Genome Res.,1998(8):186-194.
    [11]Gordon D. Viewing and editing assembled sequences using Consed[M-]//Baxevanis AD, Davison DB.Current protocols in bioinformatics, New York:JohnW iley&Co.2004:1-43.
    [12]Ashburner M, Ball CA. Blake JA, Botstein D, et al. Gene ontology:Toot for the unification of biology[J]. Nature Genetics,2000(25):25-29.
    [13]Wang, P. H., Chang, Y. Q., Yu, J. H., et al. Acute peristome edema disease in juvenile and adult sea cucumbers Apostichopus japonicus (Selenka) reared in North China[J]. Journal of Invertebrate Pathology,2007,96 (1):11-17.
    [14]Ramirez-Gomez, F. P., Ortiz-Pineda, A., Rojas-Cartagena, et al. Immune-related genes associated with intestinal tissue in the sea cucumber Holothuria glaberrima[J]. Immunogenetics,2008,60:57-71.
    [15]Zheng, F. X., Sun, X. Q., Fang, B. H., et al. Comparative analysis of genes expressed in regenerating intestine and non-eviscerated intestine of Apostichopus japonicus Selenka (Aspidochirotida:Stichopodidae) and cloning of ependymin gene[J]. Hydrobiologia,2006, 571:109-122.
    [16]Ortiz-Pineda, P. A., Ramirez-Gomez, F., Perez-Ortiz, J., et al. Gene expression profiling of intestinal regeneration in the sea cucumber[J]. BMC Genomics,2009,10:262-270.
    [17]Hibino, T., Loza-Coll, M., Messier, C., et al. The immune gene repertoire encoded in the purple sea urchin genome[J]. Developmental Biology,2006,300 (1):349-365.
    [18]Rast, J. P., Smith, L. C., Loza-Coll, M., et al. Genomic insights into the immune system of the sea urchin[J]. Science,2006,314 (5801):952-956.
    [19]Ramirez-Gomez F, Ortiz-Pineda PA, Rojas-Cartagena C, et al. Immune-related genes associated with intestinal tissue in the sea cucumber Holothuria glaberrima[J]. Immunogenetics,2008,60 (1):57-71.
    [20]Yannick Gueguen, Jean-Paul Cadoret, Didier Flament, et al. Immune gene discovery by expressed sequence tags generated from hemocytes of the bacteria-challenged oyster, Crassostrea gigas[J].Gene,2003,303:139-145.