用户名: 密码: 验证码:
小鼠前额叶皮层和丘脑网状核γ-氨基丁酸能神经环路的调控及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在中枢神经系统中,丫-氨基丁酸(γ-aminobutyric acid, GABA)能神经环路起着重要的调控作用。GABA能神经元中parvalbumin (PV)蛋白阳性的快速放电(fast-spiking, FS)神经元占皮层所有中间神经元的40-50%。这类神经元形成复杂的网络联系:它们既投射到锥体细胞,也投射到其他类型的中间神经元,并且这些神经元彼此之间也通过广泛的电、化学突触相联系,从而形成一个交互的GABA能抑制性神经环路。此外,皮层下的GABA能神经元还接受其他如胆碱能或多巴胺能等神经元的输入,这些都能调控GABA能神经环路的功能,从而影响大脑的许多高级认知活动。
     前额叶皮层(prefrontal cortex, PFC)是中枢神经系统中主要负责多种高级认知功能如决策、学习和工作记忆的一个重要脑区。许多因素可以调控皮层的GABA能神经环路,包括神经营养因子如BDNF和FGF等。神经调节素1(Neuregulin1, NRG1)作为神经营养因子大家族的一个成员,在中枢神经系统,主要通过与酪氨酸蛋白激酶受体ErbB4结合并激活一系列胞内信号通路来发挥功能。近些年,nrgl和erbb4作为精神分裂症的两大易感基因而备受重视,但是,NRG1-ErbB4信号通路通过哪些途径参与精神分裂症的发生目前仍不很清楚。在很多脑区,特别是前额叶皮层,神经元同步化活动的减弱和精神分裂症的核心症状直接相关。近期研究显示,ErbB4主要在中间神经元,特别是FS中间神经元上表达。NRG1作用于海马的FS中间神经元,可以影响海马锥体细胞同步化的丫波振荡。但是,NRG1-ErbB4信号通路在PFC神经元的同步化活动中的作用目前尚无报道。
     丘脑网状核(thalamic reticular nucleus, TRN)是联系皮层和丘脑的一个核团,其中大部分是GABA能PV神经元。TRN接受谷氨酸能、胆碱能和多巴胺能等多种输入,其中胆碱能输入主要来自脑干,对睡眠的调节有重要作用。虽然有少数研究从形态学的证据支持基底大细胞核(nucleus basalis of Meynert, nbM)和TRN有联系,但缺乏从nbM的胆碱能神经元到TRN的PV神经元具备突触传递的直接证据,并且这种来自基底前脑的胆碱能投射对TRN的GABA能神经环路的调控有何重要功能仍不清楚。
     因此,本研究结合电生理、分子遗传学、免疫组化、光遗传学以及行为学等手段,试图回答两个问题:第一,PFC的FS中间神经元在正常和敲除中间神经元上的ErbB4受体后,NRG1对各种神经元同步化活动的影响;第二,nbM的胆碱能神经元是否具备到TRN的PV神经元直接的突触传递,这种投射参与何种大脑的高级认知功能。我们发现:1)NRG1不仅可以增强前额叶皮层锥体神经元的同步性活动,对同种FS-FS或不同种FS-LTS (low-threshold-spiking,低阈值放电)中间神经元的同步化也都有增强作用;2)NRG1是通过抑制性突触而不是通过电突触对神经元的同步化起作用的;3)中间神经元上的ErbB4介导了NRG1的这种作用;4)在活体中,NRG1可以增强海人酸诱导的同步化的丫波振荡,而在前脑的中间神经元中敲除ErbB4,可以使NRG1的上述作用消失;5)nbM的胆碱能神经元到TRN的PV神经元具有直接的突触传递;6)其中兴奋性电流由突触后的α7尼古丁受体(α7nAChRs)介导,而抑制性电流由突触后的M1型毒蕈碱受体(M1mAChRs)介导;7)而且这种兴奋性突触传递可以增强TRN的PV神经元的谷氨酸能突触可塑性;8)Ap可以损伤这种兴奋性电流及可塑性;9)nbM到TRN的胆碱能投射参与了大脑记忆巩固的过程。根据上述实验结果,我们认为前额叶皮层GABA能神经环路的调控可以影响大脑的同步化活动,而丘脑网状核的GABA能神经元的调控,参与了记忆巩固等高级认知功能。因此,这些GABA能神经环路的功能异常,可能和许多神经精神疾病的发生密切相关。
The y-aminobutyric acid (GABA)-ergic circuits play an important role in the mouse central nervous system. Parvalbumin (PV) positive fast-spiking (FS) neurons account for40-50%of all GABAergic interneurons in the neocortex. These neurons form several microcircuits in the PFC: first, they are connected with pyramidal neurons or other types of inteneurons through chemical synapses; second, they are interconnected via chemical and electrical synapses (FS-FS). In addition, subcortical PV neurons also receive synaptic input from cholinergic neurons. All these projections are involved in many higher cognitive functions by regulating the GABAergic circuit in the central nervous system.
     The prefrontal cortex (PFC) is responsible for higher cognitive functions such as decision, learning and working memory. The GABA circuit is regulated by many factors. Among them are neurotrophins like BDNF and FGF. Neuregulin1(NRG1), a member of the growth factor family, functions mainly through binding with the tyrosine kinase-type receptor ErbB4in the central nervous system. Both nrgl and erbb4are susceptibility genes for schizophrenia, yet their precise roles in schizophrenia are largely unknown. Reduced synchronization in several cortical regions, especially in the PFC, is associated with the core symptoms of schizophrenia. Recent studies show that NRG1may affect the hippocampal oscillations through ErbB4expressed on FS interneurons. However, the role of NRG1/ErbB4signaling in the synchronization of neurons in the PFC is unclear.
     The thalamic reticular nucleus (TRN) is located between the thalamus and the cortex and composed entirely of GABAergic neurons, of which most are PV neurons. TRN mainly receives cholinergic projections from the brainstem which has an important role in sleep regulation. A few morphologic studies suggested that TRN maybe receive fibers from cholinergic neurons of the nucleus basalis of Meynert (nbM). However, direct evidence linking the nbM cholinergic neurons to TRN PV interneurons is lacking, and the function of this circuit is unknown.
     Here, with the use of multiple approaches including electrophysiology, immunohistochemistry, optogenetics, we demonstrate that in the mouse PFC, NRG1enhanced the synchrony of the two major kinds of neurons through inhibitory synapses in the local network and increased the power of kainate-induced gamma oscillations in vivo. Furthermore, this effect was mediated by ErbB4receptors. While in the TRN, optical activation of nbM cholinergic neurons provided direct excitatory and inhibitory synaptic transmission to PV neurons via α7nicotinic acetylcholine receptors (α7nAChRs) and M1muscarinic acetylcholine receptors (Ml mAChRs), respectively. And the excitatory cholinergic transmission could regulate glutamatergic synaptic plasticity in these neurons. Both the excitatory transmission and the plasticity could be disrupted by Aβ exposure. Moreover, this functional cholinergic transmission from the nbM to the TRN was involved in memory consolidation. Therefore, abnormality of the neural GABAergic circuits may be related to the pathology of many higher cognitive disorders and likely causes many kinds of neuropsychiatric diseases such as schizophrenia.
引文
Albuquerque EX, Pereira EF, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89:73-120.
    Alkondon M, Albuquerque EX(1993) Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. Ⅰ. Pharmacological and functional evidence for distinct structural subtypes. J Pharmacol Exp Ther 265:1455-1473.
    Alkondon M, Pereira EF, Albuquerque EX (1998) alpha-bungarotoxin-and methyllycaconitine-sensitive nicotinic receptors mediate fast synaptic transmission in interneurons of rat hippocampal slices. Brain Res 810:257-263.
    Andersson RH, Johnston A, Herman PA, Winzer-Serhan UH, Karavanova I, Vullhorst D, Fisahn A, Buonanno A (2012) Neuregulin and dopamine modulation of hippocampal gamma oscillations is dependent on dopamine D4 receptors. Proc Natl Acad Sci U S A 109:13118-13123.
    Arvidsson U, Riedl M, Elde R, Meister B (1997) Vesicular acetylcholine transporter (VAChT) protein: a novel and unique marker for cholinergic neurons in the central and peripheral nervous systems. J Comp Neurol 378:454-467.
    Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8:45-56.
    Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263-1268.
    Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663-667.
    Chattopadhyaya B, Di Cristo G, Higashiyama H, Knott GW, Kuhlman SJ, Welker E,
    Huang ZJ (2004) Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period. Journal of Neuroscience 24:9598-9611.
    Chiba AA, Bucci DJ, Holland PC, Gallagher M (1995) Basal forebrain cholinergic lesions disrupt increments but not decrements in conditioned stimulus processing. J Neurosci 15:7315-7322.
    Dalley JW, Theobald DE, Bouger P, Chudasama Y, Cardinal RN, Robbins TW (2004) Cortical cholinergic function and deficits in visual attentional performance in rats following 192 IgG-saporin-induced lesions of the medial prefrontal cortex. Cereb Cortex 14:922-932.
    Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47:699-729. Deakin IH, Nissen W, Law AJ, Lane T, Kanso R, Schwab MH, Nave KA, Lamsa KP, Paulsen O, Bannerman DM, Harrison PJ (2012) Transgenic overexpression of the type I isoform of neuregulin 1 affects working memory and hippocampal oscillations but not long-term potentiation. Cereb Cortex 22:1520-1529.
    Del Pino I, Garcia-Frigola C, Dehorter N, Brotons-Mas JR, Alvarez-Salvado E, Martinez de Lagran M, Ciceri G, Gabaldon MV, Moratal D, Dierssen M, Canals S, Marin O, Rico B (2013) Erbb4 Deletion from Fast-Spiking Interneurons Causes Schizophrenia-like Phenotypes. Neuron 79:1152-1168.
    Descarries L, Gisiger V, Steriade M (1997) Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol 53:603-625.
    Di Cristo G, Wu CZ, Chattopadhyaya B, Ango F, Enott G, Welker E, Svoboda K, Huang ZJ (2004) Subcellular domain-restricted GABAergic innervation in primary visual cortex in the absence of sensory and thalamic inputs. Nature Neuroscience 7:1184-1186.
    Draguhn A, Traub RD, Bibbig A, Schmitz D (2000) Ripple (similar to 200-Hz) oscillations in temporal structures. Journal of Clinical Neurophysiology 17:361-376. Engel AK, Singer W (2001) Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci 5:16-25.
    Espinosa F, Torres-Vega MA, Marks GA, Joho RH (2008) Ablation of Kv3.1 and Kv3.3 potassium channels disrupts thalamocortical oscillations in vitro and in vivo. J Neurosci 28:5570-5581.
    Everitt BJ, Robbins TW (1997) Central cholinergic systems and cognition. Annu Rev Psychol 48:649-684.
    Fazzari P, Paternain AV, Valiente M, Pla R, Lujan R, Lloyd K, Lerma J, Marin O, Rico B (2010) Control of cortical GABA circuitry development by Nrgl and ErbB4 signalling. Nature 464:1376-1380.
    Ferrarelli F, Massimini M, Peterson MJ, Riedner BA, Lazar M, Murphy MJ, Huber R, Rosanova M, Alexander AL, Kalin N, Tononi G (2008) Reduced evoked gamma oscillations in the frontal cortex in schizophrenia patients:a TMS/EEG study. Am J Psychiatry 165:996-1005.
    Fisahn A, Neddens J, Yan L, Buonanno A (2009) Neuregulin-1 modulates hippocampal gamma oscillations: implications for schizophrenia. Cereb Cortex 19:612-618. Fischer S, Hallschmid M, Elsner AL, Born J (2002) Sleep forms memory for finger skills. Proc Natl Acad Sci U S A 99:11987-11991.
    Floresco SB, Seamans JK, Phillips AG (1997) Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. Journal of Neuroscience 17:1880-1890.
    Fogel SM, Smith CT (2011) The function of the sleep spindle:a physiological index of intelligence and a mechanism for sleep-dependent memory consolidation. Neurosci Biobehav Rev 35:1154-1165.
    Fuchs EC, Doheny H, Faulkner H, Caputi A, Traub RD, Bibbig A, Kopell N, Whittington MA, Monyer H (2001) Genetically altered AMPA-type glutamate receptor kinetics in interneurons disrupt long-range synchrony of gamma oscillation. P Natl Acad Sci USA 98:3571-3576.
    Fuster JM (2001) The prefrontal cortex - An update:time is of the essence. Neuron 30:319-333.
    Galarreta M, Hestrin S (1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402:72-75.
    Ge S, Dani JA (2005) Nicotinic acetylcholine receptors at glutamate synapses facilitate long-term depression or potentiation. J Neurosci 25:6084-6091.
    Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402:75-79.
    Goldberg EM, Clark BD, Zagha E, Nahmani M, Erisir A, Rudy B (2008) K(+) channels at the axon initial segment dampen near-threshold excitability of neocortical fast-spiking GABAergic interneurons. Neuron 58:387-400.
    Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383:713-716. Gu Z, Yakel JL (2011) Timing-dependent septal cholinergic induction of dynamic hippocampal synaptic plasticity. Neuron 71:155-165.
    Gulyas Al, Szabo GG, Ulbert I, Holderith N, Monyer H, Erdelyi F, Szabo G, Freund TF, Hajos N (2010) Parvalbumin-containing fast-spiking basket cells generate the field potential oscillations induced by cholinergic receptor activation in the hippocampus. J Neurosci 30:15134-15145.
    Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101-112. Haenschel C, Bittner RA, Waltz J, Haertling F, Wibral M, Singer W, Linden DEJ, Rodriguez E (2009) Cortical Oscillatory Activity Is Critical for Working Memory as Revealed by Deficits in Early-Onset Schizophrenia. Journal of Neuroscience 29:9481-9489.
    Hallanger AE, Levey AI, Lee HJ, Rye DB, Wainer BH(1987) The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol 262:105-124.
    Heckers S, Geula C, Mesulam MM (1992) Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J Comp Neurol 325:68-82. Hefft S, Hulo S, Bertrand D, Muller D (1999) Synaptic transmission at nicotinic acetylcholine receptors in rat hippocampal organotypic cultures and slices. J Physiol 515(Pt3):769-776.
    Herron P, Baskerville KA, Chang HT, Doetsch GS (1997) Distribution of neurons immunoreactive for parvalbumin and calbindin in the somatosensory thalamus of the raccoon. J Comp Neurol 388:120-129.
    Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R (2004) Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. Bba-Biomembranes 1662:113-137.
    Hu H, Ma Y, Agmon A (2011) Submillisecond firing synchrony between different subtypes of cortical interneurons connected chemically but not electrically. J Neurosci 31:3351-3361.
    Ji D, Lape R, Dani JA (2001) Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron 31:131-141.
    Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7:476-486.
    Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Abetal-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95:6448-6453.
    Lampl I, Reichova I, Ferster D (1999) Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron 22:361-374.
    Lamsa KP, Heeroma JH, Somogyi P, Rusakov DA, Kullmann DM (2007) Anti-Hebbian long-term potentiation in the hippocampal feedback inhibitory circuit. Science 315:1262-1266.
    Lena C, Changeux JP (1997) Role of Ca2+ions in nicotinic facilitation of GABA release in mouse thalamus. J Neurosci 17:576-585.
    Li KX, Lu YM, Xu ZH, Zhang J, Zhu JM, Zhang JM, Cao SX, Chen XJ, Chen Z, Luo JH, Duan S, Li XM (2012) Neuregulin 1 regulates excitability of fast-spiking neurons through Kv1.1 and acts in epilepsy. Nat Neurosci 15:267-273.
    Lopez-Meraz ML, Gonzalez-Trujano ME, Neri-Bazan L, Hong E, Rocha LL (2005) 5-HT1A receptor agonists modify epileptic seizures in three experimental models in rats. Neuropharmacology 49:367-375.
    Luetje CW (2004) Getting past the asterisk: the subunit composition of presynaptic nicotinic receptors that modulate striatal dopamine release. Mol Pharmacol 65:1333-1335.
    Mahanty NK, Sah P (1998) Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala. Nature 394:683-687.
    Mann EO, Radcliffe CA, Paulsen O (2005) Hippocampal gamma-frequency oscillations: from interneurones to pyramidal cells, and back. J Physiol-London 562:55-63. McCormick DA, Prince DA (1986) Acetylcholine induces burst firing in thalamic reticular neurones by activating a potassium conductance. Nature 319:402-405.
    McGehee DS, Heath MJ, Gelber S, Devay P, Role LW (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269:1692-1696.
    Mercer A, Bannister AP, Thomson AM (2006) Electrical coupling between pyramidal cells in adult cortical regions. Brain Cell Biol 35:13-27.
    Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940-13945.
    Pinault D (2004) The thalamic reticular nucleus: structure, function and concept. Brain Res Brain Res Rev 46:1-31.
    Qiao X, Werkman TR, Gorter JA, Wadman WJ, van Vliet EA (2013) Expression of sodium channel alpha subunits 1.1,1.2 and 1.6 in rat hippocampus after kainic acid-induced epilepsy. Epilepsy Res 106:17-28.
    Ren J, Qin C, Hu F, Tan J, Qiu L, Zhao S, Feng G, Luo M (2011) Habenula "cholinergic" neurons co-release glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron 69:445-452.
    Role LW, Berg DK (1996) Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16:1077-1085.
    Sarter M, Parikh V, Howe WM (2009) Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nat Rev Neurosci 10:383-390.
    Shimamura K, Martinez S, Puelles L, Rubenstein JL (1997) Patterns of gene expression in the neural plate and neural tube subdivide the embryonic forebrain into transverse and longitudinal domains. Dev Neurosci 19:88-96.
    Sigurdsson T, Stark KL, Karayiorgou M, Gogos JA, Gordon JA (2010) Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 464:763-U139.
    Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698-702.
    Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S, Ivarsson O, Chou TT, Hjaltason O, Birgisdottir B, Jonsson H, Gudnadottir VG, Gudmundsdottir E, Bjornsson A, Ingvarsson B, Ingason A, Sigfusson S, Hardardottir H, Harvey RP, Lai D, Zhou M, Brunner D, Mutel V, Gonzalo A, Lemke G, Sainz J, Johannesson G, Andresson T, Gudbjartsson D, Manolescu A, Frigge ML, Gurney ME, Kong A, Gulcher JR, Petursson H, Stefansson K (2002)
    Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71:877-892. Steriade M (2005) Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends Neurosci 28:317-324.
    Stickgold R, Walker MP (2005) Memory consolidation and reconsolidation: what is the role of sleep? Trends Neurosci 28:408-415.
    Sun YG, Pita-Almenar JD, Wu CS, Renger JJ, Uebele VN, Lu HC, Beierlein M (2013) Biphasic cholinergic synaptic transmission controls action potential activity in thalamic reticular nucleus neurons. J Neurosci 33:2048-2059.
    Tresch MC, Kiehn O (2002) Synchronization of motor neurons during locomotion in the neonatal rat: predictors and mechanisms. J Neurosci 22:9997-10008.
    Uhlhaas PJ, Pipa G, Lima B, Melloni L, Neuenschwander S, Nikolic D, Singer W (2009) Neural synchrony in cortical networks: history, concept and current status. Front Integr Neurosci 3:17.
    Umbriaco D, Watkins KC, Descarries L, Cozzari C, Hartman BK (1994) Ultrastructural and morphometric features of the acetylcholine innervation in adult rat parietal cortex: an electron microscopic study in serial sections. J Comp Neurol 348:351-373.
    Vullhorst D, Neddens J, Karavanova I, Tricoire L, Petralia RS, McBain CJ, Buonanno A (2009) Selective expression of ErbB4 in interneurons, but not pyramidal cells, of the rodent hippocampus. J Neurosci 29:12255-12264.
    Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, Nord AS, Kusenda M, Malhotra D, Bhandari A, Stray SM, Rippey CF, Roccanova P, Makarov V, Lakshmi B, Findling RL, Sikich L, Stromberg T, Merriman B, Gogtay N, Butler P, Eckstrand K, Noory L, Gochman P, Long R, Chen Z, Davis S, Baker C, Eichler EE, Meltzer PS, Nelson SF, Singleton AB, Lee MK, Rapoport JL, King MC, Sebat J (2008) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320:539-543.
    Wen L, Lu YS, Zhu XH, Li XM, Woo RS, Chen YJ, Yin DM, Lai C, Terry AV, Jr.,
    Vazdarjanova A, Xiong WC, Mei L (2010) Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons. Proc Natl Acad Sci U S A 107:1211-1216.
    Whittington MA, Traub RD (2003) Interneuron Diversity series: Inhibitory interneurons and network oscillations in vitro. Trends Neurosci 26:676-682.
    Woo RS, Li XM, Tao YM, Carpenter-Hyland E, Huang YZ, Weber J, Neiswender H, Dong XP, Wu J, Gassmann M, Lai C, Xiong WC, Gao TM, Mei L (2007) Neuregulin-1 enhances depolarization-induced GABA release. Neuron 54:599-610.
    Woodruff AR, Sah P (2007) Inhibition and synchronization of basal amygdala principal neuron spiking by parvalbumin-positive interneurons. J Neurophysiol 98:2956-2961. Yau HJ, Wang HF, Lai C, Liu FC (2003) Neural development of the neuregulin receptor ErbB4 in the cerebral cortex and the hippocampus:preferential expression by interneurons tangentially migrating from the ganglionic eminences. Cereb Cortex 13:252-264.
    Zerucha T, Stuhmer T, Hatch G, Park BK, Long Q, Yu G, Gambarotta A, Schultz JR, Rubenstein JL, Ekker M (2000) A highly conserved enhancer in the Dlx5/Dlx6 intergenic region is the site of cross-regulatory interactions between Dlx genes in the embryonic forebrain. J Neurosci 20:709-721.
    1. Barch DM, Smith E. The cognitive neuroscience of working memory:relevance to CNTRICS and schizophrenia. Biol Psychiatry. 2008;64:11-17.
    2. Keefe RS, Fenton WS. How should DSM-V criteria for schizophrenia include cognitive impairment? Schizophr Bull. 2007;33:912-920.
    3. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167-202.
    4. Goldman-Rakic PS. Development of cortical circuitry and cognitive function. Child Dev. 1987;58:601-622.
    5. Alexander GE. Functional development of frontal association cortex in monkeys: behavioural and electrophysiological studies. Neurosci Res Program Bull. 1982;20:471-479.
    6. Selemon LD, Rajkowska G, Goldman Rakic PS. Elevated neuronal density in prefrontal area 46 in brains from schizophrenic patients: application of a three-dimensional, stereologic counting method. JCompNeurol. 1998;392:402-412.
    7. Kolluri N, Sun Z, Sampson AR, Lewis DA. Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia. Am J Psychiatry. 2005; 162:1200-1202.
    8. Anderson SA, Classey JD, Conde'F, Lund JS, Lewis DA. Synchronous development of pyramidal neuron dendritic spines and parvalbumin immunoreactive chandelier neuron axon terminals in layer III of monkey prefrontal cortex. Neuroscience. 1995;67:7-22.
    9. Van Leijenhorst L, Crone EA, van der Molen MW. Developmental trends for object and spatial working memory: a psychophysiological analysis. Child Dev. 2007;78:987-1000.
    10. Hashimoto T, Volk DW, Eggan SM, et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci. 2003;23:6315-6326.
    11. Woo TU, Whitehead RE, Melchitzky DS, Lewis DA. A sub-class of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proc Natl Acad Sci USA. 1998;95:5341-5346.
    12. Volk DW, Pierri JN, Fritschy JM, et al. Reciprocal alterations in pre-and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia. Cereb Cortex. 2002; 12:1063-1070.
    13. Cruz DA, Weaver CL, Lovallo EM, Melchitzky DS, Lewis DA. Selective alterations in postsynaptic markers of chandelier cell inputs to cortical pyramidal neurons in subjects with schizophrenia. Neuropsychopharmacology. 2009;34:2112-2124.
    14. BeneytoM, Abbott A, Hashimoto T, Lewis DA. Lamina-specific alterations in cortical GABAA receptor subunit expression in schizophrenia. Cereb Cortex. 2010; 10:1093-1096.
    15. Overstreet LS, Westbrook GL. Synapse density regulates independence at unitary inhibitory synapses. J Neurosci. 2003;23:2618-2626.
    16. Hashimoto T, Nguyen QL, Rotaru D, et al. Protracted developmental trajectories of GABAA receptor alphal and alpha2 subunit expression in primate prefrontal cortex. Biol Psychiatry. 2009; 65:1015-1023.
    17. Hong LE, Summerfelt A, McMahon R, et al. Evoked gamma band synchronization and the liability for schizophrenia. Schizophr Res 2004;70:293-302.
    18. Basar-Eroglu C, Brand A, Hildebrandt H, Karolina Kedzior K, Mathes B, Schmiedt C. Working memory related gamma oscillations in schizophrenia patients. Int J Psychophysiol 2007;64:39-45.
    19. Cho RY, Konecky RO, Carter CS. Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia.Proc Natl Acad Sci U S A 2006; 103:19878-83.
    20. Klausberger T, Magill PJ, Marton LF, et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo.Nature 2003;421:844-8.
    21. Bartos M, Vida I, Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 2007;8:45-56.
    22. Woo TU, Kim AM, Viscidi E. Disease-specific alterations in glutamatergic neurotransmission on inhibitory interneurons in the prefrontal cortex in schizophrenia. Brain Res. 2008;1218:267-77.
    23. Kinney JW, Davis CN, Tabarean I, Conti B, Bartfai T, Behrens MM. A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons. J Neurosci 2006;26:1604-15.
    24. Lisman JE, Coyle JT, Green RW, et al. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci 2008;31:234-42.
    25. Cunningham MO, Hunt J, Middleton S, et al. Region-specific reduction in entorhinal gamma oscillations and parvalbumin-immunoreactive neurons in animal models of psychiatric illness. J Neurosci 2006;26:2767-76.
    26. Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science 2004;304:1926-9.
    27. Willecke, K., Eiberger, J., Degen, J., Eckardt, D., Romualdi, A., Guldenagel, M., Deutsch,U., Sohl, G, 2002. Structural and functional diversity of connexin genes in the mouse and human genome. Biological Chemistry 383,725-737.
    28. Martina, M., Vida, I. & Jonas, P. Distal initiation and active propagation of action potentials in interneuron dendrites.Science 287, 295-300 (2000).
    29. Fukuda, T., Kosaka, T., Singer, W., Galuske, R.A., 2006. Gap junctions among dendrites of cortical GABAergic neurons establish a dense and widespread intercolumnar network. Journal of Neuroscience 26,3434-3443.
    30. Gibson, J. R., Beierlein, M. & Connors, B. W. Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402,75-79 (1999).
    31. Galarreta, M. & Hestrin, S. A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402,72-75 (1999).
    32. Tamas, G, Buhl, E. H., Lorincz, A. & Somogyi, P. Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nature Neurosci. 3,366-371 (2000).
    33. Hormuzdi, S.G, Pais, I., LeBeau, F.E., Towers, S.K., Rozov, A., Buhl, E.H., Whittington, M.A., and Monyer, H. (2001). Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36 deficient mice. Neuron 31,487-496.
    34. Beierlein, M., Gibson, J. R. & Connors, B. W. A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nature Neurosci. 3, 904-910(2000).
    35. Timofeev, I., Grenier, F. & Steriade, M. Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. Proc. Natl Acad. Sci. USA 98, 1924-1929 (2001).
    36. Buzsaki, G., 2002. Theta oscillations in the hippocampus. Neuron 33, 325-340.
    37. Draguhn, A., Traub, R.D., Bibbig, A., Schmitz, D., 2000. Ripple approximately 200-Hz oscillations in temporal structures. Journal of Clinical Neurophysiology 17,361-376.
    38. Whittington, M. A., Traub, R. D. & Jefferys, J. G Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373,612-615(1995).
    39. Buhl, D.L., Harris, K.D., Hormuzdi, S.G, Monyer, H., Buzsaki, G, 2003. Selective impairment of hippocampal gamma oscillations in connexin-36 knock-out mouse in vivo. Journal of Neuroscience 23,1013-1018.
    40. Bissiere, S., Zelikowsky, M., Ponnusamy, R., Jacobs, N.S., Blair, H.T., Fanselow, M.S., 2011. Electrical synapses control hippocampal contributions to fear learning and memory. Science 331,87-91.
    41. Gee, C.E., Benquet, P., Demont-Guignard, S., Wendling, F., Gerber, U.,2010. Energy deprivation transiently enhances rhythmic inhibitory events in the CA3 hippocampal network in vitro. Neuroscience 168, 605-612.
    42. Bocian, R., Posluszny, A., Kowalczyk, T., Kazmierska, P., Konopacki, J., 2011. Gap junction modulation of hippocampal formation theta and local cell discharges in anesthetized rats. European Journal of Neuroscience 33, 471-481.
    43.43Deans, M.R., Gibson, J.R., Selitto, C, Connors, B.W., Paul, D.L., 2001. Synchronous activity of inhibitory networks requires electrical synapses containing Cx36. Neuron 31,477-485.
    44. Liu Y, Ford BD, Mann MA, Fischbach GD. Neuregulin-1 increases the proliferation of neuronal progenitors from embryonic neural stem cells. Dev Biol 2005, 283:437-445.
    45. Gassmann M. et al. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 1995,378:390-394.
    46. Anton ES, Marchionni MA, Lee KF, Rakic P. Role of GGF/neuregulin signalling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development 1997, 124:3501-3510.
    47. Fernandez PA. et al. Evidence that axon-derived neuregulin promotes oligodendrocyte survival in the developing rat optic nerve. Neuron 2000, 28:81-90.
    48. Roy K. et al. Loss of erbB signalling in oligodendrocytes alters myelin and dopaminergic function, a potential mechanism for neuropsychiatric disorders. Proc Natl Acad Sci USA 2007, 104:8131-8136.
    49. Lewis DA, Moghaddam B. Cognitive dysfunction in schizophrenia: convergence of y-aminobutyric acid and glutamate alterations. Arch Neurol 2006, 63:1372-1376.
    50. Chen YJ, Mei L, Gao TM. et al. ErbB4 in parvalbumin-positive interneurons is critical for neuregulin 1 regulation of long-term potentiation. Proc Natl Acad Sci USA 2010,107:21818-21823.
    51. Woo RS. et al. Neuregulin-1 enhances depolarization-induced GAB A release. Neuron 2007,54:599-610.
    52. Ting AK, Chen YJ, Mei L. et al. Neuregulin 1 promotes excitatory synapse development and function in GABAergic interneurons. J Neurosci 2011,31:15-25.
    53. Wen L, Lu YS, Zhu XH, Li XM, Woo RS. et al. Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons. Proc Natl Acad Sci USA 2010,107:1211-1216.
    54. Fisahn A, Neddens J, Yan L, Buonanno A. Neuregulin-1 modulates hippocampal gamma oscillations: implications for schizophrenia. Cereb Cortex 2009, 19:612-618.
    55. Liu Y, Ford B, Mann MA, Fischbach GD. Neuregulins increase a7 nicotinic acetylcholine receptors and enhance excitatory synaptic transmission in GABAergic interneurons of the hippocampus. J Neurosci 2001,21:5660-5669.
    56. Rieff HI. et al. Neuregulin induces GABAA receptor subunit expression and neurite outgrowth in cerebellar granule cells. J Neurosci 1999, 19:10757-10766.
    57. Kwon OB, Longart M, Vullhorst D, Hoffman DA, Buonanno A. Neuregulin-1 reverses long-term potentiation at CA1 hippocampal synapses. J Neurosci 2005, 25:9378-9383.
    58. Li B, Woo RS, Mei L, Malinow R. The neuregulin-1 receptor ErbB4 controls glutamatergic synapse maturation and plasticity. Neuron 2007, 54:583-597.
    59. Gunduz-Bruce H. The acute effects of NMDA antagonism: from the rodent to the human brain. Brain Res Rev 2009, 60:279-286.
    60. Korotkova T, Fuchs EC, Monyer H. et al. NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron 2010, 68:557-569.
    61. Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G, Li Y, Quinlan EM, Nakazawa K. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci 2010, 13:76-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700