用户名: 密码: 验证码:
三维曲面板类件的柔性轧制设备及成形工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
曲面柔性轧制是一种新型的三维曲面板类件成形方法,在某种程度上可以认为是传统轧制与多点调形技术的结合,其基本原理是采用两根轴线方向可弯曲且径向强度与刚度足够大的柔性工作辊作为成形工具,通过辊的旋转实现三维曲面板类件的连续成形。通过不同的工作辊弯曲形状及辊缝分布形式,曲面柔性轧制可以成形不同形状的凸曲面件、鞍面件等典型三维曲面件。曲面柔性轧制的关键为形状可调整工作辊的结构设计。本文选用直线光轴作为工作辊,钢丝软轴作为支撑辊,提出了工作辊总成的设计思路。相比于以上几种成形方式,曲面柔性轧制实现了真正的成形连续化与柔性化,具有较高的工程应用与学术研究价值。本文的主要研究内容与结论如下:
     一、在理论研究及成形设备研制方面
     曲面柔性轧制采用整体式可弯曲柔性工作辊作为成形工具,通过调形单元来调整工作辊弯曲形状,使其可以在弯曲状态下绕其轴线旋转。工作辊的弯曲使板料在横向产生一定的弯曲变形,而在板厚方向的不均匀压缩则导致了板料沿轧制方向的不均匀伸长。通过工作辊旋转板料不断进给并最终成形出三维曲面板类件;分析成形过程中板材的成形机理,并说明成形凸曲面件与鞍面件时辊缝调节方法;建立曲面轧制成形控制理论与方法;给出了当工作辊弯曲形状为弧形时,弯曲半径的计算方法;分析曲面柔性轧制的特点。
     叙述了曲面柔性轧制设备的设计方案、主要结构及参数;完成设备整体结构及关键部件设计,包括可换芯式调形单元总成、工作辊总成、变速箱总成等;给出了工作辊总成的设计方案,对工作辊与支撑辊的选择进行说明,直线轴符合可弯柔性辊要求且表面光滑硬度高,因此选择直线轴作为工作辊,而钢丝软轴具有良好的挠性及可传递性,从而选择表面经过磨削处理的钢丝软轴作为支撑辊;对设备中关键零部件进行校核及有限元分析,包括丝母、三横梁、导柱等,结果表明,这些关键部件均满足设计要求。
     二、在成形工艺探索及实验研究方面
     总结了工作辊调形方式,包括渐进调形与一次调形方式。渐进调形应用于调形量大,一次完成调形较困难而进行的多次形状调整。一次调形应用于调形量小,只需一次调整即可完成目标形状;对工作辊驱动方式进行研究,包括单端驱动与双端驱动,双端驱动工作辊转动均匀,不产生滞后;提出曲面柔性轧制的三种典型成形工艺,即一次、渐进及闭环成形工艺。一次成形工艺工作辊调整一次,即可完成成形。渐进成形工艺需多次成形才能逐渐贴近目标件形状。闭环成形工艺可在成形过程中根据成形要求及信息反馈实时调整辊形状,要求自动化控制程度高。
     得到效果较好的实验件,包括凸曲面件与鞍面件;应用三维光学扫描仪对实验件进行扫描并通过逆向工程手段将扫描结果还原成曲面,在这个基础上对成形结果进行分析;对比了成形参数变化对成形件形状的影响,参数包括辊缝高度、弯曲半径与板料厚度;对曲面柔性轧制的成形缺陷进行研究,包括“中浪”、“边浪”与条状压痕等。
     三、在曲面柔性轧制数值模拟研究方面
     对数值模拟中的理论进行说明,包括显式动力学、连续介质力学、弹塑性材料本构关系等;提出整体工作辊离散化的建模方案,即应用若干刚性短辊组成整体工作辊,在模拟时这些被调整形态的短辊围绕自身轴线旋转,恰当地模拟了弯曲辊旋转形态;对数值模拟时刚性短辊的局部坐标系与整体模型的全局坐标系关系进行说明,并通过矢量合成手段解决短辊下压时产生的偏差问题;最后给出数值模拟结果,效果较好,与实验件基本吻合。
     研究了不同参数对曲面柔性轧制成形件形状及应力应变影响,参数包括辊缝高度、弯曲半径、成形速度及摩擦力;随着辊缝高度的减小,成形件两个方向的曲率都有所增加;随着弯曲半径的增大,成形件纵向曲率增加,而横向曲率减小;随着成形速度的增加,纵向曲率减小而横向曲率略有减少;随着摩擦力的增加,纵向曲率与横向曲率均有所减少;参数对成形件形状影响的研究可以为工作辊形状调节、板形控制等提供理论基础。整体来讲,曲面柔性轧制的应力分布较均匀,应力应变分布都随参数变化而发生特定的变化;在数值模拟基础上,对成形件的形状精度及厚度变化进行研究。
     介绍了数值模拟中载荷的计算过程;采用数值模拟的手段,对成形载荷进行分析,得出x、y、z三方向载荷的变化趋势,指出z方向载荷是板材产生塑性变形的主要来源,而y方向载荷可以近似认为是板材运动的驱动力;分析了辊缝高度、工作辊弯曲半径、摩擦系数及板料材质对z向载荷的影响;分析了曲面柔性轧制成形载荷的特点:成形载荷由轧制力与弹性力共同组成,其中轧制力引起板材的塑性变形,而弹性力引起了板料的横向弯曲变形;分别给出了两部分力的计算方法,对比了载荷理论计算数值与数值模拟值之间的区别与联系。
Surface flexible rolling (SFR) is a novel method to form3D sheet metal parts and to someextent, it can be considered as the combination of the traditional rolling and Multi-pointadjusting technology. The basic principle of SFR is to employ two bendable working rolls,whose strength and stiffness in radial direction are sufficient enough, as the forming tool. As therolls rotating,3D sheet metal parts will be formed continuously. Through the different workingroll bending shapes and roll gap distribution modes, the typical formed parts such as convexand saddle surface with different shapes will be formed. The critical content of SFR is thestructural design and shape adjusting of the bendable working rolls and in this study, the idea ofworking roll assembly is put forward and linear axis is selected as the working rolls and wireflexible shaft ground is used as the supporting rolls. Compared with the forming method above,SFR realizes the continuum and flexibility of forming for3D sheet metal parts and has a highvalue in the aspects of engineering application and academic. The specific research contentsand conclusions are summarized as followings,
     Theory research and forming equipment development of SFR:
     Surface flexible rolling employs two integral bendable working rolls, which still can rotatearound their axis despite in the state of being bended, as the forming tool. The bending shape ofworking rolls is regulated by the adjusting units. In the forming process, the bending of workingrolls causes the plate to produce a bending deformation in the transversal direction; that thenon-uniform roll gap makes an uneven compression in the thickness direction of sheet metalcauses the different elongations in the longitudinal direction. As the rolls rotating, the plate isfeeding constantly and3D sheet metal parts will be formed finally. The forming mechanism ofthe formed parts in the processing process was analyzed and the roll gap adjusting method ofconvex and saddle surface parts was explained; the controlling theory and method of SFR wasestablished; the calculating method of bending radius was showed when the roll shape is arc;the characteristics of SFR was introduced.
     The design scheme, main structure and parameters of the SFR forming equipment were introduced; the overall structure and the design of key parts including the adjusting unitassembly whose copper set are replaceable, working roll assembly and gearbox assembly, etc.were accomplished; the design scheme of the assembly of working rolls were showed and theselecting process of working roll and supporting rolls was introduced. Linear axis meets therequirements of bendable flexible rolls and has a smooth and hard surface, so it is used as theworking rolls. The flexibleness and transitivity of wire flexible shaft are favorable, so the wireflexible shaft is selected as the supporting rolls; the critical parts including the big nut, threebeams and guiding pillar, etc. in the forming equipment were checked and the result is thatthese components can satisfy the design demand.
     Forming technology exploration and experimental study of SFR:
     The adjusting modes of the working rolls were summarized, including gradual and oncemode. The gradual one is applied when the adjusting amount is large and the rolls needregulating many times to finish the target shape. The once one is applied when the amount issmall and need adjusting only once; the driving mode including single-end and both-end of theworking rolls were studied and in the both-end mode, the working roll rotates uniformly andproduces no lagging; three typical technology of SFR were put forward, namely, once, gradualand closed-loop technology. In the once mode, the working rolls are regulated once toaccomplish the processing. In the gradual mode, the roll shape needs regulating many times tofinish the forming. In the closed-loop mode, the roll shape can be regulated in the formingprocess according to the forming requirements and feedback information and this mode requiresa very high degree of controlling automation.
     The fine experimental parts has been obtained, including convex and saddle surface parts;the experimental parts were sensed by3D binocular optical sensing device and the results weremade into surface by means of the reverse engineering and based on the surface, the formingresults were analyzed; the impacts of forming parameters on the shapes of the formed partswere compared and analyzed, the parameters include roll gap height, bending radius and sheetmetal thickness; the forming defects in the SFR forming process were researched, the defectsinclude middle wave, side wave and stripe pressure mark.
     Numerical simulation of SFR:
     The theories in the model building process were explained, including explicit dynamics, continuum mechanics and elastic-plastic material constitutive relations, etc.; the model schemeof the working roll discretion was put forward, namely, the whole working roll is dispersed byseveral short rigid rollers and in the simulation process, the rollers are rotating around their axisand simulating the working roll rotation appropriately; the relations between the localcoordinate system of the rigid short rollers and the global one of the overall model wereexplained and the approach of vector synthesis was applied to solve the deviation problem ofthe short rollers moving down in the local one; finally, the numerical simulation results, whichare in accordance with the experimental ones, were displayed.
     The different parameter influences on the shape and stress-strain of the formed parts werestudied and the parameters are including roll gap height, bending radius, forming speed andfriction. Along with the roll gap height decreasing, the two main curvatures of the formed partare increasing. Along with the bending radius of the working rolls, the longitudinal curvature isincreasing and the transversal one is decreasing. Along with the forming speed increasing, thelongitudinal curvature decreases and the transversal decreases a little. Along with the increasingof the friction, the longitudinal and transversal curvatures are both decreases. The research ofparameter impact on the shape of formed parts will supply the theoretical foundation for theworking roll regulation and part shape controlling. Generally speaking, the stress distribution ofthe stress in the SFR is uniform and stress-strain distributions will change specificallyaccording with the parameters changing; the numerical simulation method was employed tostudy the shape error and the thickness changing.
     The load calculating method in the numerical simulation was investigated; based on thenumerical simulation method, the forming load was analyzed and the load changing trends inthe directions x, y and z have been obtained; the load in z-direction is the major source of plateplastic deformation and the one in y-direction can be considered approximately as the power todrive the plate to move forward; the influences of roll gap height, working roll bending radius,friction factor and materials on the z-direction load were analyzed; the characteristic of the loadin the SFR was analyzed and the load is composed of the rolling force and elastic force. Therolling force causes the sheet metal to be deformed plastically and the elastic one causes theplate to be bended in the transversal direction; the load calculating method was introducedsystematically; the load values calculated by the theory and that of the simulation were compared and analyzed.
引文
[1]李春峰.板材成形新技术及发展趋势[J].机械工人:热加工,2005(7):4-9.
    [2]王俊彪.材料的先进成形技术[M].北京:高等教育出版社,2002.
    [3]洪慎章.模具工业的发展趋势及塑性成形技术的研究方向[J].模具制造,2003,12:3-5.
    [4]肖元真,杜成宗.论我国模具工业的市场需求和发展对策[J].今日科技,1995(1):6-7.
    [5]黄小英.现代模具制造业的发展趋势[J].南方农机,2004(2):13-14.
    [6] Tang B T, Zhao Z, Lu X Y, et al. Fast thickness prediction and blank design in sheet metal forming basedon an enhanced inverse analysis method[J]. International journal of mechanical sciences,2007,49(9):1018-1028.
    [7] Bianconi F, Conti P, Di AL. Interoperability among CAD/CAM/CAE systems: a review of currentresearch trends[C]//Geometric Modeling and Imaging--New Trends,2006. IEEE,1993:82-89.
    [8]王丽敏,计小辈.模具设计制造中CAD/CAE/CAM技术的应用研究[J].现代制造技术与装备,2008(4):72-74.
    [9] Bae G H, Song J H, Huh H, et al. Simulation-based prediction model of the draw-bead restraining forceand its application to sheet metal forming process[J]. Journal of materials processing technology,2007,187:123-127.
    [10]李德群.模具的CAD/CAE/CAM技术[J].电加工与模具,2006,1.
    [11]胡世光,陈鹤峥.板料冷冲压成形的工程解析[M].北京:北京航空航天大学出版社,2004.
    [12]李寿萱.钣金成形原理与工艺[M].西北工业大学出版社,1985.
    [13]曹珺雯.可重构柔性模具蒙皮拉形工艺仿真技术及应用研究[D].北京:北京航空航天大学,2008.
    [14]王成和,刘克璋.旋压技术.北京:机械工业出版社,1986.
    [15]赵云豪.旋压技术现状[J].锻压技术,2005,5:95-100.
    [16]刘建华,杨合,李玉强.旋压技术基本原理的研究现状与发展趋势[J].重型机械,2002,3:1-4.
    [17]赵琳瑜,韩冬,张立武,等.旋压成形技术和设备的典型应用与发展[J].锻压技术,2008,32(6):18-26.
    [18] Lang LH, Wang Z R, Kang D C, et al. Hydroforming highlights: sheet hydroforming and tubehydroforming[J]. Journal of Materials Processing Technology,2004,151(1):165-177.
    [19]李涛,郎利辉,周贤宾.先进板材液压成形技术及其进展[J].塑性工程学报,2006,13(3):30-34.
    [20] Siegert K, H ussermann M, L sch B, et al. Recent developments in hydroforming technology[J]. Journalof Materials Processing Technology,2000,98(2):251-258.
    [21] Dohmann F, Hartl C. Hydroforming-a method to manufacture light-weight parts[J]. Journal of MaterialsProcessing Technology,1996,60(1):669-676.
    [22] Vollertsen F. State of the art and perspectives of hydroforming of tubes and sheets[J].Journal of MaterialsProcessing Technology.2001,17(3):321-324.
    [23] Dohmann F. Introduction of the processes of hydroforming[C]//International Conference onHydroforming, Fellbach/Stuttart, Germany, Edited by Klaus Siegert.1999:1-21.
    [24]苑世剑,王仲仁.内高压成形的应用进展[J].中国机械工程,2002,13(9):783-786.
    [25] Dohmann F, B hmA, Dudziak K U.The shaping of hollow shaft-shaped workpieces by liquid bulgeforming[C]//Proceedings of the4th International Conference “Technology of Plasticity”, Tokyo.1993:447-452.
    [26] Amino H, Nakamura K, Nakagawa T. Counter-pressure deep drawing and its application in the formingof automobile parts[J]. Journal of Materials Processing Technology,1990,23(3):243-265.
    [27] Nakagawa T, Nakamura K, Amino H. Various applications of hydraulic counter-pressure deepdrawing[J]. Journal of Materials Processing Technology,1997,71(1):160-167.
    [28] Amino H, Makita K, Maki T. Sheet fluid forming and sheet dieless NC forming[C]//Proceedings ofInternational Conference on New Developments in Sheet Forming Technology. Stuttgart: Fellbach.2000:39-66.
    [29] Groche P, Metz C. Investigation of active-elastic blank holder systems for high-pressure forming ofmetal sheets[J]. International Journal of Machine Tools and Manufacture,2006,46(11):1271-1275.
    [30]李明哲,中村敬一,等.基本的な成形原理の检讨(板材多点成形法の研究第一报)[C].日本平成四年度塑性加工春季讲演会论文集,1992:519-522.
    [31] Li M Z, Cai ZY, Liu C G, et al. Recent developments in multi-point forming technology, AdvancedTechnology of Plasticity2005[C]//Proceedings of the8th International Conference on Technology ofPlasticity. Edizioni Progetto Padova, Verona, Italy.2005:707-708.
    [32] Liu C G, Li M Z, Fu W Z. Principles and apparatus of multi-point forming for sheet metal[J]. TheInternational Journal ofAdvanced Manufacturing Technology,2008,35(11-12):1227-1233.
    [33] Cai ZY, Wang S H, Li M Z. Numerical investigation of multi-point forming process for sheet metal:wrinkling, dimpling and springback[J]. The International Journal ofAdvanced ManufacturingTechnology,2008,37(9-10):927-936.
    [34]李明哲,赵晓江.多点分段成形中的几种成形方法[J].中国机械工程,1997,8(1):87-90.
    [35]李明哲,苏世忠.金属板材无模多点成形专用CAD/CAM与CAT软件的开发[J].中国机械工程,1999,10(3):298-300.
    [36]陈建军,李明哲.多点分段成形技术应用研究[J].哈尔滨工业大学学报,2000,32(4):65-67.
    [37] Li M Z, LiuY H, Su S Z, et al. Multi-point forming: a flexible manufacturing method for a3-d surfacesheet[J]. Journal of Materials Processing Technology,1999,87(1):277-280.
    [38] Li M Z, Cai ZY, Sui Z, et al. Multi-point forming technology for sheet metal[J]. Journal of MaterialsProcessing Technology,2002,129(1):333-338.
    [39] Walters T. Press: US,2334520[P].1942-05-13.
    [40] Nakajima N. Anewly developed technique to fabricate complicated dies and electrodes with wires[J].Bulletin of JSME,1969,12(54):1546-1554.
    [41]中岛尚正.针金束を用いた金型电极の研究.日本机械学会志,1969,72(603):32~40.
    [42] Nishioka F. An automatic bending of plates by the universal press with multiple piston heads (Secondreport: practicality research)[J]. Journal of the Society of Naval Architects of Japan,1973,133:291-305.
    [43] IwasakiY, Shiota H, Taura Y, et al. Development of a triple-row-press[J]. Mitsubishi Tech. Rev.,1977,14(2):377-384.
    [44] Hardt D E, Gossard D C. Avariable geometry die for sheet metal forming: machine design andcontrol[C]//Proc JtAutom Control Conf., USA.1980(2):366-367.
    [45] Finckenstein E V, Kleiner M. Flexible numerically controlled tool system for hydro-mechanical deepdrawing[J]. CIRPAnnals-Manufacturing Technology,1991,40(1):311-314.
    [46] Rao PV M, Dhande S G.Aflexible surface tooling for sheet-forming processes: conceptual studies andnumerical simulation[J]. Journal of materials processing technology,2002,124(1):133-143.
    [47]裴永生,彭加耕,李明哲.多点成形过程中基本体群调形技术[J].机械工程学报,2008,44(1):150-154.
    [48] Li M Z, Cai ZY, Sui Z, et al. Principle and applications of multi-point matched-die forming for sheetmetal[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of EngineeringManufacture,2008,222(5):581-589.
    [49]李淑慧,李明哲,陈建军.板材多点分段成形工艺的数值模拟研究[J].机械工程学报,2000,36(8):88-91.
    [50] Li M Z, Fu W Z, PeiY S, et al.2000kN multi-point forming press and its application to themanufacture of high-speed trains[C]//Advanced Technology of Plasticity, Proceedings of the7th ICTP,Oct.28-31,2002, Yokohama, Japan,2002,2:979-984.
    [51] Tan F X, Li M Z, Cai ZY. Research on the process of multi-point forming for the customized titaniumalloy cranial prosthesis[J]. Journal of materials processing technology,2007,187:453-457.
    [52]谭富星,李明哲,蔡中义.带孔网板数字化多点成形过程中拉裂缺陷的有限元分析[J].机械工程学报,2008,44(6):120-124.
    [53]刘纯国,李明哲,隋振.多点技术在飞机板类部件制造中的应用[J].塑性工程学报,2008,15(2):109-114.
    [54] Cai ZY, Li M Z. Optimum path forming technique for sheet metal and its realization in multi-pointforming[J]. Journal of Materials Processing Technology,2001,110(2):136-141.
    [55]崔相吉,蔡中义,李明哲.板材三维曲面零件的多点成形理论与方法[J].兵工学报,2002,23(4):521-524.
    [56] Cai ZY, Li M Z, Feng Z H. Theory and method of optimum path forming for sheet metal[J]. ChineseJournal ofAeronautics,2001,14(2):118-122.
    [57] Cai ZY, Li M Z. Multi-point forming of three-dimensional sheet metal and the control of the formingprocess[J]. International Journal of Pressure Vessels and Piping,2002,79(4):289-296.
    [58]李广权,李达,李东平,等.板材多点成形时复杂边界条件的研究[J].哈尔滨工业大学学报,2000,32(5):75-77.
    [59]蔡中义,李明哲,陈建军.板材多点成形隐式算法数值模拟专用软件及关键技术[J].哈尔滨工业大学学报,2000,32(4):82-88.
    [60]苏世忠,李明哲,陈建军.有限元多晶体模型模拟铝板多点成形过程[J].哈尔滨工业大学学报,2000,32(4):117-119.
    [61]李明哲,李淑慧,柳泽,等.板材多点成形过程起皱现象数值模拟研究[J].中国机械工程,1998,9(10):34-38.
    [62]李雪,李明哲,蔡中义.多点成形过程中弹性介质对成形质量的影响[J].哈尔滨工业大学学报,2005,37(2):194-197.
    [63]宋雪松,蔡中义,李明哲.板材多点成形过程中成形力的数值模拟[J].吉林大学学报(工学版),2004,34(2):226-231.
    [64]孙刚,李明哲,蔡中义,等.多点成形时工艺方式与工件压痕的关系研究[J].材料科学与工艺,2005,12(4):360-363.
    [65]钱直睿.多点成形中的几种关键工艺及其数值模拟研究[D].长春:吉林大学,2007.
    [66]钱直睿,李明哲,孙刚,等.球形面多道次多点成形的数值模拟[J].吉林大学学报(工学版),2007,37(2):338-342.
    [67]谭富星.带孔网板多点成形过程数值模拟研究[D].长春:吉林大学,2009.
    [68]谭富星,李明哲,蔡中义.带孔网板数字化多点成形过程中拉裂缺陷的有限元分析[J].机械工程学报,2008,44(6):120-124.
    [69] Zhang Q F, Cai Z Y, Zhang Y, et al. Springback compensation method for doubly curved plate inmulti-point forming[J]. Materials and Design,2013,47:377-385.
    [70] Zhang Q F, Cai Z Y, Li M Z. Study on springback compensation in Multi-point forming[J]. AdvancedMaterials Research,2011,189-193:2957-2960.
    [71]张庆芳,蔡中义,李明哲.多点成形回弹补偿算法及其验证[J].吉林大学学报(工学版),2012,42(6):1448-1452.
    [72]刘志卫,李明哲,韩奇钢.防皱多点成形及其误差分析[J].机械工程学报,2012,48(12):56-62.
    [73]刘志卫,李明哲,韩奇钢.具有防皱功能的多点成形工艺数值模拟[J].吉林大学学报(工学版),2012,42(5):1208-1213.
    [74]曹鋆汇,付文智,李明哲,等.高分子板材多点热成形中的压痕及其影响因素[J].吉林大学学报(工学版),2013(6):1536-1540.
    [75]曹鋆汇,付文智,李明哲,等.聚碳酸酯板材多点热成形数值模拟与成形精度分析[J].农业机械学报,2014,1(45):335-340.
    [76] Peng H L, Li M Z, Liu C G, et al. Study of multi-point forming for polycarbonate sheet[J]. TheInternational Journal ofAdvanced Manufacturing Technology,2013,67(9-12):2811-2817.
    [77] Peng H L, Li M Z, Liu C G, et al. Numerical simulation of multi-point forming accuracy forpolycarbonate sheet[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal ofProcess Mechanical Engineering,2013, DOI:10.1177/0954408913475562.
    [78] Su S Z, Li M Z, Liu C G, et al. Flexible Tooling System Using Reconfigurable Multi-PointThermoforming Technology for Manufacturing Freeform Panels[J]. Key Engineering Materials,2012,504:839-844.
    [79]李明哲,崔相吉,邓玉山,等.多点成形技术的现状与发展趋势[J].锻压装备与制造技术,2007,42(5):15-18.
    [80] Hardt D E, Olsen BA, Allison B T, et al. Sheet metal forming with discrete die surfaces[C]//Proceedingsof NinthAmerican Manufacturing Research Conference.1981:140-144.
    [81] Hardt D E, Boyce M C, Walczyk D F. Aflexible forming system for rapid response production of sheetmetal parts[C]//Proceedings of IBEC, Detroit, Michagan, USA,1993:61-69.
    [82] Hardt D E, Webb R D, Suh N P. Sheet metal die forming using closed-loop shape control[J]. CIRPAnnals-Manufacturing Technology,1982,31(1):165-169.
    [83] Hardt D E, Robinson R E, Webb R D. Closed-loop control of die stamped sheet metal parts: algorithmdevelopment and flexible forming machine design[C]//Proceedings ofAdvanced Systems forManufacturing Conference, Madison, Wisconsin USA.1985:21-28.
    [84] Walczyk D F, Hardt D E. Design and analysis of reconfigurable discrete dies for sheet metal forming[J].Journal of Manufacturing Systems,1998,17(6):436-454.
    [85] Walczyk D F, Lakshmikanthan J, Kirk D R. Development of a reconfigurable tool for forming aircraftbody panels[J]. Journal of manufacturing systems,1998,17(4):287-296.
    [86] Papazian J M. Tools of change: reconfigurable forming dies raise the efficiency of small-lotproduction[J]. Mechanical Engineering,2002,124(2):52-55.
    [87] Anagnostou E L, Papazian J M. Optimized tooling design algorithm for sheet metal forming overreconfigurable compliant tooling[C]//MATERIALS PROCESSING AND DESIGN: Modeling,Simulation andApplications-NUMIFORM2004-Proceedings of the8th International Conference onNumerical Methods in Industrial Forming Processes. AIP Publishing,2004,712(1):741-748.
    [88]周朝晖,蔡中义,李明哲.多点模具的拉形工艺及其数值模拟[J].吉林大学学报(工学版),2005,35(3):287-291.
    [89]陈志红,李明哲,高占民.蒙皮件多点拉形过程中成形缺陷的数值模拟[J].塑性工程学报,2007,14(3):112-116.
    [90]陈志红,付文智,李明哲.蒙皮多点拉形过程中压痕的数值模拟及控制[J].材料科学与工艺,2011(6):791-795.
    [91]蔡中义,张海明,李光俊,等.多点拉形数值模拟及模具型面补偿方法[J].吉林大学学报(工学版),2008,38(2):329-333.
    [92] Cai ZY, Wang S H, Xu X D, et al. Numerical simulation for the multi-point stretch forming process ofsheet metal[J]. Journal of materials processing technology,2009,209(1):396-407
    [93]王少辉,蔡中义,李明哲,等.冲头尺寸对多点拉形效果影响的数值模拟[J].吉林大学学报(工学版),2009(3):619-623.
    [94] Wang S H, Cai Z Y, Li M Z. Numerical investigation of the influence of punch element in multi-pointstretch forming process[J]. The International Journal ofAdvanced Manufacturing Technology,2010,49(5-8):475-483.
    [95]王少辉,蔡中义,李明哲.多点拉形中回弹的数值模拟[J].塑性工程学报,2009,16(2):57-61.
    [96]王少辉,蔡中义,李明哲,等.多点拉形中回弹的影响因素研究[J].塑性工程学报,2009,16(4):7-11.
    [97] Zhang C M, Fu W Z, Li X D, et al. The Study on Suppression of Dimples in Digital Multi-PointStretching Process[J]. Advanced Materials Research,2010,97:2589-2593.
    [98] Zhang C M, Fu W Z, Liu F, et al. Numerical Simulation of Forming Force in Lateral Bend Forming[C].Advanced Materials Research,2011,152:1120-1124.
    [99]白雪飘,曾元松,李志强.单曲率蒙皮零件柔性多点模具拉形过程的数值模拟与优化[J].航空制造技术,2006,11:85-88.
    [100]汪华,周贤宾.飞机蒙皮多点成形用复合柔性垫层的结构参数优化[J].航空学报,2007,28(6):1482-1486.
    [101]汪华,周贤宾.多点成形条件下蒙皮拉形的表面缺陷[J].航空制造技术,2006,6:89-92.
    [102]汪华,周贤宾,罗红宇,等.复合垫层在多点模蒙皮拉形中的应用[J].塑性工程学报,2008,14(5):43-47.
    [103]安丽娜,李晓星.弹性介质材料模型对回弹影响的数值模拟[J].航天制造技术,2007,2:17-20.
    [104]曹珺雯,李东升,王丽丽,等.可重构柔性模具蒙皮拉形有限元等效模型[J].塑性工程学报,2009,16(3):74-77.
    [105]王丽丽,李东升,曹珺雯,李小强.可重构柔性模具蒙皮包覆拉形仿真系统开发[J].锻压技术,2009,34(2):141-144.
    [106]王丽丽,李东升,李小强,等.可重构柔性多点模具蒙皮拉形模面补偿算法[J].北京航天航天大学学报,2011,37(8):1011-1015.
    [107] Siegert K, Fann K J, RennetA. CNC-controlled segmented stretch-forming process[J]. CIRPAnnals-Manufacturing Technology,1996,45(1):273-276.
    [108] Siegert K, RennetA, Fann K J. Prediction of the final part properties in sheet metal forming byCNC-controlled stretch forming[J]. Journal of materials processing technology,1997,71(1):141-146.
    [109]吉林大学,板材拉形机:中国,发明专利,200910067003.6[P],2009.
    [110]吉林大学,高柔性多头拉形机:中国,发明专利,200910217701.X[P],2009.
    [111]张昊晗.多辊下压式柔性拉形过程及其数值模拟研究[D].长春:吉林大学材料科学与工程学院,2011.
    [112]李永丰,丛晓霜,何鑫华,等.柔性压辊拉形中回弹的数值模拟[J].塑性工程学报,2010,17(6):46-50.
    [113]茅梦云,何鑫华,李永丰,等.柔性压辊拉形机原理及其数值模拟研究[J].锻压技术,2010,35(5):100-104.
    [114]冯朋晓,李明哲,付文智.高柔性多夹钳拉形机的结构设计[J].锻压装备与制造技术,2010,5:21-24.
    [115]冯朋晓.多夹钳式柔性拉形设备成形工艺及数值模拟研究[D].长春:吉林大学,2012.
    [116] Chen X, Li M Z, Fu W Z, et al. Research on multi-head stretch forming technology of sheetmetal[C]//2010International Conference on Electrical and Control Engineering,2010,720:2952-2955.
    [117] Chen X, Li M Z, Zhang H H, et al. The effect of discrete grippers on sheet metal flexible-gripperstretch forming[C]. Applied Mechanics and Materials,2012,121-126:488-492.
    [118] Peng H L, Li M Z, Han Q G, et al. Numerical investigation of flexible holding technology for stretchforming process[C]. Applied Mechanics and Materials,2012,121-126:2126-2130.
    [119] Peng H L, Li M Z, Feng PX. Numerical simulation of process parameters in flexible discrete clampstretch forming[C]. Applied Mechanics and Materials,2012,161:53-57.
    [120]彭赫力,李明哲,付文智,等.柔性离散夹钳拉形工艺的数值模拟[J].吉林大学学报(工学版),2012,42(3):660-664.
    [121]彭赫力,刘纯国,李明哲.马鞍面件柔性夹钳多点拉形实验与数值模拟[J].西安交通大学学报,2012,46(5):109-113.
    [122] Peng H L, Li M Z, Han Q G, et al. Design of Flexible Multi-gripper Stretch Forming Machine byFEM[C]. Advanced Materials Research,2011,328-330:13-17.
    [123] Wang Y, Li M Z, Peng H L, et al. Numerical simulation on multi-gripper stretch forming process forsheet metal[C]//THE11TH INTERNATIONALCONFERENCE ON NUMERICALMETHODS ININDUSTRIALFORMING PROCESSES: NUMIFORM2013. AIPPublishing,2013,1532(1):863-869.
    [124] Wang Y, Li M Z. Research on three-dimensional surface parts in multi-gripper flexible stretchforming[J]. The International Journal ofAdvanced Manufacturing Technology,2014,71:1701-1707.
    [125]李任君,李明哲.三维曲面连续柔性成形方法的研究进展[J].塑性工程学报,2013,20(5):111-116.
    [126]山下勇,加藤和典,遠藤順一.可撓ロールにょる複曲面の成形加工の研究(第1報可撓ベンディングロール機の試作)[C].第37回塑性加工連合講演會.橫滨,1986:345-348.
    [127]山下勇,加藤和典,遠藤順一.可撓ロールにょる復曲面の成形加工の研究(第3報成形形狀に及ぼすロール幅の影響)[C].昭和63年度塑性加工春季演講會.北九州,1988:505-508.
    [128] Yamashita I,Yamakawa T. Apparatus for forming plate with a double-curved surface. United States,4770017[P],1988-11-13.
    [129] Yoon S J, Yang D Y. Development of a highly flexible incremental roll forming process for themanufacture of a doubly curved sheet metal[J]. CIRPAnnals-Manufacturing Technology,2003,52(1):201-204.
    [130] ShimD S,Yang D Y, Han M S, et al. Experimental study on manufacturing doubly curved plates usingincremental rolling process[C]//The9thInternational Conference on Technology of Plasticity,Gyeongiu, Korea,2008,2378-2383.
    [131] KimK H, Roh H J, Han M S, et al. Finite element analysis of the incremental dual curvature bendingof a plate in a line array roll set[C].//The9thInternational Conference on Technology of Plasticity,Gyeongiu, Korea,2008,1065-1069.
    [132] ShimD S,Yang D Y, KimK H, et al. Numerical and experimental investigation into cold incrementalrolling of doubly curved plates for process design of a new LARS (line array roll set) rolling process[J].CIRPAnnals-Manufacturing Technology,2009,58(1):239-242.
    [133] Zeng J, Liu Z, Champliaud H. FEM dynamic simulation and analysis of the roll-bending process forforming a conical tube[J]. Journal of Materials Processing Technology,2008,198(1):330-343.
    [134] LinY H, Hua M. Influence of strain hardening on continuous plate roll-bending process[J].International journal of non-linear mechanics,2000,35(5):883-896.
    [135]李明哲,胡志清,蔡中义,等.自由曲面工件多点连续成形方法[J].机械工程学报,2008,43(12):155-159.
    [136] Cai ZY, Li M Z, LanYW. Three-dimensional sheet metal continuous forming process based onflexible roll bending: Principle and experiments[J]. Journal of Materials Processing Technology,2012,212(1):120-127.
    [137]蔡中义,李明哲,兰英武,等.三维曲面零件连续成形的形状控制[J].吉林大学学报(工学版),2011,41(4):978-983.
    [138] Gong X P, Li M Z, Lu Q P, et al. Research on continuous multi-point forming method for rotarysurface[J]. Journal of Materials Processing Technology,2012,212(1):227-236.
    [139]李明哲,胡志清,蔡中义,等.自由曲面工件的连续高效塑性成形方法[J].吉林大学学报(工学版),2007,37(3):489-494.
    [140]胡志清,李明哲,龚学鹏.三维曲面板类件的连续柔性成形技术研究[J].塑性工程学报,2008,15(1):51-54.
    [141]胡志清,李明哲,隋振,等.基于柔性卷板成形原理的旋压成形技术[J].农业机械学报,2009,40(12):247-250.
    [142] Li M Z, Hu Z Q, Cai Z Y, et al. Research on New Spinning Process based on the Principle ofContinuous Multi-point Forming[C]//The9thInternational Conference on Technology of Plasticity,Gyeongju, Korea,2008:2360-2365.
    [143]胡志清,李明哲,刘家安.三维曲面卷板柔性辊设计与成形工艺分析[J].农业机械学报,2010,41(4):213-216.
    [144] Hu Z Q, Li M Z, Cai Z Y, et al. Continuous flexible forming of three-dimensional surface parts usingbendable rollers[J]. Materials Science and Engineering:A,2009,499(1):234-237.
    [145]胡志清.柔性卷板成形方法、设备及成形实验研究[D].长春:吉林大学材料科学与工程学院,2008.
    [146]龚学鹏,李明哲,胡志清.使用可弯曲辊的三维曲面卷板成形过程数值模拟[J].吉林大学学报(工学版),2008,38(6):1310-1314.
    [147]龚学鹏,李明哲,胡志清.三维曲面柔性卷板成形技术及其数值模拟[J].北京科技大学学报,2008,30(11):1296-1300.
    [148]蔡中义,刘林,王少辉,等.连续柔性成形过程控制及CAD软件开发[J].中国机械工程,2011,22(8):943-947.
    [149] Cai ZY, LanYW, Li M Z. Analytical analysis of three-roll bending of thin-plate[J].AdvancedMaterials Research,2011,308-310:937-942.
    [150] Cai ZY, Sui Z, Cai FX, et al. Continuous flexible roll forming for three-dimensional surface part andthe forming process control[J]. International Journal of Advanced Manufacturing Technology,2013,66:393-400.
    [151] Sui Z, Cai Z Y, Lan YW, et al. Simulation and software design of continuous flexible roll bendingprocess for three dimensional surface parts[J]. Materials&Design,2014,54:498-506.
    [152] Cai ZY, Sui Z, Cai F X, et al. Continuous flexible roll forming for three-dimensional surface part andthe forming process control. International Journal ofAdvanced Manufacturing Technology,2013,66(1-4):393-400.
    [153]隋洲,蔡中义,兰英武,等.连续柔性成形三维曲面件的形状控制模型[J].吉林大学学报(工学版),2013(5):1302-1306.
    [154]隋洲,蔡中义,李明哲.连续柔性成形纵向与横向曲率的相互影响[J].塑性工程学报,2013,20(1):117-120.
    [155]李明哲,蔡中义,李任君,等.基于弯曲辊轧制的曲面零件连续成形方法[J].机械工程学报,2012,48(14):44-49.
    [156] Li R J, Li M Z, Qiu N J. Development of flexible rolling device for3D plate[C].Applied Mechanicsand Materials,2013,271-272:852-857.
    [157]薛鹏飞,三维曲面柔性轧制成形方法及其数值模拟研究[D].长春:吉林大学,2012.
    [158] Wang D M, Li M Z, Cai ZY. Continuous-forming method for three-dimensional surface partscombining rolling process with multipoint-forming technology[J]. International Journal ofAdvancedManufacturing Technology,2013, DOI:10.1007/s00170-014-5660-7.
    [159]蔡中义,李明哲.曲面零件连续辊压成形原理及理论分析[J].中国科学:技术科学,2013,3:283-290.
    [160] Cai ZY, Li M Z. Principle and theoretical analysis of continuous roll forming for three-dimensionalsurface parts[J]. SCIENCE CHINA: Technological Sciences,2013,3:283-290.
    [161]李任君,李明哲,薛鹏飞,等.板材曲面柔性轧制方法[J].吉林大学学报(工学版),2013,43(6):1529-1535.
    [162] Li RJ, Li M Z, Qiu N J, et al. Surface flexible rolling for three-dimensional sheet metal parts[J]. Journalof Materials Processing Technology,2014,214(2):380-389.
    [163] Li R J, Li M Z, Cai ZY. Forming stability analysis of surface flexible rolling[J].Advanced MaterialsResearch,2013,798-799:267-271.
    [164] Qiu N J, Li M Z, Li R J, et al. ShapeAnalysis of Three-Dimensional Curve Surface for Flexible RollingMetal Plate[J].Advanced Materials Research,2014,834:820-824.
    [165]蔡中义,李明哲.三维曲面连续辊压成形的力学机制及弯曲变形的计算[J].机械工程学报,2013,49(2):35-41.
    [166]王蜜,蔡中义,李明哲,等.三维曲面件辊压成形弯曲变形的计算及数值模拟[J].吉林大学学报(工学版),2014,2(44):404-408.
    [167]李英,刘建雄,柯晓涛.轧制变形抗力数学模型的发展与研究动态[J].钢铁研究,2009(6):59-62.
    [168]闫洪,周天瑞.塑性成形原理[M].北京:清华大学出版社,2006.
    [169]李明哲,刘志卫,韩奇钢,等.用于板材三维曲面成形的曲面轧制设备.中国,发明专利,ZL201120461304.X [P],2011.
    [170]邢伟荣.卷板机的现状与发展[J].锻压装备与制造技术,2010,2:10-16.
    [171]王鹏飞,张殿华,刘佳伟,等.冷轧板形测量值计算模型的研究与应用[J].机械工程学报,2011,47(4):58-65.
    [172]董永刚,张文志,宋剑锋.钢轨万能轧制过程金属延伸规律的理论与试验研究[J].机械工程学报,2010,46(6):87-92.
    [173]孔昭文,杨海云.金属压力加工算图集[M].北京:冶金工业出版社,1985.
    [174]鞍山钢铁大学轧钢教研室.根据爱克隆德公式计算轧制压力的诺模图[J].鞍钢技术,1973(1):58-62.
    [175]鲁士恒,曹广珍,冯春玲,等.钢丝软轴结构特性及生产技术要求[J].金属制品,2013,39(4):14-18.
    [176]姚文斌,何天淳.钢丝软轴抗扭刚度的计算及测量[J].2000,22:38-41.
    [177]张广军.视觉测量[M].北京:科学出版社,2008.
    [178] Huo T U, Nakamachi E.3-D dynamic explicit finite element simulation of sheet forming[J].AdvancedTechnology of Plasticity,1993,3:1828-1833.
    [179] Nakamachi E, Huo T. Dynamic-explicit type elastic plastic finite element simulation of sheet metalforming-hemispherical punch drauing[J]. International Journal of Computer Aided Engineering andSoftware,1996(13):327-338.
    [180] Surana K S. Lumped mass matrices with non-zero inertia for general shell and axisymmetric shellelements[J]. International Journal for Numerical Methods in Engineering,1978,12(11):1635-1650.
    [181]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [182]孟凡中.弹塑性有限变形理论和有限元方法[M].北京:清华大学出版社,1985.
    [183] Benson D J, Hallquist J O. Asingle surface contact algorithm for the post-buckling analysis of shellstructures[J]. Computer Methods inApplied Mechanics and Engineering,1990,78(2):141-163.
    [184] Wang D M, Li M Z, Cai ZY. Research on forming precision of flexible rolling method forthree-dimensional surface parts through simulation[J]. International Journal ofAdvancedManufacturing Technology,2013, DOI:10.1007/s00170-013-5581-x.
    [185] Hodge P G. Interaction curves for shear and bending of plastic beams[J]. Journal of Applied Mechanics,1957,24(3):453-456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700