荔枝果肉多酚的分离鉴定及其调节脂质代谢作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荔枝(Litchi chinensis Sonn.)是热带亚热带地区重要的代表性水果。我国荔枝种植面积和产量均居世界第一。由于荔枝采收期集中,且不耐储藏,精深加工成为推动荔枝产业健康、可持续发展的主要出路。作为岭南地区的代表性珍稀果品,荔枝自古被认为具有一定的滋补功效。探明其健康效应的物质基础和作用机理对于指引荔枝的精深加工方向有重要意义。虽然已经有研究从现代药理学角度报道了荔枝果肉的抗氧化、抗辐射和保护肝脏等功效,然而上述各项研究尚未涉及其活性物质基础。项目组及国内外同类研究结果表明荔枝果肉富含酚类物质,具有明显的抗氧化活性,但对果肉中各种单体酚类物质的活性差异还缺乏认识。大量研究表明多种不同来源的酚类物质对改善机体血脂代谢有明显作用。荔枝果肉多酚作为亚热带地区居民重要的膳食多酚来源对于脂质代谢的影响尚未见研究报道。为此,本研究在确定荔枝果肉多酚最佳提取条件的基础上,探讨其对高脂血症小鼠脂质代谢的调节作用,通过分析摄入荔枝果肉多酚对血脂代谢相关microRNA及其下游靶基因表达的影响,探明其调节脂代谢分子机制;进而在体外活性跟踪下鉴定出荔枝果肉主活性单体组分。研究结果对促进荔枝消费、指导荔枝功能食品精深加工、推动荔枝产业可持续发展具有重要意义。
     1.不同提取方法对荔枝果肉游离酚和结合酚及其抗氧化活性的影响:分别用不同极性5种溶剂提取荔枝果肉游离酚,采用酸水解法和碱水解法提取结合酚,采用氧自由基吸收能力分析(ORAC)法和细胞抗氧化分析(CAA)法测定其游离酚和结合酚的抗氧化活性。结果表明,荔枝果肉丙酮提取物游离酚含量最高。该方法提取后的果肉残渣分别采用酸水解法和碱水解法提取结合酚发现前者的提取效率是后者的2倍。不同溶剂提取的荔枝果肉游离酚中丙酮提取物的ORAC抗氧化活性最高。但丙酮与甲醇提取物的CAA抗氧化活性相当,高于乙醇和乙酸乙酯提取物,水提物CAA值最低。酸水解法得到的结合酚ORAC值和CAA值分别是碱法的2.6和1.9倍。上述结果表明丙酮水溶剂体系适于荔枝果肉游离酚提取,酸水解法较碱水解法适于提取荔枝果肉结合酚提取。
     2.荔枝果肉多酚大孔树脂分离工艺优化:比较11种不同极性大孔树脂对荔枝果肉酚类提取物中总酚和总黄酮的静态吸附和解吸性能,优化其最佳大孔树脂动态吸附和解吸工艺参数;通过HPLC方法对所得组分酚类物质种类及其含量变化进行分析。HPD-826大孔树脂分离纯化荔枝果肉总酚和总黄酮效果最好,其吸附和解吸工艺参数为:荔枝果肉酚类提取物上样浓度0.8mg/mL,上样速度3.0BV/h,95%乙醇溶液作为洗脱剂,洗脱流速3.0BV/h。经HPLC分析和鉴定,HPD-826分离纯化荔枝果肉酚类不会造成单体酚组成变化和明显损失;荔枝果肉酚类物质主要由3,4-二羟基苯甲酸、儿茶素、香草酸、咖啡酸、丁香酸、表儿茶素、高儿茶酚、阿魏酸和芦丁等9种单体组成,其中含量最高的依次是高儿茶酚、芦丁和表儿茶素,三者合计占到总量的94.37%。
     3.荔枝果肉多酚对高脂膳食小鼠的脂质代谢调控作用及其机制:以C57BL/6J雄性小鼠为研究对象,动物分为对照组,高脂模型组和荔枝多酚组。荔枝多酚组摄入高脂膳食的同时通过灌胃摄入剂量为500mg/kg.d的荔枝果肉多酚大孔树脂纯化提取物。10w后结束实验,酶法分析各组动物血清和肝脏中脂代谢相关指标,采用实时定量PCR分析荔枝果肉多酚对高脂膳食小鼠肝脏miR-33、miR-122和miR-370及其靶基因ABCA1、Fas和Cpt1等mRNA水平,并通过Western blotting分析ABCA1、Fas和Cpt1a等蛋白的表达情况。结果表明,荔枝多酚组较高脂组小鼠血清总甘油三酯和总胆固醇含量降低,高密度脂蛋白含量增加;摄入荔枝果肉多酚可以明显减轻高脂膳食诱导的肝脏脂肪变性;与高脂膳食模型组比较荔枝果肉多酚可降低小鼠肝脏miR-33和miR-122表达水平,下调其靶基因Fas的表达水平,上调ABCA1和Cptla的表达。提示荔枝果肉多酚通过调节miR-33和miR-122及其下游相关基因的表达水平,促进肝脏胆固醇外运和高密度胆固醇形成,同时降低脂肪酸合成并加速其氧化利用,从而发挥调节血脂的作用。
     4.荔枝果肉多酚的的结构鉴定及其细胞抗氧化活性:为进一步探明荔枝果肉主要活性酚类物质单体组成,本研究采用聚酰胺树脂对上述经HPD-826型大孔树脂分离的荔枝多酚提取物进行进一步纯化,并采用CAA和ORAC活性跟踪评价不同级分抗氧化活性,以分离出其主要抗氧化级分。对抗氧化活性高的级分经制备型反相液相色谱纯化获得3个单体组分,经ESI-MS、1H-NMR、13C-NMR和HMBC谱分别鉴定为槲皮素-3-O-素芸香糖-7-O-a-L-鼠李糖苷、芦丁和表儿茶素。此3种黄酮类化合物的含量依次为17.25mg/100g FW、3.58mg/100g FW和2.31mg/100g FW。HPLC鉴定的荔枝果肉中含量最高的高儿茶酚经波谱确证为槲皮素-3-O-芸香糖-7-O-a-L-鼠李糖苷。其显示出较好的CAA活性,与广泛报道的木屐草素相当,较桑色素和二氢杨梅素高。上述结果表明槲皮素-3-O-芸香糖-7-O-a-L-鼠李糖苷是荔枝果肉中含量最高,抗氧化活性最强的单体酚类成分。因此,该化合物可能是荔枝果肉发挥抗氧化及脂代谢调控等作用的主活性酚类单体。
     本研究的主要创新点:①建立了荔枝荔枝果肉中游离酚和结合酚的提取分离纯化方法,首次从荔枝中分离鉴定出酚类物质槲皮素-3-O-芸香糖-7-O-α-L-鼠李糖苷,并确证其是荔枝果肉多酚抗氧化作用的主活性组分。②发现并确证荔枝果肉多酚降低高脂血症小鼠的血脂水平并改善其血脂代谢作用,首次从其调节miR-33、miR-122和miR-370及其靶基因ABCAl、Fas、Cpt1a等mRNA阳蛋白表达水平变化的角度,明确了荔枝酚类物质调节脂代谢的分子机制。
     本研究鉴定的荔枝果肉酚类物质为揭示其健康效应提供了物质基础;从植物多酚调节miRNA及其靶基因mRNA表达水平变化的角度阐释荔枝果肉多酚调节血脂的生物活性,为其它果蔬的生物活性作用与分子机制研究提供了新方法和新思路。
Litchi (Litchi chinensis Sonn.) is an important tropical to subtropical fruit. The litchi
     acreage and production of China rank first in the world. Since centralized harvest period
     and intolerant storage of litchi, deep processing for promoting healthy and sustainable
     development of litchi industry is very important. Ancient records litchi has a tonic effect.
     To investgate the health effects material basis and bioactivity mechanism of litchi is
     critical important to guide deep processing of litchi industry. Modern pharmacological
     studies confirmed that litchi fruit has anti-oxidant anti-radioactive and hepatoprotective
     functions. However, little is known on its bioactive substances. Our lab and abroad
     research showed similar results that litchi pulp is rich in polyphenols and has significant
     antioxidant activity. But still lack of awareness of the antioxidant activity of different
     phenolics from litchi pulp. Modern Nutrition found that polyphenols regulate the miRNA
     expression of lipid metabolism. As an important source of dietary polyphenols for
     subtropical area residents the effects of litchi pulp polyphenols on lipid metabolism has
     not been reported. Therefore, the present study was to investigate the regulation lipid
     molecular metabolism of litchi pulp phenolics in hyperlipidemic mice from the expression
     levels of miRNA after determine the optimum extraction conditions for litchi pulp
     polyphenols, to elucidate the major bioactive structure substances of phenolic compounds.
     The results have important implications for the promotion of litchi consumption,
     functional food deep processing and litchi industry sustainable development.1. Comparison of phenolic profiles extraction efficiency and cellular antioxidant
     activities of litchi pulp extracts from different solvents Five different solvent mixtures were used to extract free phenolics from litchi pulp.
     Alkaline and acid hydrolysis were tested to hydrolysis bound phenolics from litchi pulp
     residue. The antioxidant activities of litchi pulp extracts were evaluated using the oxygen
     radical absorbance capacity (ORAC) and cellular antioxidant activity (CAA) assays.
     Aqueous acetone extraction of litchi free phenolics exhibited the highest free phenolics
     content. The acid hydrolysis bound phenolics content of litchi pulp was2.0times higher than those obtained by alkaline hydrolysis. Aqueous acetone extraction exhibited the highest ORAC value. But for CAA, aqueous acetone extraction represented the same CAA value as aqueous methanol extraction. The bound phenolics obtained by acid hydrolysis exhibited2.6times ORAC and1.9times CAA values relative to that obtained by alkaline hydrolysis. Aqueous acetone solvent suitable for free phenolics extraction of litchi pulp, and acid hydrolysis exhibited better extraction efficency for its bound phenolics.
     2. Separation and purification of phenolic profiles in litchi pulp by macroporous resin
     The static adsorption and desorption performance of eleven different polarities macroporous resins to litchi pulp total phenolics and total flavonoids were compared to select suitable resin for purification of phenolic compounds. The dynamic adsorption and desorption process parameters of macroporous resin of HPD-826were optimized. The phenolic compounds types and contents of litchi pulp were analyzed by HPLC. The results showed that HPD-826macroporous resin exhibited the best capability of adsorption and desorption of total phenolics and total flavonoids in litchi pulp. The optimal separating process parameters were as follows:the concentration of litchi pulp extract and the sampling rate were0.8mg/mL and3.0BV/h, respectively, and the elution concentration and flow velocity were95%ethanol and3.OB V/h, respectively. The contents of phenolic compounds of litchi pulp were deduced a little, but the phenolic profiles of litchi pulp were not changed after adsorption and desorption by HPD-826macroporous resin. Nine phenolic compounds,3,4dihydroxybenzoic acid, catechin, vanillic acid, caffeic acid, syringic acid, epicatechin,4-methylcatechol, ferulic acid and rutin, were preliminary identified by HPLC. The major phenolic profiles were4-methylcatechol, rutin and epicatechin. The percentage contribution of the three compounds to the total phenolic content was94.37%. In conclusion, HPD-826macroporous resin could be applied to purify total phenolics and total flavonoids in litchi pulp.
     3. Molecular mechanism of litchi pulp polyphenols hypolipidemic effect
     C57BL/6J male mice were divided into control group, high fat diet group and litchi pulp polyphenol group. Litchi pulp polyphenol group intake of high fat diet while intake by gavage a dose of500mg/kg?d of litchi pulp polyphenols separation and purification by macroporous resin. Ten weeks later, the levels of serum and liver lipid metabolism related indicators were analyzed by enzymatic assays. miRNA and mRNA were analyze using real-time quantitative PCR, and proteins were studied by Western blotting. Litchi pulp polyphenols represses miR-33and miR-122in the liver mice models that were induced by a high fat diet or a high fat diet plus dietary polyphenol extracts. Litchi pulp polyphenols promotes the expression of Abcal, miR-33target gene, and represses the expression of miR-122inderect target gene Fas. Besides, LPP improves fatty acid oxidation by enhance the expression of Cptla. These results show that LPP enhance the liver cholesterol efflux and improve HDL formation and reduce fatty acid synthesis and raise fatty acid oxidation. Therefore, the new molecular mechanism of LPP exert hypolipidemic effects in the liver could be considered the effects of LPP on the suppression of miR-33and miR-122.
     4. Structural elucidation and cellular antioxidant activity evaluation of major antioxidant phenolics in litchi pulp
     In the present study, the major contributors to the antioxidant activity of fresh litchi pulp were identified and their cellular antioxidant activities were investigated. Aqueous acetone extracts of litchi pulp were fractionated on polyamide resin, and those fractions with the largest antioxidant and radical scavenging activities were selected using CAA and ORAC assays. Three compounds that were major contributors to the antioxidant activity in these fractions were obtained by reverse-phase preparative HPLC and identified as quercetin3-O-rutinoside-7-O-a-L-rhamnosidase (quercetin3-rut-7-rha), quercetin3-O-rutinoside (rutin) and (-)-epicatechin using NMR spectroscopy, HMBC, and ESI-MS spectrometry. The concentration of these three compounds were17.25,3.58and2.31mg per100g of litchi pulp fresh weight. The highest content of litchi fruit4-methylcatechol identified by HPLC was confirmed as quercetin3-rut-7-rha by spectroscopic. These results suggest that the highest content and strongest antioxidant activity component of litchi pulp was quercetin3-rut-7-rha. Thus, this compound of litchi pulp may exert the effects of antioxidant and regulation of lipid metabolism. This is the first report of the identification and cellular antioxidant activity of quercetin3-rut-7-rha from litchi pulp.
     The highlights of the present study could be summarized as following two points. Firstly, extraction and purification methods of free and bound phenolics of litchi pulp were established. The phenolic compounds quercetin-3-O-rutinose-7-O-a-L-rhamnoside was fistly isolated and identified from litchi pulp, and confirmed its as the major antioxidant component which could provide the material foundation to reveal the health effects of litchi. Secondly, Discovered and confirmed polyphenols of litchi pulp exert hypolipidemic effects and improve lipid metabolism. For the first time clear molecular mechanisms of litchi phenolics regulating lipid metabolism from the expression of miR-33, miR-122and miR-370and its target gene ABCA1, Fas, Cptla and protein.
     The topic of the present study elucidated the structural of major antioxidant phenolics in litchi pulp which could provides a scientific basis to reveal the health. protective effect of polyphenols structure-activity relationships.This study investgated the effects of plant polyphenol on the expression of miRNA and its target genes mRNA of lipid metabolism. This could provide new methods and new ideas to explore the molecular mechanisms of other fruits and vegetables biological activity.
引文
[1]陈燕和陈羽白.荔枝的微波干燥特性及其对品质的影响研究.农业工程学报,2004,20(4):192-194
    [2]胡志群,王惠聪和胡桂兵.高效液相色谱测定荔枝果肉中的糖, 酸和维生素C.果树学报,2006,22(5):582-585
    [3]王先,杨坤,王兆守,何宁,王远鹏,孙道华和李清彪.微波辅助萃取-大孔树脂分离纯化芳樟叶黄酮.农业工程学报,2009,(25):138-141
    [4]王雅,樊明涛,赵萍,曾贤菲和李占娟.大孔树脂对沙枣多酚的动态吸附解析性能研究.西北农林科技大学学报:自然科学版,2010,38(12):215-220
    [5]吴彩娥,方升佐,冯宗帅,杨万霞,李婷婷和贾韶千.青钱柳叶总黄酮大孔树脂纯化工艺.农业机械学报,2009,40(6):133-137
    [6]杨性民,刘青梅,高海月,应敏和杨留明.茶多酚中EGCG分离纯化工艺优化.中国食品学报,2006,6(5):77-80
    [7]叶延琼, 章家恩, 吕建秋, 蒋艳萍和李逸勉.广东省荔枝产业发展现状与对策分析.中国农学通报,2011,27(3):481-487
    [8]于智峰,王敏和张家峰.大孔树脂精制苦荞总黄酮工艺条件的优化研究.农业工学报,23(4):253-257
    [9]余华荣,周灿芳,万忠,谭俊和陈厚彬.2011年广东荔枝产业发展现状分析.广东农业科学,2012,39(4):16-17
    [10]余恺,陈文文,胡卓炎,余小林,陈昌实和黄智洵.荔枝罐头微波杀菌的温度及其贮藏期质构和颜色的变化.中国食品学报,2008,8(3):94-101
    [1l]张海晖,段玉清,李金凤,马海乐,邵婷婷和徐菲菲.板栗壳中原花青素大孔吸附树脂分离纯化工艺优化.农业机械学报,2011,42(5):156-159
    [12]郑亚杰, 张长弓和李晓斌.大孔吸附树脂分离纯化山楂总黄酮的研究.华中科技大学学报:医学版,2004,33(2):136-138
    [13]Aaby, K., E. Hvattum and G. Skrede. Analysis of flavonoids and other phenolic compounds using high-performance liquid chromatography with coulometric array detection: relationship to antioxidant activity. Journal of agricultural and food chemistry, 2004, 52(15):4595-4603
    [14]Ahn, J., H. Lee, C. H. Jung and T. Ha. Lycopene inhibits hepatic steatosis via microRNA - 21 - induced downregulation of fatty acid - binding protein 7 in mice fed a high - fat diet. Molecular nutrition & food research, 2012, 56(11):1665-1674
    [15]Ali, F., A. Ismail and S. Kersten. Molecular mechanisms underlying the potential antiobesity - related diseases effect of cocoa polyphenols. Molecular nutrition & food research,2014,58(1):33-48
    [16]Alvarez-Diaz, S., N. Valle, G. Ferrer-Mayorga, L. Lombardia, M. Herrera, O. Dominguez, M. F. Segura, F. Bonilla, E. Hernando and A. Mufloz. MicroRNA-22 is induced by vitamin D and contributes to its antiproliferative, antimigratory and gene regulatory effects in colon cancer cells. Human molecular genetics, 2012, 21(10): 2157-2165
    [17]Ambros, V. The functions of animal microRNAs. Nature,2004,431(7006): 350-355
    [18]An, I.-S., S. An, S. Park, S. N. Lee and S. Bae. Involvement of microRNAs in epigallocatechin gallate-mediated UVB protection in human dermal fibroblasts. Oncology reports, 2013, 29(1):253-259
    [19]Anand, P., C. Sundaram, S. Jhurani, A. B. Kunnumakkara and B. B. Aggarwal. Curcumin and cancer: an "old-age" disease with an "age-old" solution. Cancer letters, 2008,267(1):133-164
    [20]Anhe, F. F., Y. Desjardins, G. Pilon, S. Dudonnd, M. I. Genovese, F. M. Lajolo and A. Marette. Polyphenols and type 2 diabetes: A prospective review. PharmaNutrition, 2013,1(4):105-114
    [21]Arola-Arnal, A. and C. Blade. Proanthocyanidins modulate microRNA expression in human HepG2 cells. PloS one, 2011,6(10):e25982
    [22]Arranz, S., F. Saura-Calixto, S. Shaha and P. A. Kroon. High contents of nonextractable polyphenols in fruits suggest that polyphenol contents of plant foods have been underestimated. Journal of agricultural and food chemistry, 2009, 57(16): 7298-7303
    [23]Arranz, S., J. M. Silvan and F. Saura - Calixto. Nonextractable polyphenols, usually ignored, are the major part of dietary polyphenols: A study on the Spanish diet. Molecular nutrition & food research, 2010, 54(11):1646-1658
    [24]Arts, I. C. W. and P. C. H. Hollman. Polyphenols and disease risk in epidemiologic studies. American Journal of Clinical Nutrition, 2005,81(1):317S-325S
    [25]Assini, J. M., E. E. Mulvihill and M. W. Huff. Citrus flavonoids and lipid metabolism. Current opinion in lipidology, 2013,24(1):34-40
    [26]Bae, S., E.-M. Lee, H. Cha, K. Kim, Y. Yoon, H. Lee, J. Kim, Y.-J. Kim, H. Lee, H.-K. Jeung, Y. Min and S. An. Resveratrol alters microRNA expression profiles in A549 human non-small cell lung cancer cells. 2011, 32(3):243-249
    [27]Bajerska, J., M. Wozniewicz, J. Jeszka, S. Drzymala-Czyz and J. Walkowiak. Green tea aqueous extract reduces visceral fat and decreases protein availability in rats fed with a high-fat diet. Nutrition Research, 2011, 31(2): 157-164
    [28]Bansode, R. R., P. Randolph, M. Ahmedna, S. Hurley, T. Hanner, S. A. S. Baxter, T. A. Johnston, M. Su, B. M. Holmes and J. Yu. Bioavailability of polyphenols from peanut skin extract associated with plasma lipid lowering function. Food chemistry, 2014, 148:24-29
    [29]Bartel, D. P. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2):281-297
    [30]Baselga-Escudero, L., A. Arola-Arnal, A. Pascual-Serrano, A. Ribas-Latre, E. Casanova, M.-J. Salvado, L. Arola and C. Blade. Chronic administration of proanthocyanidins or docosahexaenoic acid reversess the increase of miR-33a and miR-122 in dyslipidemic obese rats. PloS one, 2013, 8(7): e69817
    [31]Baselga - Escudero, L., C. Blade, A. Ribas - Latre, E. Casanova, M. J. Salvado, L. Arola and A. Arola - Arnal. Grape seed proanthocyanidins repress the hepatic lipid regulators miR - 33 and miR - 122 in rats. Molecular nutrition & food research, 2012, 56(11):1636-1646
    [32]Bhoopat, L., S. Srichairatanakool, D. Kanjanapothi, T. Taesotikul, H. Thananchai and T. Bhoopat. Hepatoprotective effects of lychee (Litchi chinensis Sonn.): A combination of antioxidant and anti-apoptotic activities. Journal of Ethnopharmacology, 2011,136(1):55-66
    [33]Blade, C., L. Arola and M. J. Salvado. Hypolipidemic effects of proanthocyanidins and their underlying biochemical and molecular mechanisms. Molecular nutrition & food research,2010,54(1):37-59
    [34]Boesch-Saadatmandi, C., A. E. Wagner, S. Wolfrram and G. Rimbach. Effect of quercetin on inflammatory gene expression in mice liver in vivo - role of redox factor 1, miRNA-122 and miRNA-125b. Pharmacological Research, 2012, 65(5): 523-530
    [35]Bonoli, M., V. Verardo, E. Marconi and M. F. Caboni. Antioxidant phenols in barley (Hordeum vulgare L.) flour: comparative spectrophotometric study among extraction methods of free and bound phenolic compounds. Journal of agricultural and food chemistry, 2004, 52(16): 5195-5200
    [36]Bouaziz, M., R. J. Grayer, M. S. J. Simmonds, M. Damak and S. Sayadi. Identification and Antioxidant Potential of Flavonoids and Low Molecular Weight Phenols in Olive Cultivar Chemlali Growing in Tunisia. Journal of Agricultural and Food Chemistry, 2004, 53(2): 236-241
    [37]Brantner, A. H. and Z. Males. Quality assessment of Paliurus spina-christi extracts. Journal of ethnopharmacology, 1999, 66(2): 175-179
    [38]Bravo, L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition reviews, 1998, 56(11):317-333
    [39]Bushati, N. and S. M. Cohen. microRNA functions. Annu. Rev. Cell Dev. Biol.,2007, 23:175-205
    [40]Carthew, R. W. and E. J. Sontheimer. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009,136(4): 642-655
    [41]Chang, J., E. Nicolas, D. Marks, C. Sander, A. Lerro, M. A. Buendia, C. Xu, W. S. Mason, T. Moloshok and R. Bort. Research Paper miR-122, a Mammalian Liver-Specific microRNA, is Processed from mRNA and May Downregulate the High Affinity Cationic Amino Acid Transporter CAT-1. RNA Biol, 2004, 1:106-113
    [42]Chen, J., H. Lin and M. Hu. Absorption and metabolism of genistein and its five isoflavone analogs in the human intestinal Caco-2 model. Cancer chemotherapy and pharmacology, 2005, 55(2): 159-169
    [43]Chen, Y. C., J. T. Lin, S. C. Liu, P. S. Lu and D. J. Yang. Composition of Flavonoids and Phenolic Acids in Lychee (Litchi Chinensis Sonn.) Flower Extracts and Their Antioxidant Capacities Estimated with Human LDL, Erythrocyte, and Blood Models. Journal of Food Science,2011,76(5):C724-C728
    [44]Cuevas Montilla, E., S. Hillebrand, A. Antezana and P. Winterhalter. Soluble and bound phenolic compounds in different Bolivian purple corn (Zea mays L.) cultivars. Journal of agricultural and food chemistry, 2011,59(13): 7068-7074
    [45]Dahmke, I. N., C. Backes, J. Rudzitis-Auth, M. W. Laschke, P. Leidinger, M. D. Menger, E. Meese and U. Mahlknecht. Curcumin Intake Affects miRNA Signature in Murine Melanoma with mmu-miR-205-5p Most Significantly Altered. PloS one, 2013,8(12): e81122
    [46]Dávalos, A., L. Goedeke, P. Smibert, C. M. Ramirez, N. P. Warrier, U. Andreo, D. Cirera-Salinas, K. Rayner, U. Suresh and J. C. Pastor-Pareja. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proceedings of the National Academy of Sciences, 2011,108(22):9232-9237
    [47]Dewanto, V., X. Wu, K. K. Adorn and R. H. Liu. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of agricultural and Food Chemistry, 2002, 50(10): 3010-3014
    [48]Dong, H. Q., L. Y. Cheng, J. H. Tan, K. W. Zheng and Y. M. Jiang. Effects of chitosan coating on quality and shelf life of peeled litchi fruit. Journal of Food Engineering, 2004,64(3):355-358
    [49]Duan, X. W., G F. Wu and Y. M. Jiang. Evaluation of the antioxidant properties of litchi fruit phenolics in relation to pericarp browning prevention. Molecules, 2007b, 12(4): 759-771
    [50]Duan, X. W., Y. M. Jiang, X. G Su, Z. Q. Zhang and J. Shi. Antioxidant properties of anthocyanins extracted from litchi (Litchi chinenesis Sonn.) fruit pericarp tissues in relation to their role in the pericarp browning. Food Chemistry, 2007, 101(4): 1365-1371
    [51]El Gharras, H. Polyphenols: food sources, properties and applications - a review. International Journal of Food Science & Technology, 2009, 44(12):2512-2518
    [52]Elmen, J., M. Lindow, S. Schutz, M. Lawrence, A. Petri, S. Obad, M. Lindholm, M. Hedtjarn, H. F. Hansen and U. Berger. LNA-mediated microRNA silencing in non-human primates. Nature, 2008, 452(7189): 896-899
    [53]Esau, C., S. Davis, S. F. Murray, X. X. Yu, S. K. Pandey, M. Pear, L. Watts, S. L. Booten, M. Graham, R. McKay, A. Subramaniam, S. Propp, B. A. Lollo, S. Freier, C. F. Bennett, S. Bhanot and B. P. Monia. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metabolism, 2006, 3(2):87-98
    [54]Fan, P., H. Lou, W. Yu, D. Ren, B. Ma and M. Ji. Novel flavanol derivatives from grape seeds. Tetrahedron letters,2004,45(15):3163-3166
    [55]Forman, J. J. and H. A. Coller. The code within the code: microRNAs target coding regions. Cell Cycle, 2010, 9(8):1533-1541
    [56]Fu, B., H. Li, X. Wang, F. S. C. Lee and S. Cui. Isolation and Identification of Flavonoids in Licorice and a Study of Their Inhibitory Effects on Tyrosinase. Journal of Agricultural and Food Chemistry, 2005, 53(19):7408-7414
    [57]Fujii, H., H. Nishioka, K. Wakame, B. A. Magnuson and A. Roberts. Acute, subchronic and genotoxicity studies conducted with Oligonol, an oligomerized polyphenol formulated from lychee and green tea extracts. Food and Chemical Toxicology, 2008, 46(12):3553-3562
    [58]Gao, M., W. Huang and C.-Z. Liu. Separation of scutellarin from crude extracts of Erigeron breviscapus (vant.) Hand. Mazz. by macroporous resins. Journal of Chromatography B, 2007, 858(1-2):22-26
    [59]Gharras, H. E. Polyphenols: food sources, properties and applications - a review. International Journal of Food Science & Technology, 2009,44(12):2512-2518
    [60]Ghasemzadeh, A., H. Z. Jaafar and A. Rahmat. Effects of solvent type on phenolics and flavonoids content and antioxidant activities in two varieties of young ginger (Zingiber officinale Roscoe) extracts. J Med Plant Res, 2011,5:1147-1154
    [61]Gonzalez, S., A. Cuervo and C. Lasheras. Polyphenol Intake in Elderly People Is Associated with Lipid Oxidative Damage. Journal of the American College of Nutrition, 2013,32(6):384-390
    [62]Gorinstein, S., E. Bartnikowska, G Kulasek, M. Zemser and S. Trakhtenberg. Dietary persimmon improves lipid metabolism in rats fed diets containing cholesterol. The Journal of nutrition, 1998, 128(11):2023-2027
    [63]Hanaoka, Y., T. Ohi, S. Furukawa, Y. Furukawa, K. Hayashi and S. Matsukura. Effect of 4-methylcatechol on sciatic nerve growth factor level and motor nerve conduction velocity in experimental diabetic neuropathic process in rats. Experimental Neurology, 1992, 115(2):292-296
    [64]Hartzfeld, P. W., R. Forkner, M. D. Hunter and A. E. Hagerman. Determination of Hydrolyzable Tannins (Gallotannins and Ellagitannins) after Reaction with Potassium Iodate. Journal of Agricultural and Food Chemistry, 2002, 50: 1785-1790
    [65]Hasler, A., O. Sticher and B. Meier. Identification and determination of the flavonoids from Ginkgo biloba by high-performance liquid chromatography. Journal of Chromatography A, 1992,605(1):41-48
    [66]Hasumura, T., Y. Shimada, J. Kuroyanagi, Y. Nishimura, S. Meguro, Y. Takema and T. Tanaka. Green tea extract suppresses adiposity and affects the expression of lipid metabolism genes in diet-induced obese zebrafish. Nutr Metab (Lond), 2012, 9:73
    [67]Hokkanen, J., S. Mattila, L. Jaakola, A. M. Pirttila and A. Tolonen. Identification of phenolic compounds from lingonberry (Vaccinium vitis-idaea L.), Bilberry (Vaccinium myrtillus L.) and Hybrid Bilberry (Vaccinium x intermedium Ruthe L.) leaves. Journal of agricultural and food chemistry, 2009, 57(20):9437-9447
    [68]Huang, J., Y. Zhang, Y. Zhou, Z. Zhang, Z. Xie, J. Zhang and X. Wan. Green Tea Polyphenols Alleviate Obesity in Broiler Chickens through the Regulation of Lipid-Metabolism-Related Genes and Transcription Factor Expression. Journal of agricultural and food chemistry, 2013,61(36):8565-8572
    [69]Hwang, Y. P., J. H. Choi, E. H. Han, H. G. Kim, J.-H. Wee, K. O. Jung, K. H. Jung, K.-i. Kwon, T. C. Jeong and Y. C. Chung. Purple sweet potato anthocyanins attenuate hepatic lipid accumulation through activating adenosine monophosphate-activated protein kinase in human HepG2 cells and obese mice. Nutrition Research, 2011, 31(12):896-906
    [70]Ignat, I., I. Volf and V. I. Popa. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chemistry, 2011, 126(4): 1821-1835
    [71]Iliopoulos, D., K. Drosatos, Y. Hiyama, I. J. Goldberg and V. I. Zannis. MicroRNA-370 controls the expression of microRNA-122 and Cptlalpha and affects lipid metabolism. J Lipid Res, 2010, 51(6):1513-1523
    [72]Jaganath, I. B., I. B. Jaganath, W. Mullen, C. A. Edwards and A. Crozier. The relative contribution of the small and large intestine to the absorption and metabolism of rutin in man. Free radical research,2006,40(10):1035-1046
    [73]Jaroslawska, J., J. Juskiewicz, M. Wroblewska, A. Jurgonski, B. Krol and Z. Zdunczyk. Polyphenol-rich strawberry pomace reduces serum and liver lipids and alters gastrointestinal metabolite formation in fructose-fed rats. The Journal of nutrition, 2011, 141(10): 1777-1783
    [74]Jiang, Y. M., J. R. Li and W. B. Jiang. Effects of chitosan coating on shelf life of cold-stored litchi fruit at ambient temperature. Lwt-Food Science and Technology, 2005,38(7): 757-761
    [75]Jiang, Y. M., X. W. Duan, D. Joyce, Z. Q. Zhang and J. R. Li. Advances in understanding of enzymatic browning in harvested litchi fruit. Food Chemistry, 2004, 88(3):443-446
    [76]Jiang, Y. M., Y. Wang, L. Song, H. Liu, A. Lichter, O. Kerdchoechuen, D. C. Joyce and J. Shi. Postharvest characteristics and handling of litchi fruit-an overview. Australian Journal of Experimental Agriculture, 2006, 46(12): 1541-1556
    [77]Joven, J., E. Espinel, A. Rull, G Aragones, E. Rodriguez-Gallego, J. Camps, V. Micol, M. Herranz-L6pez, J. A. Menendez and I. Borras. Plant-derived polyphenols regulate expression of miRNA paralogs miR-103/107 and miR-122 and prevent diet-induced fatty liver disease in hyperlipidemic mice. Biochimica et Biophysica Acta (BBA)-General Subjects, 2012, 1820(7):894-899
    [78]Julkunen-Tiitto, R. Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. Journal of agricultural and food chemistry, 1985, 33(2):213-217
    [79]Jung, C. H., I. Cho, J. Ahn, T. I. Jeon and T. Y. Ha. Quercetin Reduces High - Fat Diet - Induced Fat Accumulation in the Liver by Regulating Lipid Metabolism Genes. Phytotherapy Research, 2013, 27(1):139-143
    [80]Kajdzanoska, M., J. Petreska and M. Stefova. Comparison of Different Extraction Solvent Mixtures for Characterization of Phenolic Compounds in Strawberries. Journal of agricultural and food chemistry, 2011, 59:5272-5278
    [81]Kalgaonkar, S., H. Nishioka, H. R. Gross, H. Fujii, C. L. Keen and R. M. Hackman. Bioactivity of a Flavanol-rich Lychee Fruit Extract in Adipocytes and Its Effects on Oxidant Defense and Indices of Metabolic Syndrome in Animal Models. Phytotherapy Research, 2010, 24(8):1223-1228
    [82]Kamada, C., E. L. da Silva, M. Ohnishi-Kameyama, J.-H. Moon and J. Terao. Attenuation of lipid peroxidation and hyperlipidemia by quercetin glucoside in the aorta of high cholesterol-fed rabbit. Free Radical Research, 2005,39(2):185-194
    [83]Kawakami, Y., W. Tsurugasaki, Y. Yoshida, Y. Igarashi, S. Nakamura and K. Osada. Regulative Actions of Dietary Soy Isoflavone on Biological Antioxidative System and Lipid Metabolism in Rats. Journal of Agricultural and Food Chemistry, 2004, 52(6):1764-1768
    [84]Khan, I. U., M. N. Asghar, S. Iqbal and T. H. Bokhari. Radical scavenging and antioxidant potential of aqueous and organic extracts of aerial parts of Litchi chinensis Sonn. Asian Journal of Chemistry, 2009, 21(7):5073-5084
    [85]Khan, I. U., M. N. Asghar, S. Iqbal, T. H. Bokhari and Z. U. D. Khan. Radical Scavenging and Antioxidant Potential of Aqueous and Organic Extracts of Aerial Parts of Litchi chinensis Sonn. Asian Journal of Chemistry, 2009, 21(7): 5073-5084
    [86]Khan, I. U., M. N. Asghar, S. Iqbal, T. H. Bokhari and Z. U. D. Khan. Radical Scavenging and Antioxidant Potential of Aqueous and Organic Extracts of Aerial Parts of Litchi chinensis Sonn. Asian Journal of Chemistry, 2009, 21(7): 5073-5084
    [87]Kim, B., C. S. Ku, T. X. Pham, Y. Park, D. A. Martin, L. Xie, R. Taheri, J. Lee and B. W. Bolling. Aronia melanocarpa (chokeberry) polyphenol-rich extract improves antioxidant function and reduces total plasma cholesterol in apolipoprotein E knockout mice. Nutrition Research, 2013a, 33(5):406-413
    [88]Kim, H. K., T.-S. Jeong, M.-K. Lee, Y. B. Park and M.-S. Choi. Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol fed rats. Clinica Chimica Acta, 2003,327(1-2):129-137
    [89]Kim, H.-S., V. Montana, H.-J. Jang, V. Parpura and J.-a. Kim. Epigallocatechin Gallate (EGCG) Stimulates Autophagy in Vascular Endothelial Cells A POTENTIAL ROLE FOR REDUCING LIPID ACCUMULATION. Journal of Biological Chemistry, 2013b, 288(31):22693-22705
    [90]Kim, J., H. Yoon, C. M. Ramirez, S.-M. Lee, H.-S. Hoe, C. Fernandez-Hernando and J. Kim. miR-106b impairs cholesterol efflux and increases Aβ levels by repressing ABCA1 expression. Experimental neurology, 2012, 235(2): 476-483
    [91]Kobori, M., S. Masumoto, Y. Akimoto and H. Oike. Chronic dietary intake of quercetin alleviates hepatic fat accumulation associated with consumption of a Western-style diet in C57/BL6J mice. Molecular nutrition & food research, 2011, 55(4):530-540
    [92]Koshy, A. S. and N. R. Vijayalakshmi. Impact of certain flavonoids on lipid profiles—potential action of Garcinia cambogia flavonoids. Phytotherapy Research, 2001,15(5):395-400
    [93]Kumazaki, M., S. Noguchi, Y. Yasui, J. Iwasaki, H. Shinohara, N. Yamada and Y. Akao. Anti-cancer effects of naturally occurring compounds through modulation of signal transduction and miRNA expression in human colon cancer cells. The Journal of nutritional biochemistry, 2013, 24(11):1849-1858
    [94]Lagos-Quintana, M., R. Rauhut, A. Yalcin, J. Meyer, W. Lendeckel and T. Tuschl. Identification of tissue-specific microRNAs from mouse. Current Biology, 2002, 12(9):735-739
    [95]Lagos-Quintana, M., R. Rauhut, A. Yalcin, J. Meyer, W. Lendeckel and T. Tuschl. Identification of tissue-specific microRNAs from mouse. Current Biology, 2002, 12(9):735-739
    [96]Lancon, A., J. Kaminski, E. Tili, J.-J. Michaille and N. Latruffe. Control of MicroRNA expression as a new way for Resveratrol to deliver its beneficial effects. Journal of Agricultural and Food Chemistry, 2012, 60(36): 8783-8789
    [97]Le Marchand, L. Cancer preventive effects of flavonoids—a review. Biomedicine & pharmacotherapy, 2002, 56(6):296-301
    [98]Le Roux, E., T. Doco, P. Sarni-Manchado, Y. Lozano and V. Cheynier. A-type proanthocyanidins from pericarp of Litchi chinensis. Phytochemistry, 1998,48(7): 1251-1258
    [99]Le Roux, E., T. Doco, P. Sarni-Manchado, Y. Lozano and V. Cheynier. A-type proanthocyanidins from pericarp of Litchi chinensis. Phytochemistry, 1998,48(7): 1251-1258
    [100]Lecour, S. and K. Lamont. Natural polyphenols and cardioprotection. Mini reviews in medicinal chemistry, 2011,11(14):1191-1199
    [101]Lee, J.-S., S.-M. Jeon, E.-M. Park, T.-L. Huh, O.-S. Kwon, M.-K. Lee and M.-S. Choi. Cinnamate supplementation enhances hepatic lipid metabolism and antioxidant defense systems in high cholesterol-fed rats. Journal of medicinal food, 2003,6(3): 183-191
    [102]Lee, J.-S., S.-M. Jeon, E.-M. Park, T.-L. Huh, O.-S. Kwon, M.-K. Lee and M.-S. Choi. Cinnamate supplementation enhances hepatic lipid metabolism and antioxidant defense systems in high cholesterol-fed rats. Journal of medicinal food, 2003,6(3): 183-191
    [103]Letenneur, L., C. Proust-Lima, A. Le Gouge, J.-F. Dartigues and P. Barberger-Gateau. Flavonoid intake and cognitive decline over a 10-year period. American journal of epidemiology, 2007, 165(12): 1364-1371
    [104]Li, J. R. and Y. M. Jiang. Litchi flavonoids: Isolation, identification and biological activity. Molecules, 2007, 12(4):745-758
    [105]Li, S. Y., J. Xiao, L. Chen, C. L. Hu, P. Chen, B. J. Xie and Z. D. Sun. Identification of A-series oligomeric procyanidins from pericarp of Litchi chinensis by FT-ICR-MS and LC-MS. Food Chemistry, 2012, 135(1):31-38
    [106]Link, A., F. Balaguer and A. Goel. Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochemical pharmacology, 2010, 80(12):1771-1792
    [107]Liu, C. W., D. J. Yang, Y. Y. Chang, C. L. Hsu, J. K. Tseng, M. H. Chang, M. L. Wang and Y. C. Chen. Polyphenol-rich longan (Dimocarpus longan Lour.)-flower-water-extract attenuates nonalcoholic fatty liver via decreasing lipid peroxidation and downregulating matrix metalloproteinases-2 and -9. Food Research International,2012,45(1):444-449
    [108]Liu, L., B. J. Xie, S. Q. Cao, E. N. Yang, X. Y. Xu and S. S. Guo. A-type procyanidins from Litchi chinensis pericarp with antioxidant activity. Food Chemistry, 2007, 105(4): 1446-1451
    [109]Liu, R. H. Potential synergy of phytochemicals in cancer prevention: mechanism of action. The Journal of nutrition,2004,134(12): 3479S-3485S
    [110]Liu, S. C., J. T. Lin, C. K. Wang, H. Y. Chen and D. J. Yang. Antioxidant properties of various solvent extracts from lychee (Litchi chinenesis Sonn.) flowers. Food Chemistry, 2009, 114(2): 577-581
    [111]Liu, S.-C., J.-T. Lin, C.-K. Wang, H.-Y. Chen and D.-J. Yang. Antioxidant properties of various solvent extracts from lychee. Food Chemistry, 2009, 114:577-581
    [112]Liyana-Pathirana, C. M. and F. Shahidi. Importance of insoluble-bound phenolics to antioxidant properties of wheat. Journal of agricultural and food chemistry, 2006, 54(4):1256-1264
    [113]Lu, J., G. Getz, E. A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-Cordero, B. L. Ebert, R. H. Mak and A. A. Ferrando. MicroRNA expression profiles classify human cancers. nature, 2005,435(7043):834-838
    [114]Luximon-Ramma, A., T. Bahorun and A. Crozier. Antioxidant actions and phenolic and vitamin C contents of common Mauritian exotic fruits. Journal of the Science of Food and Agriculture, 2003,83(5):496-502
    [115]Lynn, F. C. Meta-regulation: microRNA regulation of glucose and lipid metabolism. Trends in Endocrinology & Metabolism, 2009, 20(9):452-459
    [116]Lytle, J. R., T. A. Yario and J. A. Steitz. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5'UTR as in the 3'UTR. Proceedings of the National Academy of Sciences, 2007, 104(23):9667-9672
    [117]Ma, C. Y, G. J. Tao, T. Jian, Z. X. Lou, H. X. Wang, X. H. Gu, L. M. Hu and M. L. Yin. Preparative separation and purification of rosavin in Rhodiola rosea by macroporous adsorption resins. Separation and Purification Technology, 2009, 69(1): 22-28
    [118]Madhujith, T. and F. Shahidi. Antioxidant potential of barley as affected by alkaline hydrolysis and release of insoluble-bound phenolics. Food Chemistry, 2009, 117(4): 615-620
    [119]Mahattanatawee, K., J. A. Manthey, G. Luzio, S. T. Talcott, K. Goodner and E. A. Baldwin. Total antioxidant activity and fiber content of select Florida-grown tropical fruits. Journal of Agricultural and Food Chemistry, 2006, 54(19):7355-7363
    [120]Mahattanatawee, K., P. R. Perez-Cacho, T. Davenport and R. Rouseff. Comparison of three lychee cultivar odor profiles using gas chromatography-olfactometry and gas chromatography-sulfur detection. Journal of Agricultural and Food Chemistry, 2007, 55(5):1939-1944
    [121]Manach, C., A. Scalbert, C. Morand, C. Remesy and L. Jimenez. Polyphenols: food sources and bioavailability. The American journal of clinical nutrition, 2004, 79(5): 727-747
    [122]Mannaerts, G. P., P. P. Van Veldhoven and M. Casteels. Peroxisomal lipid degradation via β-and a-oxidation in mammals. Cell biochemistry and biophysics, 2000, 32(1-3): 73-87
    [123]Marquart, T. J., R. M. Allen, D. S. Ory and A. Baldan. miR-33 links SREBP-2 induction to repression of sterol transporters. Proceedings of the National Academy of Sciences, 2010, 107(27): 12228-12232
    [124]Matsumoto, N., K. Okushio and Y. Hara. Effect of black tea polyphenols on plasma lipids in cholesterol-fed rats. Journal of nutritional science and vitaminology, 1998, 44(2):337-342
    [125]McCullough, M. L., J. J. Peterson, R. Patel, P. F. Jacques, R. Shah and J. T. Dwyer. Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. The American journal of clinical nutrition, 2012, 95(2): 454-464
    [126]Milenkovic, D., B. Jude and C. Morand. miRNA as molecular target of polyphenols underlying their biological effects. Free Radical Biology and Medicine, 2013,64: 40-51
    [127]Milenkovic, D., C. Deval, E. Gouranton, J.-F. Landrier, A. Scalbert, C. Morand and A. Mazur. Modulation of miRNA expression by dietary polyphenols in apoE deficient mice:a new mechanism of the action of polyphenols. PLoS One, 2012, 7(1): e29837
    [128]Mink, P. J., C. G Scrafford, L. M. Barraj, L. Harnack, C.-P. Hong, J. A. Nettleton and D. R. Jacobs. Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. The American journal of clinical nutrition, 2007, 85(3):895-909
    [129]Mitic, M. N., M. V. Obradovic, D. A. Kostic, R. J. Micic and D. D. Paunovic. Phenolic profile and antioxidant capacities of dried red currant from Serbia, extracted with different solvent. Food Science and Biotechnology, 2011,20(6):1625-1631
    [130]Morton, L. W., R. A.-A. Caccetta, I. B. Puddey and K. D. Croft. Chemistry And Biological Effects Of Dietary Phenolic Compounds: Relevance To Cardiovascular Disease. Clinical and Experimental Pharmacology and Physiology, 2000, 27(3): 152-159
    [131]Mosaddegh, M., M. Khoshnood, M. Kamalinejad and E. Alizadeh. Study on the Effect of Paliurus spina-christi on Cholesterol, Triglyceride and HDL Levels in Diabetic Male Rats Fed a High Cholesterol Diet. Iranian Journal of Pharmaceutical Research, 2010,3(1):51-54
    [132]Mukai, Y., Y. Sun and S. Sato. Azuki bean polyphenols intake during lactation upregulate AMPK in male rat offspring exposed to fetal malnutrition. Nutrition, 2013, 29(1):291-297
    [133]Murase, T., K. Misawa, Y Minegishi, M. Aoki, H. Ominami, Y Suzuki, Y Shibuya and T. Hase. Coffee polyphenols suppress diet-induced body fat accumulation by downregulating SREBP-lc and related molecules in C57BL/6J mice. American Journal of Physiology-Endocrinology And Metabolism, 2011,300(1):E122-E133
    [134]Naczk, M. and F. Shahidi. The effect of methanol-ammonia-water treatment on the content of phenolic acids of canola. Food Chemistry, 1989, 31(159-164)
    [135]Nagendra Prasad, K., B. Yang, S. Yang, Y Chen, M. Zhao, M. Ashraf and Y. Jiang. Identification of phenolic compounds and appraisal of antioxidant and antityrosinase activities from litchi (Litchi sinensis Sonn.) seeds. Food Chemistry, 2009, 116(1): 1-7
    [136]Najafi-Shoushtari, S. H., F. Kristo, Y Li, T. Shioda, D. E. Cohen, R. E. Gerszten and A. M. Naar. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science, 2010,328(5985):1566-1569
    [137]Narayana, K. R., M. S. Reddy, M. Chaluvadi and D. Krishna. Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian Journal of pharmacology, 2001,33(1):2-16
    [138]Nijveldt, R. J., E. Van Nood, D. E. Van Hoorn, P. G. Boelens, K. Van Norren and P. A. Van Leeuwen. Flavonoids: a review of probable mechanisms of action and potential applications. The American journal of clinical nutrition, 2001,74(4):418-425
    [139]Nishihira, J., M. Sato-Ueshima, K. Kitadate, K. Wakame and H. Fujii. Amelioration of abdominal obesity by low-molecular-weight polyphenol (Oligonol) from lychee. Journal of Functional Foods,2009,1(4):341-348
    [140]Nishizawa, M., T. Hara, T. Miura, S. Fujita, E. Yoshigai, H. Ue, Y. Hayashi, A. H. Kwon, T. Okumura and T. Isaka. Supplementation with a Flavanol-rich Lychee Fruit Extract Influences the Inflammatory Status of Young Athletes. Phytotherapy Research, 2011,25(10):1486-1493
    [141]Noh, J. S., H. Y. Kim, C. H. Park, H. Fujii and T. Yokozawa. Hypolipidaemic and antioxidative effects of oligonol, a low-molecular-weight polyphenol derived from lychee fruit, on renal damage in type 2 diabetic mice. British Journal of Nutrition, 2010,104(8):1120-1128
    [142]Noratto, G. D., Y. Kim, S. T. Talcott and S. U. Mertens-Talcott. Flavonol-rich fractions of yaupon holly leaves (Ilex vomitoria, Aquifoliaceae) induce microRNA-146a and have anti-inflammatory and chemopreventive effects in intestinal myofribroblast CCD-18Co cells. Fitoterapia, 2011,82(4):557-569
    [143]Norman, K. L. and P. Sarnow. Modulation of hepatitis C virus RNA abundance and the isoprenoid biosynthesis pathway by microRNA miR-122 involves distinct mechanisms. Journal of virology, 2010,84(1):666-670
    [144]Ohno, M., C. Shibata, T. Kishikawa, T. Yoshikawa, A. Takata, K. Kojima, M. Akanuma, Y. J. Kang, H. Yoshida and M. Otsuka. The flavonoid apigenin improves glucose tolerance through inhibition of microRNA maturation in miRNA103 transgenic mice. Scientific reports, 2013,3:2553; DOI:2510.1038/srep02553
    [145]?rom, U. A., F. C. Nielsen and A. H. Lund. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Molecular cell, 2008,30(4): 460-471
    [146]Parasramka, M. A., E. Ho, D. E. Williams and R. H. Dashwood. MicroRNAs, diet, and cancer: new mechanistic insights on the epigenetic actions of phytochemicals. Molecular carcinogenesis, 2012, 51(3):213-230
    [147]Park, H.-J., U. J. Jung, M.-K. Lee, S.-J. Cho, H.-K. Jung, J. H. Hong, Y. B. Park, S. R. Kim, S. Shim, J. Jung and M.-S. Choi. Modulation of lipid metabolism by polyphenol-rich grape skin extract improves liver steatosis and adiposity in high fat fed mice. Molecular Nutrition & Food Research, 2013,57(2):360-364
    [148]Perez-Jimenez, J. and J. L. Torres. Analysis of Nonextractable Phenolic Compounds in Foods:The Current State of the Art. Journal of Agricultural and Food Chemistry, 2011,59: 12713-12724
    [149]Pizzolatti, M. G., A. F. Venson, A. S. Junior, E. de FA. Smania and R. Braz-Filho. Two epimeric flavalignans from Trichilia catigua (Meliaceae) with antimicrobial activity. Zeitschrift fur Naturforschung. C, Journal of biosciences, 2002, 57(5/6): 483-488
    [150]Poy, M., M. Spranger and M. Stoffel. microRNAs and the regulation of glucose and lipid metabolism. Diabetes, Obesity and Metabolism, 2007, 9(s2): 67-73
    [151]Prasad, K. N., B. Yang, M. M. Zhao, N. Ruenroengklin and Y. M. Jiang. Application of ultrasonication or high-pressure extraction of flavonoids from litchi fruit pericarp. Journal of Food Process Engineering,2 009b, 32(6):828-843
    [152]Prasad, K. N., B. Yang, S. Y. Yang, Y. L. Chen, M. M. Zhao, M. Ashraf and Y. M. Jiang. Identification of phenolic compounds and appraisal of antioxidant and antityrosinase activities from litchi (Litchi sinensis Sonn.) seeds. Food Chemistry, 2009a, 116(1):1-7
    [153]Prasad, K. N., B. Yang, S. Y. Yang, Y. L. Chen, M. M. Zhao, M. Ashraf and Y. M. Jiang. Identification of phenolic compounds and appraisal of antioxidant and antityrosinase activities from litchi (Litchi sinensis Sonn.) seeds. Food Chemistry, 2009,116(1):1-7
    [154]Prasad, N. K., B. Yang, M. M. Zhao, B. S. Wang, F. Chen and Y. M. Jiang. Effects of high-pressure treatment on the extraction yield, phenolic content and antioxidant activity of litchi (Litchi chinensis Sonn.) fruit pericarp. International Journal of Food Science and Technology, 2009c, 44(5): 960-966
    [155]Qin, B., M. M. Polansky, D. Harry and R. A. Anderson. Green tea polyphenols improve cardiac muscle mRNA and protein levels of signal pathways related to insulin and lipid metabolism and inflammation in insulin - resistant rats. Molecular nutrition & food research,2010,54(S1):S14-S23
    [156]Ramirez, C. M., A. Davalos, L. Goedeke, A. G. Salerno, N. Warrier, D. Cirera-Salinas, Y. Suarez and C. Fernandez-Hernando. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arteriosclerosis, thrombosis, and vascular biology, 2011,31(11):2707-2714
    [157]Ramsay, R. R. and R. D. Gandour. Selective modulation of carnitine long-chain acyltransferase activities. Kinetics, inhibitors, and active sites of COT and CPT-Ⅱ. Advances in experimental medicine and biology, 1999, 466:103
    [158]Rayner, K. J., C. C. Esau, F. N. Hussain, A. L. McDaniel, S. M. Marshall, J. M. van Gils, T. D. Ray, F. J. Sheedy, L. Goedeke and X. Liu. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature, 2011,478(7369):404-407
    [159]Rayner, K. J., Y. Suarez, A. Davalos, S. Parathath, M. L. Fitzgerald, N. Tamehiro, E. A. Fisher, K. J. Moore and C. Fernandez-Hernando. MiR-33 contributes to the regulation of cholesterol homeostasis. Science, 2010, 328(5985):1570-1573
    [160]Rayner, K. J., Y. Suarez, A. Davalos, S. Parathath, M. L. Fitzgerald, N. Tamehiro, E. A. Fisher, K. J. Moore and C. Fernandez-Hernando. MiR-33 contributes to the regulation of cholesterol homeostasis. science, 2010, 328(5985):1570-1573
    [161]Ren, S., D. D. Xu, Z. Pan, Y. Gao, Z. G. Jiang and Q. P. Gao. Two flavanone compounds from litchi (Litchi chinensis Sonn.) seeds, one previously unreported, and appraisal of their alpha-glucosidase inhibitory activities. Food Chemistry, 2011, 127(4):1760-1763
    [162]Rottiers, V. and A. M. Naar. MicroRNAs in metabolism and metabolic disorders. Nature Reviews Molecular Cell Biology, 2012,13(4):239-250
    [163]Ruenroengklin, N., B. Yang, H. T. Lin, F. Chen and Y. M. Jiang. Degradation of anthocyanin from litchi fruit pericarp by H2O2 and hydroxyl radical. Food Chemistry, 2009,116(4):995-998
    [164]Ruenroengklin, N., J. Zhong, X. W. Duan, B. Yang, J. R. Li and Y. M. Jiang. Effects of various temperatures and pH values on the extraction yield of phenolics from litchi fruit pericarp tissue and the antioxidant activity of the extracted anthocyanins. International Journal of Molecular Sciences,2008,9(7):1333-1341
    [165]Sakurai, T., H. Nishioka, H. Fujii, N. Nakano, T. Kizaki, Z. Radak, T. Izawa, S. Haga and H. Ohno. Antioxidative effects of a new lychee fruit-derived polyphenol mixture, Oligonol, converted into a low-molecular form in adipocytes. Bioscience Biotechnology and Biochemistry, 2008, 72(2): 463-476
    [166]Saxena, S., S. N. Hajare, V. More, S. Kumar, S. Wadhawan, B. B. Mishra, M. N. Parte, S. Gautam and A. Sharma. Antioxidant and radioprotective properties of commercially grown litchi (Litchi chinensis) from India. Food Chemistry, 2011, 126(1):39-45
    [167]Scalbert, A. and G. Williamson. Dietary intake and bioavailability of polyphenols. The Journal of Nutrition, 2000, 130(8):2073S-2085S
    [168]Schiitz, K., D. Kammerer, R. Carle and A. Schieber. Identification and Quantification of Caffeoylquinic Acids and Flavonoids from Artichoke (Cynara scolymus L.) Heads, Juice, and Pomace by HPLC-DAD-ESI/MSn. Journal of Agricultural and Food Chemistry, 2004, 52(13):4090-4096
    [169]Sesink, A. L., I. C. Arts, M. Faassen-Peters and P. C. Hollman. Intestinal uptake of quercetin-3-glucoside in rats involves hydrolysis by lactase phlorizin hydrolase. The Journal of nutrition, 2003,133(3):773-776
    [170]Shukla, Y. and R. Singh. Resveratrol and cellular mechanisms of cancer prevention. Annals of the New York Academy of Sciences, 2011,1215(1):1-8
    [171]Stark, A., J. Brennecke, N. Bushati, R. B. Russell and S. M. Cohen. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3' UTR evolution. Cell, 2005, 123(6):1133-1146
    [172]Su, D., H. Ti, R. Zhang, M. Zhang, Z. Wei, Y. Deng and J. Guo. Structural Elucidation and Cellular Antioxidant Activity Evaluation of Major Antioxidant Phenolics in Lychee Pulp. Food Chemistry, 2014a: doi:10.1016/j.foodchem.2014.1002.1134
    [173]Su, D., R. Zhang, F. Hou, M. Zhang, J. Guo, F. Huang, Y. Deng and Z. Wei. Comparison of the free and bound phenolic profiles and cellular antioxidant activities of litchi pulp extracts from different solvents. BMC complementary and alternative medicine,2014b,14(9):doi:10.1186/1472-6882-1114-1189
    [174]Sun, J., J. Shi, Y. Jiang, S. J. Xue and X. Wei. Identification of two polyphenolic compounds with antioxidant activities in longan pericarp tissues. Journal of agricultural and food chemistry, 2007, 55(14):5864-5868
    [175]Sun, J., Y.F. Chu, X. z. Wu and R. H. Liu. Antioxidant and antiproliferative activities of common fruits. Journal of Agricultural and Food Chemistry, 2002, 50(25): 7449-7454
    [176]Sun, J., Y. F. Chu, X. Z. Wu and R. H. Liu. Antioxidant and Antiproliferative Activities of Common Fruits. Journal of agricultural and food chemistry, 2002, 50: 7449-7454
    [177]Sun, J., Y. M. Jiang, J. Shi, X. Y. Wei, S. J. Xue, J. Y. Shi and C. Yi. Antioxidant activities and contents of polyphenol oxidase substrates from pericarp tissues of litchi fruit. Food Chemistry, 2010,119(2): 753-757
    [178]Sun, J., Y.-F. Chu, X. Wu and R. H. Liu. Antioxidant and antiproliferative activities of common fruits. Journal of Agricultural and Food Chemistry, 2002, 50(25): 7449-7454
    [179]Tammela, P., L. Laitinen, A. Galkin, T. Wennberg, R. Heczko, H. Vuorela, J. P. Slotte and P. Vuorela. Permeability characteristics and membrane affinity of flavonoids and alkyl gallates in Caco-2 cells and in phospholipid vesicles. Archives of biochemistry and biophysics, 2004, 425(2): 193-199
    [180]Tapas, A., D. Sakarkar and R. Kakde. Flavonoids as nutraceuticals: a review. Tropical Journal of Pharmaceutical Research,2008,7(3):1089-1099
    [181]Treutter, D. Significance of flavonoids in plant resistance: a review. Environmental Chemistry Letters, 2006, 4(3):147-157
    [182]van Acker, S. A., M. J. de Groot, D.-J. van den Berg, M. N. Tromp, G. Donne-Op den Kelder, W. J. van der Vijgh and A. Bast. A quantum chemical explanation of the antioxidant activity of flavonoids. Chemical Research in Toxicology, 1996, 9(8): 1305-1312
    [183]Van Gils, C. H., P. H. Peeters, H. B. Bueno-de-Mesquita, H. C. Boshuizen, P. H. Lahmann, F. Clavel-Chapelon, A. Thiebaut, E. Kesse, S. Sieri and D. Palli. Consumption of vegetables and fruits and risk of breast cancer. JAMA: the journal of the American Medical Association, 2005, 293(2):183-193
    [184]Wall, M. M. Ascorbic acid and mineral composition of longan (Dimocarpus longan), lychee (Litchi chinensis) and rambuan (Nephelium lappaceum) cultivars grown in Hawaii. Journal of Food Composition and Analysis, 2006, 19(6-7): 655-663
    [185]Wallace, T. C. Anthocyanins in cardiovascular disease. Advances in Nutrition: An International Review Journal,2011,2(1):1-7
    [186]Wan, C., Y. Yu, S. Zhou, S. Tian and S. Cao. Isolation and identification of phenolic compounds from Gynura divaricata leaves. Pharmacognosy Magazine, 2011,7(26): 101
    [187]Wang, L. J., G. D. Lou, Z. J. Ma and X. M. Liu. Chemical constituents with antioxidant activities from litchi (Litchi chinensis Sonn.) seeds. Food Chemistry, 2011,126(3):1081-1087
    [188]Wang, X. J., S. L. Yuan, J. Wang, P. Lin, G J. Liu, Y. R. Lu, J. Zhang, W. D. Wang and Y. Q. Wei. Anticancer activity of litchi fruit pericarp extract against human breast cancer in vitro and in vivo. Toxicology and Applied Pharmacology, 2006, 215(2): 168-178
    [189]Wang, X., S. Yuan, J. Wang, P. Lin, G Liu, Y. Lu, J. Zhang, W. Wang and Y. Wei. Anticancer activity of litchi fruit pericarp extract against human breast cancer in vitro and in vivo. Toxicology and applied pharmacology, 2006, 215(2): 168-178
    [190]Wedick, N. M., A. Pan, A. Cassidy, E. B. Rimm, L. Sampson, B. Rosner, W. Willett, F. B. Hu, Q. Sun and R. M. van Dam. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. The American journal of clinical nutrition, 2012, 95(4):925-933
    [191]Weidner, S., A. Rybarczyk, M. Karamac, A. Kro1, A. Mostek, J. Grebosz and R. Amarowicz. Differences in the Phenolic Composition and Antioxidant Properties between Vitis coignetiae and Vitis vinifera Seeds Extracts. Molecules, 2013,18(3): 3410-3426
    [192]Wen, X. Y, S. Y. Wu, Z. Q. Li, Z. q. Liu, J. J. Zhang, G F. Wang, Z. H. Jiang and S. G. Wu. Ellagitannin (BJA3121), an anti - proliferative natural polyphenol compound, can regulate the expression of MiRNAs in HepG2 cancer cells. Phytotherapy Research, 2009, 23(6): 778-784
    [193]Wilfred, B. R., W.-X. Wang and P. T. Nelson. Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Molecular genetics and metabolism, 2007, 91(3):209-217
    [194]Wolfe, K. L. and R. H. Liu. Cellular Antioxidant Activity (CAA) Assay for Assessing Antioxidants, Foods, and Dietary Supplements. Journal of agricultural and food chemistry, 2007, 55:8896-8907
    [195]Wolfe, K. L. and R. H. Liu. Cellular Antioxidant Activity (CAA) Assay for Assessing Antioxidants, Foods, and Dietary Supplements. Journal of agricultural and food chemistry, 2007, 55:8896-8907
    [196]Wolfe, K. L. and R. H. Liu. Structure-activity relationships of flavonoids in the cellular antioxidant activity assay. Journal of agricultural and food chemistry, 2008, 56(18):8404-8411
    [197]Wolfe, K. L., X. Kang, X. He, M. Dong, Q. Zhang and R. H. Liu. Cellular Antioxidant Activity of Common Fruits. Journal of agricultural and food chemistry, 2008,56:8418-8426
    [198]Wolffram, S., M. Block and P. Ader. Quercetin-3-glucoside is transported by the glucose carrier SGLT1 across the brush border membrane of rat small intestine. The Journal of nutrition,2002,132(4):630-635
    [199]Xu, X. Y, H. H. Xie, J. Hao, Y. M. Jiang and X. Y. Wei. Flavonoid Glycosides from the Seeds of Litchi chinensis. Journal of Agricultural and Food Chemistry, 2011, 59(4): 1205-1209
    [200]Xu, X. Y, H. H. Xie, Y. F. Wang and X. Y Wei. A-Type Proanthocyanidins from Lychee Seeds and Their Antioxidant and Antiviral Activities. Journal of Agricultural and Food Chemistry, 2010, 58(22):11667-11672
    [201]Yang, D. J., Y. Y Chang, C. L. Hsu, C. W. Liu, Y. Wang and Y. C. Chen. Protective effect of a litchi (Litchi chinensis Sonn.)-flower-water-extract on cardiovascular health in a high-fat/cholesterol-dietary hamsters. Food Chemistry, 2010, 119(4): 1457-1464
    [202]Yang, D. J., Y. Z. Chang, Y C. Chen, S. C. Liu, C. H. Hsu and J. T. Lin. Antioxidant effect and active components of litchi (Litchi chinensis Sonn.) flower. Food and Chemical Toxicology, 2012, 50(9): 3056-3061
    [203]Yang, K., Y. S. He, X. Q. Wang, L. Lu, Q. J. Chen, J. Liu, Z. Sun and W. F. Shen. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Letters, 2011, 585(6): 854-860
    [204]Yoshida, K., T. Kondo, M. Ito and T. Kondo. Analysis of polyphenols in water extract of red adzuki bean, Vigna angularis. ITE letters on batteries new technologies and medicine,2005,6(3):226-231
    [205]Zamora-Ros, R., A. Agudo, L. Lujan-Barroso, I. Romieu, P. Ferrari, V. Knaze, H. B. Bueno-de-Mesquita, M. Leenders, R. C. Travis and C. Navarro. Dietary flavonoid and lignan intake and gastric adenocarcinoma risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. The American journal of clinical nutrition, 2012,96(6): 1398-1408
    [206]Zern, T. L. and M. L. Fernandez. Cardioprotective effects of dietary polyphenols. The Journal of nutrition, 2005,135(10):2291-2294
    [207]Zern, T. L., R. J. Wood, C. Greene, K. L. West, Y. Liu, D. Aggarwal, N. S. Shachter and M. L. Fernandez. Grape polyphenols exert a cardioprotective effect in pre-and postmenopausal women by lowering plasma lipids and reducing oxidative stress. The Journal of nutrition, 2005,135(8):1911-1917
    [208]Zhang, R., Q. Zeng, Y. Deng, M. Zhang, Z. Wei, Y. Zhang and X. Tang. Phenolic profiles and antioxidant activity of litchi pulp of different cultivars cultivated in Southern China. Food chemistry, 2013,136(3):1169-1176
    [209]Zhang, Y, S. F. Li, X. W. Wu and X. Zhao. Macroporous Resin Adsorption for Purification of Flavonoids in Houttuynia cordata Thunb. Chinese Journal of Chemical Engineering, 2007, 15(6):872-876
    [210]Zhang, Z. Q., X. Q. Pang, C. Yang, Z. L. Ji and Y. M. Jiang. Purification and structural analysis of anthocyanins from litchi pericarp. Food Chemistry, 2004, 84(4): 601-604
    [211]Zhao, H., J. Dong, J. Lu, J. Chen, Y. Li, L. Shan, Y. Lin, W. Fan and G Gu. Effects of extraction solvent mixtures on antioxidant activity evaluation and their extraction capacity and selectivity for free phenolic compounds in barley (Hordeum vulgare L.). Journal of agricultural and food chemistry, 2006a, 54(19): 7277-7286
    [212]Zhao, M. M., B. Yang, J. S. Wang, B. Z. Li and Y. M. Jiang. Identification of the major flavonoids from pericarp tissues of lychee fruit in relation to their antioxidant activities. Food Chemistry, 2006, 98(3):539-544
    [213]Zhao, M. M., B. Yang, J. S. Wang, Y. Liu, L. M. Yu and Y. M. Jiang. Immunomodulatory and anticancer activities of flavonoids extracted from litchi (Litchi chinensis Sonn.) pericarp. International Immunopharmacology, 2007, 7(2): 162-166
    [214]Zhao, M., B. Yang, J. Wang, B. Li and Y. Jiang. Identification of the major flavonoids from pericarp tissues of lychee fruit in relation to their antioxidant activities. Food Chemistry, 2006, 98(3):539-544
    [215]Zhou, H. C., Y. M. Lin, W. M. Chai, S. D. Wei and M. M. Liao. Characterization of Condensed Tannins from Litchi Seed by Reflectron Modes and Linear Modes of MALDI-TOF MS. Acta Chimica Sinica, 2011a, 69(24):2981-2986
    [216]Zhou, H. C., Y. M. Lin, Y. Y. Li, M. Li, S. D. Wei, W. M. Chai and N. F. Y. Tam. Antioxidant properties of polymeric proanthocyanidins from fruit stones and pericarps of Litchi chinensis Sonn. Food Research International, 2011b, 44(2): 613-620