鸡胚蛋清低丰度蛋白质孵化期间比较蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质组学的研究是集分析化学、分子生物学、生物信息学等相关学科研究领域中的热门、前沿课题。本论文利用目前较为先进的CPLL、蛋白质组学技术,建立了CPLL应用于比较蛋白质组学的研究方法。开展了鸡蛋蛋清中低丰度蛋白质组在孵化过程中的比较蛋白质组学研究。利用肽配体库技术、二维电泳技术、LTQ质谱检测、MALDI-TOF二级质谱检测等技术,考察了鸡蛋蛋清低丰度蛋白质组的变化特征。对鸡胚蛋孵化前期、胚胎快速发育期的蛋清蛋白质组、差异低丰度蛋白质的生物学功能进行了相关研究,主要内容摘要如下:
     利用低丰度蛋白质研究中的最新技术方法,肽配体库技术(Combinatorial peptide ligand libraries, CPLL)研究比较蛋白质组学研究中的适用性,并对该方法适用于蛋清低丰度蛋白质富集过程进行方法优化。通过考察pH7.4和pH8.8, PBS和非PBS缓冲体系、HOS和urea CHAPS不同洗脱顺序下,肽配体库对蛋清低丰度蛋白质丰度均衡化的影响。利用肽配体较高效的富集蛋清低丰度蛋白质的使用条件为非PBS缓冲体系,urea CHAPS直接洗脱。分离溶菌酶条带的条件为:先HOS后urea CHAPS洗脱顺序。利用CPLL-LTQ线性四级杆离子阱检测技术,对5个差异条带进行质谱检测能够检测到47种蛋清蛋白质。该研究突破CPLL目前利用的局限性,有望将低丰度蛋白质种类特征作为鸡蛋品质检测的评价标准之一。利用检测蛋清中特征低丰度蛋白质识别有关蛋品的应用思路。
     利用二维电泳技术,探明蛋清中低丰度蛋白质组二维电泳谱图谱信息数据库。建立了蛋清中低丰度蛋白质组在二维电泳谱图上的分子量、等电点坐标数据库。将蛋清蛋白质pH4-7、0-170KDa二维电泳图谱划分为17个具有代表性的质谱鉴定区。将新鲜蛋清各个区域检测蛋白质,建立数据、蛋清蛋白点坐标数据、各个蛋白点坐标的质谱数据信息,为鸡蛋蛋清蛋白质组的研究提供了数据标准。该数据库为以蛋清蛋白质组学、比较蛋清蛋白质组学研究为基础的蛋白质研究,提供参考基准。
     利用CPLL、二维电泳、基质辅助激光解吸-飞行时间二级质谱(Matrix-assisted laser desorption/ionization-time of flight, MALDI-TOF)研究孵化早期蛋清低丰度蛋白质组变化。考察了受精鸡蛋早期孵化过程,伴随胚胎发育,蛋清蛋白的溶液特征。利用CPLL观察到的蛋清蛋白质组的变化特点。研究发现孵化早期,ovoinhibitor卵抑制剂蛋白前体、鸡簇蛋白的前体、载脂蛋白D前体、和细胞外脂肪酸结合蛋白前体,相对丰度值含量显著增加(P<0.01or p<0.05)。同时,鸡簇蛋白的前体,在两个区域,一个范围为较大的分子量范围,另一个高pH值的范围。此外,卵清蛋白、卵转铁蛋白,位于高pH区域的新坐标。针对这些发现,对这一阶段中低丰度蛋白质的功能进行推测,对这些低丰度蛋白质可能参与的生物反应进行分析。
     基于上述研究,针对胚胎发育过程中蛋清存留的最后一天,即孵化16d进行蛋清蛋白质组学特征研究。扩大二维电泳图的观测范围,研究并分析蛋清蛋白质在被胚胎全部吞食完毕的过程中,蛋白质组经过肽配体富集前后变化。研究发现,胚胎大量吞食蛋白质的过程中,蛋清蛋白质并非简单营养及能量的供给者。随着胚胎的生长,蛋白质含量逐天下降,蛋清蛋白质的种类则逐天增多。相对丰度上升的蛋白点涉及Serpin Family; Clusterin Family; Transferrin Family和bacterial permeability-increasing protein (BPI) family; Lysozyme family5个蛋白质家族。相对丰度值显著性下降的点涉及Serpin Family, Transferrin Family和bacterial permeability-increasing protein (BPI) family3个蛋白质家族:。
     开展了胚胎快速增长阶段,蛋清蛋白质组的变化规律的研究。利用CPLL2-DE、 MALDI-TOF MS/MS技术针对孵化过程中蛋清蛋白质组的变化研究中发现:相对于孵化7d,蛋清蛋白质组中有88个蛋白点经过肽配体库富集后得到检测,并表现出与7d同样处理方式下,相对丰度值显著性增多的变化状态。16个蛋白点只出现在蛋清蛋白质被完全吸收后的最后1d的二维电泳谱图中,且未在其他对照试验组中发现。对三个蛋白质家族:uPAR/Ly-6超家族,组氨酸磷酸酶家族和OLFML3中的5个蛋白质的分析和研究发现,这些蛋白很可能参与胚胎神经系统发育,并发挥其生物学功能。该研究还说明,蛋清蛋白质在保护受精鸡蛋胚胎发育的过程中,不仅为鸡胚个体成熟提供营养,其功能性包括保护胚胎微环境,蛋清蛋白质似乎以系统性统筹调节的方式,稳定鸡蛋内部,使鸡胚个体最大程度实现成活可能性等。
     最后,利用比较二维电泳ImageMaster, V7.0操作环境、NCBI数据库、GO分析、KEGG通路分析数据库,比较孵化过程中各阶段蛋清蛋白质组的变化规律。发生变化蛋清中低丰度蛋白质的分子功能主要分为6种,分布在细胞质13个位置区域内。变化的蛋清蛋白质的功能性覆盖:离子结合蛋白,脂质结合蛋白,酶调节活性蛋白,水解酶活性,作用于糖基键蛋白,磷酸酶活性蛋白,酶结合蛋白。至少11个蛋清低丰度蛋白参与的这23个生物发育过程中,至少有5个低丰度蛋白质参与运输过程。鸡胚发育16d检测到的lysophosphatidic acid phosphatase type6参与核黄素代谢通路Riboflavin metabolism-Gallus gallus (chicken)拟合≥75%。
Study of Proteomics included the collection of Analytical Chemistry, Molecular Biology, Bioinformatics and other related frontier disciplines in the area of research. This work study on the changes of hen egg white proteome during specific biological processes by utilizes classical proteomics research tools. Comparative proteomic investigation of low-abundance proteins from hen egg white was explored during different incubations, using combinatorial peptide ligand libraries, two-dimensional electrophoresis, LTQ mass spectrometry, MALDI-TOF tandem mass spectrometry detection technology. To carry out this work was benefit in deep understanding of proteomic changes in low abundance proteins during chicken embryo development and biological function of low-abundance proteins from chicken egg white.
     The thesis was divided into eight chapters, the main contents of each chapters are summarized as follows:
     Establishment of a high throughput technique platform including combinatorial peptide ligand libraries technology with LTQ identification, found an applicability of the method in experimental basis for comparative proteomics investigations. Low-abundance proteins enrichment process optimized by examining the type of pH buffering system, different order of elution and egg white protein sample with different contents of buffer salt. Higher efficiency of combinatorial peptide ligand libraries in low-abundance proteins were obtained under free pretreated condition. LTQ linear quadrupole ion trap detection technology was performed in discrepancy SDS-PAGE bands identification. Combinatorial peptide ligand libraries technology with LTQ identification was suggested as a breakthrough currently used in limited basic research to better serve "foodomics" research. Feature detection in identifying low-abundance proteins from chicken egg white characterized as an evaluation of egg quality testing standards in applications.
     Applications of comparative proteomics in relative low-abundance proteins from hen egg white under chicken embryonic early development using combinatorial peptide ligand libraries technology, two-dimensional electrophoresis and matrix-assisted laser desorption-time of flight tandem mass spectrometry (Matrix-assisted laser desorption/ionization-time of flight, MALDI-TOF). For early hatching embryo has not yet formed a large number of features with the ability to absorb the egg white protein, egg white proteome changes relatively stable. It was found that relative abundance values of many protein precursor protein were significantly (p<0.01or<0.05) increase during early embryonic development phase. Meanwhile, it was found that some protein precursors were identified as new location coordinates on the two-dimensional electrophoresis maps. Thus, these biological function of low-abundance proteins were discussed and proposed.
     Exploration of low-abundance proteome from fertilized egg white on the last day of residue under chicken embryonic development. Expanding the two-dimensional electrophoresis of the observation area of low-abundance proteins comparing before and after combinatorial peptide ligand libraries treatment. In addition, comparative proteomic analysis of low-abundance egg white proteins during the rapid embryonic growth were curried out. It was found that the proteome of low-abundance proteins in incubation day16were more complexity in compare incubation day7.
     Relative abundance increase of proteins involved in five protein family, they were: Serpin Family; Clusterin Family; Transferrin Family and bacterial permeability-increasing protein (BPI) family; Lysozyme family. Relative abundance values were significantly decreased involved three protein families, they are:Serpin Family, Transferrin Family and bacterial permeability-increasing protein (BPI) family. According to such experiments, proposed and designed Chapter Ⅵ and Chapter Ⅶ of research ideas and content. It was found that these proteins may also play an important biological nervous system during embryonic development learning effect. Therefore, the proteome of low-abundance in hen egg residue egg white was different between early phase of embryonic development and the rapid growth period of embryonic development.
     Comparative proteomic analysis of low-abundance egg white proteins during the rapid embryonic growth period using peptide ligand library technology, two-dimensional electrophoresis, MALDI-TOF mass spectrometry techniques. The protein composition increased and the amount of albumin solids diminished in the residual egg white. There was a significant increase in the relative abundance of88protein spots (P<0.01and<0.05) over16days of incubation, representing11proteins from9protein families were identified. Moreover,16protein spots appear only in the egg white protein is completely absorbed after the last day of the two-dimensional electrophoresis spectra in controlled trials and not found in other groups. Of the three protein families:uPAR/Ly-6super family, histidine phosphatase family and OLFML3family5proteins. In addition, clusterin precursors were observed over a wide range of pH values and tenp protein increased continuously during embryonic development. Several of these dysregulated proteins were confirmed at the transcriptional level.
     Low-abundance proteins from two control groups were compared across different incubators in order to better understand the function of these proteins in egg whites. The relative increase in abundance of these differentially expressed proteins during the rapid embryonic growth period was different compared to store-incubated eggs, suggesting the pivotal role of hen egg white during embryonic development. These findings provide insights into regulating and supporting embryonic development during embryogenesis.
     Regularity analysis on low-abundance proteomic of chicken egg white during the whole process of embryo development based on PDQuest, NCBI data, GO and KEGG. Changes in the molecular function of low-abundance proteins in egg white is mainly divided into six species, while distributed in the cytoplasm13location area. Functional changes in egg white proteins covering:ion-binding protein, a lipid-binding protein, regulating the activity of the enzyme protein, hydrolyze activity, the key role in protein glycosylation, protein phosphatase activity, the enzyme-binding protein. These23process at least11egg whites biological development of low-abundance proteins involved in at least five low-abundance proteins involved in the transport process. Chick embryos detected the first16days of lysophosphatidic acid phosphatase type,,6metabolic pathways involved in riboflavin riboflavin metabolism-Gallus (chicken) fit≥75%. The study found that the combinatorial peptide ligand library technology advantaged in the exploration of low-abundance proteome changes in obvious. However, proteomic information may also missed due to limit of technology.
     Summarize multi-faceted research and explore multiple perspectives of variation of egg white proteome, low-abundance proteome through chicken embryonic development on the day0,3,7,10,14,16d hatching process. In addition, summary of shortage during experiments. Finally, prospects for further research and development of research strategy on chicken egg white, egg white protein and low-abundance proteome.
引文
1.陈季武,郑丽娜,王帮正,李晓涛.泛素化介导的非蛋白质降解功能.Progress in Biochemistry and Biophysics,2012,39:613-621
    2.单媛媛,马美湖.Ovomucin化学特性与功能研究进展.食品科学,2009,30:528-532
    3.樊银珍,俸艳萍,徐双贵,辜丛敬,周学进,李文明,吴俊静,童勤,张淑君.受精蛋和无精蛋,死胚及正常发育胚的种蛋品质差异研究.中国家禽,2008,30:15-19
    4.方军.鸡蛋孵化早期蛋清抗微生物特点及其作用机制.[博士学位论文].武汉:华中农业大学图书馆,2012
    5.古殿超,朱惠玲,刘玉兰,姚文旭,夏强,周世超.鸡胚发育过程中胚胎液中几种游离氨基酸的动态变化.中国畜牧杂志,2012,7:008
    6.李吕木,D. Peebles.孵化期间鸡胚,肝脏,卵黄及蛋白组成的变化及其相关关系.畜牧兽医学报,2005,36:574-577
    7.李晓静,段云霞.代谢工程在核黄素生产上的应用.中国生物工程杂志,2011,31:130-138
    8.刘怡君,马美湖,邱宁.鸡蛋蛋清中的低丰度蛋白质研究进展.中国家禽,2012,34:44-48
    9.吕玲.鸡蛋中重要功能蛋白的研究与应用展望.中国家禽,2011,16:011
    10.牛慧慧,马美湖,杨昆.蛋清肽的抗氧化稳定性与功能特性.食品科学,2011,32:139-143
    11.邱宁,马美湖.鸡蛋蛋白质组学研究现状与展望.中国家禽,2011,33:4-10
    12.任国栋,郭爱玲,耿放,马美湖,黄群,武小芬.二维红外相关光谱研究温度对卵转铁蛋白构象的影响.光谱学与光谱分析,2012,7:016
    13.王丽英,马美湖,蔡朝霞,金永国,黄茜.离子交换色谱法分离纯化鸡卵黄免疫球蛋白.色谱,2012,30:80-85.
    14.杨海明.孵化期间鸡蛋内物质转移及利用的规律性研究[硕士毕业论文].浙江:扬州大学图书馆,2005
    15.杨海明,王志跃,陈五湖,朱金金,徐馨馨.鸡蛋孵化期间钙磷含量的变化.江苏农业科学,2006,3:128-130
    16.杨万根,王璋,徐玉娟,肖更生,马美湖,唐道邦.蛋清利用研究进展.食品科学,2009,30:456-459
    17.易艳萍,曹诚,马清钧.泛素化和磷酸化协同作用调控蛋白质降解.生物技术通讯,2006,17,618-620
    18. Abdallah, F. B., J. M. E. H. Chahine. Transferrins, the mechanism of iron release by ovotransferrin. European Journal of Biochemistry,1999,263:912-920
    19. Adkins, J. N., S. M. Varnum, K. J. Auberry, R. J. Moore, N. H. Angell, R. D. Smith, D. L. Springer, J. G. Pounds. Toward a Human Blood Serum Proteome analysis by multidimensional separation coupled with mass spectrometry. Molecular, Cellular Proteomics,2002,1:947-955
    20. Agrawal, G. K., N. S. Jwa, R. Rakwal. Rice proteomics:ending phase I and the beginning of phase II. Proteomics,2009,9:935-963
    21. Agudo, D., F. Gomez-Esquer, G. Diaz-Gil, F. Martinez-Arribas, J. Delcan, J. Schneider, M. A. Palomar, R. Linares. Proteomic analysis of the Gallus gallus embryo at stage-29 of development. Proteomics,2005,5:4946-4957
    22. Ahmed, N., G. E. Rice. Strategies for revealing lower abundance proteins in two-dimensional protein maps. Journal of Chromatography B,2005,815:39-50
    23. Alabdeh, M., V. Lechevalier, F. Nau, M. Gautier, M.-F. Cochet, F. Gonnet, S. Jan, F. Baron. Role of Incubation Conditions and Protein Fraction on the Antimicrobial Activity of Egg White against Salmonella Enteritidis and Escherichia coli. Journal of Food Protection(?),2011,74:24-31
    24. Anastasi, A., M. Brown, A. Kembhavi, M. Nicklin, C. A. Sayers, D. Sunter, A. Barrett. Cystatin, a protein inhibitor of cysteine proteinases. Improved purification from egg white, characterization, and detection in chicken serum. Biochemical Journal,1983,211:129
    25. Anderson, N. L., N. G. Anderson. The human plasma proteome history, character, and diagnostic prospects. Molecular, Cellular Proteomics,2002,1:845-867
    26. Anderson, N. L., N. G. Anderson, T. W. Pearson, C. H. Borchers, A. G. Paulovich, S. D. Patterson, M. Gillette, R. Aebersold, S. A. Carr. A human proteome detection and quantitation project. Molecular, Cellular Proteomics,2009,8:883-886
    27. Antignac, J.-P., F. Courant, G. Pinel, E. Bichon, F. Monteau, C. Elliott, B. Le Bizec. Mass spectrometry-based metabolomics applied to the chemical safety of food. TrAC Trends in Analytical Chemistry,2011,30:292-301
    28. Bellwied, P., S. Staubach, F. G. Hanisch. Chemical in-gel deglycosylation of O-glycoproteins improves their staining and mass spectrometric identification. Electrophoresis.2013,34:2387-2393
    29. Beranova-Giorgianni, S.. Proteome analysis by two-dimensional gel electrophoresis and mass spectrometry:strengths and limitations. TrAC Trends in Analytical Chemistry,2003,22:273-281
    30. Boguski, M. S., M. W. Mclntosh. Biomedical informatics for proteomics. Nature, 2003,422:233-237
    31. Boschetti, E., L. V. Bindschedler, C. Tang, E. Fasoli, P. G. Righetti. Combinatorial peptide ligand libraries and plant proteomics:A winning strategy at a price. Journal of Chromatography A,2009,1216:1215-1222
    32. Boschetti, E., P. G. Righetti. The ProteoMiner in the proteomic arena:A non-depleting tool for discovering low-abundance species. Journal of Proteomics, 2008,71:255-264.
    33. Egisto Boschetti, Pier Giorgio Righetti. The art of observing rare protein species in proteomes with peptide ligand libraries. Proteomics,2009,9:1492-1510
    34. Bosma, J., J. Wesselingh. pH dependence of ion-exchange equilibrium of proteins. AIChE journal,1998,44:2399-2409
    35. Bourin, M., J. Gautron, M. Berges, S. Attucci, G. Le Blay, V. Labas, Y. Nys, S. Rehault-Godbert. Antimicrobial potential of egg yolk ovoinhibitor, a multidomain kazal-like inhibitor of chicken egg. Journal of agricultural and food chemistry, 2011a,59:12368-12374
    36. Bourin, M., J. Gautron, M. Berges, V. Labas, Y. Nys, S. Rehault-Godbert. Institut Technique de l'Aviculture. Ovoinhibitor:tissular specificity and biological activities. In Actes des 9emes Journees de la Recherche Avicole, Tours, France,29 et 30 mars 2011.,2011b:681-685
    37. Brgles, M, J. Clifton, R. Walsh, F. Huang, M. Rucevic, L. Cao, D. Hixson, E. Muller, D. Josic. Selectivity of monolithic supports under overloading conditions and their use for separation of human plasma and isolation of low abundance proteins. Journal of Chromatography A,2011,1218:2389-2395
    38. Brown, W. R., S. J. Hubbard, C. Tickle, S. A. Wilson. The chicken as a model for large-scale analysis of vertebrate gene function. Nature Reviews Genetics,2003,4: 87-98
    39. Calvete, J. J., E. Fasoli, L. Sanz, E. Boschetti, P. G. Righetti. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches. Journal of Proteome Research,2009,8:3055-3067
    40. Cancedda, F. D., M. Malpeli, C. Gentili, V. Di Marzo, P. Bet, M. Carlevaro, S. Cermelli, R. Cancedda. The developmentally regulated avian Ch21 lipocalin is an extracellular fatty acid-binding protein. Journal of Biological Chemistry,1996,271: 20163-20169
    41. Carey, N.. The mechanism of protein synthesis in the developing chick embryo. The incorporation of free amino acids. Biochemical Journal,1964,91:335
    42. Castagna, A., D. Cecconi, L. Sennels, J. Rappsilber, L. Guerrier, F. Fortis, E. Boschetti, L. Lomas, P. G. Righetti. Exploring the hidden human urinary proteome via ligand library beads. Journal of proteome research,2005,4:1917-1930
    43. Caubet, J. C., R. Bencharitiwong, E. Moshier, J. H. Godbold, H. A. Sampson, A. Nowak-Wegrzyn. Significance of ovomucoid-and ovalbumin-specific IgE/IgG 4 ratios in egg allergy. Journal of Allergy and Clinical Immunology,2012,129: 739-747
    44. Cereda, A., A. V. Kravchuk, A. D'Amato, A. Bachi, P. G. Righetti. Proteomics of wine additives:mining for the invisible via combinatorial peptide ligand libraries. Journal of proteomics,2010,73:1732-1739
    45. Cevallos-Cevallos, J. M., J. I. Reyes-De-Corcuera, E. Etxeberria, M. D. Danyluk, G. E. Rodrick. Metabolomic analysis in food science:a review. Trends in Food Science, Technology,2009,20:557-566
    46. Chen, Y. Y., S. Y. Lin, Y. Y. Yeh, H. H. Hsiao, C. Y. Wu, S. T. Chen, A. H. J. Wang. A modified protein precipitation procedure for efficient removal of albumin from serum. Electrophoresis,2005,26:2117-2127
    47. Chromy, B. A., A. D. Gonzales, J. Perkins, M. W. Choi, M. H. Corzett, B. C. Chang, C. H. Corzett, S. L. McCutchen-Maloney. Proteomic analysis of human serum by two-dimensional differential gel electrophoresis after depletion of high-abundant proteins. Journal of proteome research,2004,3:1120-1127
    48. Cleland, J. L., M. F. Powell, S. J. Shire. The development of stable protein formulations:a close look at protein aggregation, deamidation, and oxidation. Critical reviews in therapeutic drug carrier systems,1992,10:307-377
    49. Cunningham, F.. Changes in egg white during incubation of the fertile egg. Poultry science,1974,53:1561-1565
    50. Cunsolo, V., V. Muccilli, R. Saletti, S. Foti. Applications of mass spectrometry techniques in the investigation of milk proteome. Eur. J. Mass Spectrom,2011,17: 305
    51. D'Alessandro, A., L. Zolla, A. Scaloni. The bovine milk proteome:cherishing, nourishing and fostering molecular complexity. An interactomics and functional overview. Molecular BioSystems,2011,7:579-597
    52. D'Amato, A., A. Bachi, E. Fasoli, E. Boschetti, G. Peltre, H. Senechal, J. P. Sutra, A. Citterio, P. G. Righetti. In-depth exploration of Hevea brasiliensis latex proteome and "hidden allergens" via combinatorial peptide ligand libraries. Journal of proteomics,2010,73,1368-1380
    53. D'Alessandro, A., L. Zolla. We are what we eat:food safety and proteomics. Journal of proteome research,2011,11,26-36
    54. D'Amato, A., A. Bachi, E. Fasoli, E. Boschetti, G. Peltre, H. n. Senechal, P. G. Righetti. In-depth exploration of cow's whey proteome via combinatorial peptide ligand libraries. Journal of proteome research,2009,8:3925-3936
    55. D'Ambrosio, C., S. Arena, A. Scaloni, L. Guerrier, E. Boschetti, M. E. Mendieta, A. Citterio, P. G. Righetti. Exploring the chicken egg white proteome with combinatorial peptide ligand libraries. Journal of Proteome Research,2008,7: 3461-3474
    56. Datta, D., S. Bhattacharjee, A. Nath, R. Das, C. Bhattacharjee, S. Datta. Separation of ovalbumin from chicken egg white using two-stage ultrafiltration technique. Separation and Purification Technology,2009,66:353-361
    57. De Oliveira, J., Z. Uni, P. Ferket. Important metabolic pathways in poultry embryos prior to hatch. World's Poult. Sci. J,2008,64:488-499
    58. de Souza Morita, V., I. C. Boleli, J. A. Oliveira. Relationship Between Incubation Temperature and Egg Size with Heart Hypoplasy in Broiler Chicks at Hatching. International Journal of Poultry Science,2012,11:761-768
    59. Desjardins, P., R. Morais. Sequence and gene organization of the chicken mitochondrial genome:a novel gene order in higher vertebrates. Journal of molecular biology,1990,212:599-634
    60. Deutsch, E. W., J. K. Eng, H. Zhang, N. L. King, A. I. Nesvizhskii, B. Lin, H. Lee, E. C. Yi, R. Ossola, R. Aebersold. Human Plasma Peptide Atlas. Proteomics,2005,5: 3497-3500
    61. Du, Z., X. Zhou, Y. Ling, Z. Zhang, Z. Su. agriGO:a GO analysis toolkit for the agricultural community. Nucleic acids research,2010,38:W64-W70
    62. Faca, V., S. J. Pitteri, L. Newcomb, V. Glukhova, D. Phanstiel, A. Krasnoselsky, Q. Zhang, J. Struthers, H. Wang, J. Eng. Contribution of protein fractionation to depth of analysis of the serum and plasma proteomes. Journal of proteome research,2007, 6:3558-3565
    63. Fang, J., M. Ma, Y. Jin, N. Qiu, G. Ren, X. Huang, C. Wang. Changes in the antimicrobial potential of egg albumen during the early stages of incubation and its impact on the growth and virulence response of Salmonella Enteritidis. Italian Journal of Animal Science,2012a,11:e17
    64. Fang, J., M. Ma, Y. Jin, N. Qiu, C. Wang, G. Ren, X. Huang. Assessment of Salmonella enteritidis Viability in Egg White during Early Incubation Stages by Fluorescent Staining Method. Asian Journal of Animal and Veterinary Advances, 2012b,7:556-567
    65. Fang, J., Ma, M., Jin, Y, Qiu, N., Wang, C., Ren, G., Huang, X.. Assessment of Salmonella enteritidis viability in egg white during early incubation stages by fluorescent staining method. Asian J. Anim. Vet. Adv,2012c,7:556-567
    66. Farinazzo, A., U. Restuccia, A. Bachi, L. Guerrier, F. Fortis, E. Boschetti, E. Fasoli, A. Citterio, P. G. Righetti. Chicken egg yolk cytoplasmic proteome, mined via combinatorial peptide ligand libraries. Journal of Chromatography A,2009,1216: 1241-1252
    67. Fasoli, E., A. D'Amato, A. V. Kravchuk, E. Boschetti, A. Bachi, P. G. Righetti. Popeye strikes again:The deep proteome of spinach leaves. Journal of proteomics, 2011,74:127-136
    68. Fortis, F., L. Guerrier, L. B. Areces, P. Antonioli, T. Hayes, K. Carrick, D. Hammond, E. Boschetti, P. G. Righetti. A new approach for the detection and identification of protein impurities using combinatorial solid phase ligand libraries. Journal of proteome research,2006,5:2577-2585
    69. Gaso-Sokac, D., S. Kovac, D. Josic. Use of Proteomic Methodology in Optimization of Processing and Quality Control of Food of Animal Origin. Food Technology, Biotechnology,2011,49.
    70. Gautron, J., M. T. Hincke, K. Mann, M. Panheleux, M. Bain, M. D. McKee, S. E. Solomon, Y. Nys. Ovocalyxin-32, a Novel Chicken Eggshell Matrix Protein Isolation, Amino Acid Sequencing, Cloning, And Immunocytochemical Localization. Journal of Biological Chemistry,2001,276:39243-39252
    71. Georgiou, H. M., G. E. Rice, M. S. Baker. Proteomic analysis of human plasma: failure of centrifugal ultrafiltration to remove albumin and other high molecular weight proteins. Proteomics,2001,1:1503-1506
    72. Giansanti, P., M. F. Giardi, M. T. Massucci, D. Botti, G. Antonini. Ovotransferrin expression and release by chicken cell lines infected with Mareks disease virus. Biochemistry and cell biology,2007,85:150-155
    73. Gibas, C. J., P. Jambeck, S. Subramaniam. Continuum electrostatic methods applied to pH-dependent properties of antibody-antigen association. Methods,2000,20: 292-309
    74. Goldberg, M. E., R. Rudolph, R. Jaenicke. A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg white lysozyme. Biochemistry,1991,30:2790-2797
    75. Guerin-Dubiard, C., M. Pasco, D. Molle, C. Desert, T. Croguennec, F. Nau Proteomic analysis of hen egg white. Journal of Agricultural and Food Chemistry, 2006,54:3901-3910
    76. Guerrier, L., S. Claverol, L. Finzi, F. Paye, F. Fortis, E. Boschetti, C. Housset Contribution of solid-phase hexapeptide ligand libraries to the repertoire of human bile proteins. Journal of Chromatography A,2007a,1176:192-205
    77. Guerrier, L., S. Claverol, F. Fortis, S. Rinalducci, A. M. Timperio, P. Antonioli, M. Jandrot-Perrus, E. Boschetti, P. G. Righetti. Exploring the platelet proteome via combinatorial, hexapeptide ligand libraries. Journal of proteome research,2007b,6: 4290-4303
    78. Huttenhain, R., S. Surinova, R. Ossola, Z. Sun, D. Campbell, F. Cerciello, R. Schiess, D. Bausch-Fluck, G. Rosenberger, J. Chen. N-glycoprotein srmatlas a resource of mass spectrometric assays for n-glycosites enabling consistent and multiplexed protein quantification for clinical applications. Molecular, Cellular Proteomics, 2013,12:1005-1016
    79. Hamburger, V., H. L. Hamilton. A series of normal stages in the development of the chick embryo. Developmental Dynamics,1992,195:231-272
    80. Hanisch, F.-G. Chemical de-O-glycosylation of glycoproteins for applications in LC-based proteomics. In Gel-Free Proteomics,2011, Springer:323-333
    81. Hartwig, S., A. Czibere, J. Kotzka, W. Paβlack, R. Haas, J. Eckel, S. Lehr Combinatorial hexapeptide ligand libraries.ProteoMinerTM,:An innovative fractionation tool for differential quantitative clinical proteomics. Archives of physiology and biochemistry,2009,115:155-160
    82. Hebrank, J. H. Method and apparatus for determining whether an egg contains a live embryo. EP Patent 2369336.2011.
    83. Hincke, M., J. Gautron, M. Panheleux, J. Garcia-Ruiz, M. McKee, Y. Nys Identification and localization of lysozyme as a component of eggshell membranes and eggshell matrix. Matrix Biology,2000,19:443-453
    84. Hirose, J., Y. Doi, N. Kitabatake, H. Narita. Ovalbumin-related gene Y protein bears carbohydrate chains of the ovomucoid type. Bioscience, biotechnology, and biochemistry,2006,70:144-151
    85. Hughes, J., H. Scott. The change in the concentration of ovoglobulin in egg white during egg formation. Poultry Science,1936,15:349-351
    86. Huopalahti, R. Bioactive egg compounds. Springer Verlag,2007
    87. Ianeselli, L., F. Zhang, M. W. Skoda, R. M. Jacobs, R. A. Martin, S. Callow, S. Prevost, F. Schreiber. Protein- protein interactions in ovalbumin solutions studied by small-angle scattering:effect of ionic strength and the chemical nature of cations. The Journal of Physical Chemistry B,2010,114:3776-3783
    88. Ip, F. C., J. Cheung, N. Y. Ip. The expression profiles of neurotrophins and their receptors in rat and chicken tissues during development. Neuroscience letters,2001, 301:107-110
    89. Jensen, P. H., S. Mysling, P. Hejrup, O. N. Jensen. Glycopeptide Enrichment for MALDI-TOF Mass Spectrometry Analysis by Hydrophilic Interaction Liquid Chromatography Solid Phase Extraction.HILIC SPE,. In Mass Spectrometry of Glycoproteins,2013, Springer:131-144
    90. Jones, S. E., C. Jomary. Clusterin. The international journal of biochemistry, cell biology,2002,34:427-431
    91. Kaji, H., H. Saito, Y. Yamauchi, T. Shinkawa, M. Taoka, J. Hirabayashi, K.-i. Kasai, N. Takahashi, T. Isobe. Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nature biotechnology,2003,21: 667-672
    92. Kanehisa, M., S. Goto. KEGG:kyoto encyclopedia of genes and genomes. Nucleic acids research,2000,28:27-30
    93. Kaufman, D. B., M. E. Hentsch, G. A. Baumbach, J. A. Buettner, C. A. Dadd, P. Y. Huang, D. J. Hammond, R. G. Carbonell. Affinity purification of fibrinogen using a ligand from a peptide library. Biotechnology and bioengineering,2002,77:278-289
    94. Keshishian, H., T. Addona, M. Burgess, E. Kuhn, S. A. Carr. Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Molecular, Cellular Proteomics,2007,6: 2212-2229
    95. Kitabatake, N., A. Ishida, E. Doi. Physicochemical and Functional Properties of Hen Ovalbumin Dephosphorylated by Acid Phosphatase.Food, Nutrition,. Agricultural and biological chemistry,1988,52:967-973
    96. Knubovets, T., J. J. Osterhout, P. J. Connolly, A. M. Klibanov. Structure, thermostability, and conformational flexibility of hen egg-white lysozyme dissolved in glycerol. Proceedings of the National Academy of Sciences,1999,96:1262-1267
    97. Kovacs-Nolan, J., M. Phillips, Y. Mine. Advances in the value of eggs and egg components for human health. Journal of agricultural and food chemistry,2005,53: 8421-8431
    98. Ruckova, S., R. Hynek, M. Kodicek. Identification of proteinaceous binders used in artworks by MALDI-TOF mass spectrometry. Analytical and bioanalytical chemistry, 2007,388:201-206
    99. Kurokawa, H., J. C. Dewan, B. Mikami, J. C. Sacchettini, M. Hirose. Crystal structure of hen apo-ovotransferrin both lobes adopt an open conformation upon loss of iron. Journal of Biological Chemistry,1999,274:28445-28452
    100Xang, V., H. Marjuki, S. L. Krauss, R. J. Webby, R. G. Webster. Different incubation temperatures affect viral polymerase activity and yields of low-pathogenic avian influenza viruses in embryonated chicken eggs. Archives of virology,2011,156: 987-994
    lOl.Lapao, C., L. Gama, M. C. Soares. Effects of broiler breeder age and length of egg storage on albumen characteristics and hatchability. Poultry Science,1999,78: 640-645
    102.Li, J., Y. Dong, X. Lu, L. Wang, W. Peng, X. C. Zhang, Z. Rao. Crystal structures and biochemical studies of human lysophosphatidic acid phosphatase type 6. Protein, cell,2013,1-14
    103.Lippe, G., M. L. Stecchini, L. Conte, E. Maltini, S. Foti, V. Cunsolo. Application of proteomics in food science. Journal of Scientific, Industrial Research,2011,70: 905-908.
    104.Liu, H.-C., J. Hicks. Using proteomics to understand avian systems biology and infectious disease. Poultry science,2007,86:1523-1529
    105.Liu, Y, J. He, C. Li, R. Benitez, S. Fu, J. Marrero, D. M. Lubman. Identification and confirmation of biomarkers using an integrated platform for quantitative analysis of glycoproteins and their glycosylations. Journal of proteome research,2009,9: 798-805
    106.Liu, Y., N. Qiu, M. Ma. Comparative proteomic analysis of hen egg white proteins during early phase of embryonic development by combinatorial peptide ligand library and matrix-assisted laser desorption ionization-time of flight. Poultry Science, 2013,92:1897-1904
    107.Lourens, A., H. Van den Brand, R. Meijerhof, B. Kemp. Effect of eggshell temperature during incubation on embryo development, hatchability, and posthatch development. Poultry Science,2005,84:914-920
    108.Mahon, M G., K. A. Lindstedt, M. Hermann, J. Nimpf, W. J. Schneider. Multiple involvement of clusterin in chicken ovarian follicle development. Journal of Biological Chemistry,1999,274:4036-4044
    109.Mamone, G., G. Picariello, F. Addeo, P. Ferranti. Proteomic analysis in allergy and intolerance to wheat products.2011
    11 O.Mann, I. C.. On the development of the fissural and associated regions in the eye of the chick, with some observations on the mammal. Journal of Anatomy,1921,55: 113.
    111.Mann, K.. Proteomic analysis of the chicken egg vitelline membrane. Proteomics, 2008,8:2322-2332
    112.Mann, K., J. Gautron, Y. Nys, M. D. McKee, T. Bajari, W. J. Schneider, M. T. Hincke. Disulfide-linked heterodimeric clusterin is a component of the chicken eggshell matrix and egg white. Matrix Biology,2003,22:397-407
    113.Mann, K., M. Mann. In-depth analysis of the chicken egg white proteome using an LTQ Orbitrap Velos. Proteome Science,2011,9:7
    114.Marco-Ramell, A., A. Bassols. Enrichment of low-abundance proteins from bovine and porcine serum samples for proteomic studies. Research in veterinary science, 2010,89:340-343
    115.Mechref, Y, M. Madera, M. V. Novotny. Glycoprotein enrichment through lectin affinity techniques. In 2D PAGE:Sample Preparation and Fractionation,2008, Springer:373-396
    116.Meng, R., M. Gormley, V. B. Bhat, A. Rosenberg, A. A. Quong. Low abundance protein enrichment for discovery of candidate plasma protein biomarkers for early detection of breast cancer. Journal of proteomics,2011,75:366-374
    117.Messer, R., H. Schroder, H.-J. Breter, W. Muller. Differential polyadenylation pattern of ovalbumin precursor RNAs during development. Molecular biology reports,1986,11:81-86
    118.Mine, Y.. Egg proteins and peptides in human health-chemistry, bioactivity and production. Current pharmaceutical design,2007,13:875-884
    119.Mine, Y. Egg bioscience and biotechnology. New York:John Wiley & Sons.2008.27
    120.Mine, Y., J. Kovacs-Nolan. Biologically active hen egg components in human health and disease. The Journal of Poultry Science,2004,41:1-29
    121.Mine, Y., Kovacs-Nolan, J.. New insights in biologically active proteins and peptides derived from hen egg. World's Poultry Science Journal,2006,62:87-95
    122.Molla, A., K. Matsumoto, I. Oyamada, T. Katsuki, H. Maeda. Degradation of protease inhibitors, immunoglobulins, and other serum proteins by Serratia protease and its toxicity to fibroblast in culture. Infection and immunity,1986,53:522-529
    123.Mortola, J. P., K. Al Awam. Growth of the chicken embryo:Implications of egg size. Comparative Biochemistry and Physiology-Part A:Molecular, Integrative Physiology,2010,156:373-379
    124.Mouton-Barbosa, E., F. Roux-Dalvai, D. Bouyssie, F. Berger, E. Schmidt, P. G.: Righetti, L. Guerrier, E. Boschetti, O. Burlet-Schiltz, B. Monsarrat. In-depth exploration of cerebrospinal fluid by combining peptide ligand library treatment and label-free protein quantification. Molecular, Cellular Proteomics,2010,9: 1006-1021
    125.Nau, F., C. Guerin-Dubiard, C. Desert, J. Gautron, S. Bouton, J. Gribonval, S. Lagarrigue. Cloning and characterization of HEP21, a new member of the-uPAR/Ly6 protein superfamily predominantly expressed in hen egg white. Poultry science,2003,82:242-250
    126.Ockner, R. K., J. A. Manning. Fatty acid-binding protein in small intestine identification, isolation, and evidence for its role in cellular fatty acid transport. Journal of Clinical Investigation,1974,54:326
    127.Ohi, A., N. Inoue, H. Furuta, M. Sugawara, Y. Ohta. Development of a method to control the water evaporation of hatching eggs during incubation. Poultry science, 2010,89:551-557
    128.Omana, D. A., Y. Liang, N. N. Kav, J. Wu. Proteomic analysis of egg white proteins during storage. Proteomics,2011a,11:144-153
    129.Omana, D. A., Y. Liang, N. N. V. Kav, J. Wu. Proteomic analysis of egg white proteins during storage. Proteomics,2011b,11:144-153
    130.Omenn, G. S., M. Adamski, T. W. Blackwell, R. Menon, H. Hermjakob, R. Apweiler, B. B. Haab, R. J. Simpson, J. S. Eddes, E. A. Kapp. Overview of the HUPO Plasma Proteome Project:Results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics,2005,5:3226-3245
    131.Ordonez, C., A. Navarro, C. Perez, E. Martinez, E. del Valle, J. Tolivia. Gender differences in apolipoprotein D expression during aging and in Alzheimer disease. Neurobiology of aging,2012,33:433. el1-433. e20
    132.Pertea, M., S. L. Salzberg. Between a chicken and a grape:estimating the number of human genes. Genome Biol,2010,11:206.
    133.Pieper, R., C. L. Gatlin, A. J. Makusky, P. S. Russo, C. R Schatz, S. S. Miller, Q. Su, A. M. McGrath, M. A. Estock, P. P. Parmar. The human serum proteome:Display of nearly 3700 chromatographically separated protein spots on two-dimensional electrophoresis gels and identification of 325 distinct proteins. Proteomics,2003,3: 1345-1364
    134.Qiu, N., W. Liu, M. Ma, L. Zhao, Y. Li. Differences between fertilized and unfertilized chicken egg white proteins revealed by 2-dimensional gel electrophoresis-based proteomic analysis. Poultry science,2013,92:782-786
    135.Qiu, N., M. Ma, Z. Cai, Y. Jin, X. Huang, Q. Huang, S. Sun. Proteomic analysis of egg white proteins during the early phase of embryonic development. Journal of proteomics.2012a,75:1895-1905
    136.Qiu, N., M. Ma, Z. Cai, Y. Jin, X. Huang, Q. Huang, S. Sun. Proteomic analysis of egg white proteins during the early phase of embryonic development. Journal of Proteomics,2012b,75:1895-1905
    137.Qiu, N., M. Ma, L. Zhao, W. Liu, Y. Li, Y. Mine. Comparative Proteomic Analysis of Egg White Proteins under Various Storage Temperatures. Journal of agricultural and food chemistry,2012c,60:7746-7753
    138.Rehault-Godbert, S., V. Labas, E. Helloin, V. Herve-Grepinet, C. Slugocki, M. Berges, M.-C. Bourin, A. Brionne, J.-C. Poirier, J. Gautron. Ovalbumin-related protein X is a heparin-binding OV-serpin exhibiting antimicrobial activities. Journal of Biological Chemistry,2013,288:17285-17295
    139.Rassart, E., A. Bedirian, S. Do Carmo, O. Guinard, J. Sirois, L. Terrisse, R. Milne. Apolipoprotein d. Biochimica et Biophysica Acta.BBA.-Protein Structure and Molecular Enzymology,2000,1482:185-198
    140.Reijrink, I., R Meijerhof, B. Kemp, H. van den Brand.2008a, The chicken embryo and its micro environment during egg storage and early incubation. World's Poultry Science Journal,64,581-598.
    141.Reijrink, I. A. M., Meijerhof, R., Kemp, B., & van den Brand, H.. The chicken embryo and its micro environment during egg storage and early incubation. World's Poult. Sci. J,2008b,64:581-598
    142.Reijrink, I., L. van Duijvendijk, R. Meijerhof, B. Kemp, H. van den Brand Influence of air composition during egg storage on egg characteristics, embryonic development, hatchability, and chick quality. Poultry science,2010,89:1992-2000
    143.Righetti, P. G., E. Boschetti, L. Lomas, A. Citterio. Protein EqualizerTM Technology: The quest for a "democratic proteome". Proteomics,2006,6:3980-3992
    144.Righetti, P. G., E. Boschetti, A. Zanella, E. Fasoli, A. Citterio. Plucking, pillaging and plundering proteomes with combinatorial peptide ligand libraries. Journal of Chromatography A,2010,1217:893-900
    145.Roux-Dalvai, F., A. G. de Peredo, C. Simo, L. Guerrier, D. Bouyssie, A. Zanella, A. Citterio, O. Burlet-Schiltz, E. Boschetti, P. G. Righetti. Extensive analysis of the cytoplasmic proteome of human erythrocytes using the peptide ligand library technology and advanced mass spectrometry. Molecular, Cellular Proteomics,2008, 7:2254-2269
    146.Santoni, V., M. Molloy, T. Rabilloud. Membrane proteins and proteomics:un amour impossible? Electrophoresis,2000,21:1054-1070
    147.Scholtes, C., C. Ramiere, D. Rainteau, L. Perrin-Cocon, C. Wolf, L. Humbert, M. Carreras, A. Guironnet-Paquet, F. Zoulim, R. Bartenschlager. High plasma level-of nucleocapsid-free envelope glycoprotein-positive lipoproteins in hepatitis C patients. Hepatology,2012,56:39-48
    148.Scott, M. J., C. Huckaby, I. Kato, W. Kohr, M. Laskowski Jr, M. Tsai, B. O'Malley. Ovoinhibitor introns specify functional domains as in the related and linked ovomucoid gene. Journal of Biological Chemistry,1987,262:5899-5907
    149.Segawa, S. i., T. Fukuno, K. Fujiwara, Y. Noda. Local structures in unfolded lysozyme and correlation with secondary structures in the native conformation: Helix-forming or-breaking propensity of peptide segments. Biopolymers,1991, 31:497-509
    150.Shah, R. B., M. A. Khan. Protection of salmon calcitonin breakdown with serine proteases by various ovomucoid species for oral drug delivery. Journal of pharmaceutical sciences,2004,93:392-406
    151.Shen, Y., J. Kim, E. F. Strittmatter, J. M. Jacobs, D. G. Camp, R. Fang, N. Tolie, R. J. Moore, R. D. Smith. Characterization of the human blood plasma proteome. Proteomics,2005,5,4034-4045
    152.Stevens, L., D. Duncan. Peptide mapping of ovoglobulins G2A and G2B in the domestic fowl. British Poultry Science,1988,29:665-669
    153.Sugimoto, Y., Y. Kamada, Y. Tokunaga, H. Shinohara, M. Matsumoto, T. Kusakabe, T. Ohkuri, T. Ueda. Aggregates with lysozyme and ovalbumin show features of amyloid-like fibrils. Biochemistry and Cell Biology,2011,89:533-544
    154.Sugimoto, Y, S. Sanuki, S. Ohsako, Y. Higashimoto, M. Kondo, J. Kurawaki, H. R. Ibrahim, T. Aoki, T. Kusakabe, K. Koga. Ovalbumin in developing chicken eggs migrates from egg white to embryonic organs while changing its conformation and thermal stability. Journal of Biological Chemistry,1999,274:11030-11037
    155.Tan, F., Y. Jiang, N. Sun, Z. Chen, Y. Lv, K. Shao, N. Li, B. Qiu, Y. Gao, B. Li. Identification of isocitrate dehydrogenase 1 as a potential diagnostic and prognostic biomarker for non-small cell lung cancer by proteomic analysis. Molecular, Cellular Proteomics,2012,11:M111-008821.
    156.Tazawa, H., S. J. Andrewartha, W. W. Burggren. Development of hematological respiratory variables in late chicken embryos:the relative importance of incubation time and embryo mass. Comparative Biochemistry and Physiology-Part A: Molecular, Integrative Physiology,2011,159:225-233
    157.Thulasiraman, V., S. Lin, L. Gheorghiu, J. Lathrop, L. Lomas, D. Hammond, E. Boschetti. Reduction of the concentration difference of proteins in biological liquids using a library of combinatorial ligands. Electrophoresis,2005,26:3561-3571
    158.Tolin, S., G. Pasini, A. Curioni, G. Arrigoni, A. Masi, F. Mainente, B. Simonato. Mass spectrometry detection of egg proteins in red wines treated with egg white. Food Control,2012,23:87-94
    159.Tomarev, S. I., N. Nakaya. Olfactomedin domain-containing proteins:possible mechanisms of action and functions in normal development and pathology. Molecular neurobiology,2009,40:122-138
    160.Tomimatsu, Y, J. J. Clary, J. J. Bartulovich. Physical characterization of ovoinhibitor, a trypsin and chymotrypsin inhibitor from chicken egg white. Archives of Biochemistry and Biophysics,1966,115:536-544
    161.Tsuge, T., H. Tsukaya, H. Uchimiya. Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana.L., Heynh. Development,1996,122:1589-1600
    162.Tullett, S., D. Deeming. The relationship between eggshell porosity and oxygen consumption of the embryo in the domestic fowl. Comparative Biochemistry and Physiology Part A:Physiology,1982,72:529-533
    163.Uemoto, Y., S. Sato, S. Odawara, H. Nokata, Y. Oyamada, Y. Taguchi, S. Yanai, O. Sasaki, H. Takahashi, K. Nirasawa. Genetic mapping of quantitative trait loci affecting growth and carcass traits in F2 intercross chickens. Poultry Science,2009, 88:477-482
    164.van de Ven, L., L. Baller, A. van Wagenberg, B. Kemp, H. van den Brand. Effects of egg position during late incubation on hatching parameters and chick quality. Poultry Science,2011,90:2342-2347
    165.VanBogelen, R. A., K. Z. Abshire, B. Moldover, E. R. Olson, F. C. Neidhardt Escherichia coli proteome analysis using the gene-protein database. Electrophoresis, 2005,18:1243-1251
    166.Vieira, A. V., K. Lindstedt, W. J. Schneider, P. M. Vieira. Identification of a circulatory and oocytic avian apolipoprotein D. Molecular reproduction and development,2005,42:443-446
    167.Vocadlo, D. J., G. J. Davies, R. Laine, S. G. Withers. Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature,2001,412:835-838
    168.Wang, J., Y. Liang, D. A. Omana, N. N. Kav, J. Wu. Proteomics analysis of egg white proteins from different egg varieties. Journal of agricultural and food chemistry,2011a,60:272-282
    169. Wang, J., Y. Liang, D. A. Omana, N. N. V. Kav, J. Wu. Proteomics Analysis of Egg White Proteins from Different Egg Varieties. Journal of Agricultural and Food Chemistry,2012,60:272-282
    170.Wang, J. M., M. K. Firestone, S. R. Beissinger. Microbial and environmental effects on avian egg viability:Do tropical mechanisms act in a temperate environment? Ecology,2011b,92:1137-1145
    171.Weinrich J A, Baker J R. Adelie penguin (Pygoscelis adeliae) embryonic development at different temperatures. The Auk,1978:569-576.
    172.Whiteaker, J. R., H. Zhang, J. K. Eng, R. Fang, B. D. Piening, L.-C. Feng, T. D. Lorentzen, R. M. Schoenherr, J. F. Keane, T. Holzman. Head-to-head comparison of serum fractionation techniques. Journal of proteome research,2007,6,828-836
    173.Wilkins, M. R., C. Pasquali, R. D. Appel, K. Ou, O. Golaz, J. C. Sanchez, J. X. Yan, A. A. Gooley, G. Hughes, I. Humphery-Smith. From proteins to proteomes:Large scale protein identification by two-dimensional electrophoresis and araino acid analysis. Nature Biotechnology,1996,14:61-65
    174.Wu, J., W. Li, Y. Feng, R. Zhao, C. Wang, Y. Yu, L. Yang, S. Zhang. Sex-biased mortality analysis in chick embryos during the entire period of incubation. The Journal of Applied Poultry Research,2012,21:508-512
    175.Xie, J., M. Qin, Y. Cao, W. Wang. Mechanistic insight of photo-induced aggregation of chicken egg white lysozyme:The interplay between hydrophobic interactions and formation of intermolecular disulfide bonds. Proteins:Structure, Function, and Bioinformatics,2011,79:2505-2516
    176.Yan Jun X, Wilkins Marc R, Ou Keli, Goo ley Andrew A, Williams Keith L, Sanchez Jean-Charles, Golaz Olivier, Pasquali Christian, Hochstrasser Denis F. Large-scale amino-acid analysis for proteome studies. Journal of Chromatography A,1996,736: 291-302
    177.Yan, R. T., S. Z. Wang. Identification and characterization of tenp, a gene transiently expressed before overt cell differentiation during neurogenesis. Journal of neurobiology,1998,34:319-328
    178.Yeh, C.-H., S.-H. Chen, D.-T. Li, H.-P. Lin, H.-J. Huang, C.-I. Chang, W.-L. Shih, C.-L. Chern, F.-K. Shi, J.-L. Hsu. Magnetic bead-based hydrophilic interaction liquid chromatography for glycopeptide enrichments. Journal of Chromatography A, 2012,1224:70-78
    179.Zauner, G., A. M. Deelder, M. Wuhrer. Recent advances in hydrophilic interaction liquid chromatography.HILIC, for structural glycomics. Electrophoresis,2011,32: 3456-3466
    180.Zhao, Z., L. Zhang, B. Du, N. Cao, X. Jiang, W. Tian, S. Li, W. Wu, C. Ye Polymorphisms in chicken extracellular fatty acid binding protein gene. Molecular biology reports,2012,39:2677-2682
    181.Zhou, M., D. A. Lucas, K. C. Chan, H. J. Issaq, E. F. Petricoin III, L. A. Liotta, T. D. Veenstra, T. P. Conrads. An investigation into the human serum "interactome". Electrophoresis,2004,25:1289-1298