用户名: 密码: 验证码:
反铁磁/电介质体系磁光学非线性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
典型反铁磁体的共振频率处于远红外到毫米波区间。此共振频率位于太赫兹频段,因此通过实验和理论研究反铁磁体的非线性性质是有意义的。人们试图开发太赫兹技术用于未来的通信和探测。反铁磁体的非线性效应比较弱,增强非线性效应对应用来讲是非常重要的。二次谐波技术是在没有对应激光器频段产生光源的常用方法,也是用实现频率转换的方法。很多光学器件的基础就是光学双稳态,如光开关,光存储和光逻辑器件等。反铁磁非线性效应基于反铁磁磁矩和电磁波间的偶极相互作用。激发反铁磁膜的非线性效应需要很高的光强,而现有的技术很难达到这个要求。在现有光源的基础上寻找方法提高非线性效应是很有意义的课题。本文建立了关于反铁磁体的非线性理论并且研究了反铁磁膜的二次谐波生成和光学双稳态,主要研究结果或创新点如下:
     1.根据典型反铁磁体(FeF2,MnF2,CoF2等)的磁结构,用双子格反铁磁模型,从磁矩动力学方程计算了反铁磁非线性磁化和磁化率,动力学方程的阻尼为吉伯形式。得到了显函数形式的有外场存在时反铁磁体非线性磁化率,为各种反铁磁介质的非线性现象研究打下非常重要的基础。
     2.研究了Voigt位型下输入强度一定时增强反铁磁膜二次谐波的方法。首先,第一个设计结构是反铁磁膜夹于两种电介质中间,电磁波倾斜入射时,反铁磁膜的二次谐波生成。发现二次谐波生成能流与电介质与入射角度密切相关。输出二次谐波功率可比裸膜高240倍。
     3.在Voigt位型下,将反铁磁膜插入电介质光子晶体中可有更高功率的二次谐波输出。发现这种高输出的物理机制是光的局域化造成的。计算了三种典型的光子晶体结构,对于二次谐波生成最好的结构是含有偶数个电介质双层的非对称结构,二次谐波生成有三个频带,最高的生成能流是裸膜的350倍。二次谐波生成具有非倒易性。
     4.讨论了Faraday位型下增强反铁磁膜二次谐波生成的方法。首先研究了反铁磁膜的二次谐波生成。横电波(TE)入射到反铁磁膜,在四个共振频率处二次谐波生成效率较高。横磁波(TM)入射时,只有一个二次谐波生成输出峰。当两种波入射波垂直入射时不生成二次谐波。其次,研究了反铁磁膜插入电介质光子晶体的情况。数值计算了三种典型结构的二次谐波生成。最好的结构生成二次谐波能流是裸膜的4400倍。确定了最好的结构和层厚度。二次谐波生成的非倒易性非常明显。
     5.作为对反铁磁体三阶非线性效应的探索和对三阶磁化率的应用计算了反铁磁裸膜的光学双稳态。给出了出现双稳态的判据,发现只有在特定的入射角和频率时才可能出现光学双稳态。根据反铁磁膜厚确定了双稳态存在的区域并研究了光学双稳态的性质,发现随着入射波入射角度增大双稳态的开关阈值也增加。
The resonant frequencies of typical antiferromagnetic(AF) materials are dis-tributed over the far-infrared and millimeter ranges. It is theoretical and practical significant to study the nonlinearity of the AF, because the resonant frequencies are situated in terahertz(THz) frequency range. Scientists are attempting to de-velop the THz technology for the future communication and detection. The AF nonlinearity is weak, enhance the nonlinear effects of AF is useful primarily for application. The second harmonic generation(SHG) technique is a common tool to produce new light sources at frequencies where no laser is available, and this method is widely used as one method of frequency conversion. Optical bistabil-ity(OB) provides a basis for various optical devices, such as optical switches, op-tical memories and optical logic gates. Notably, the nonlinearity mentioned re-sults from the magnetic dipole-dipole interaction between electromagnetic waves and AF dynamic magnetizations. For AF films, in order to observe the AF nonlinearity one needs a very strong electromagnetic wave (or strong light) to illuminate them. It means that there are some serious difficulties on the present technical level. Therefore, it is a very interesting subject to look for a method of enhancing the nonlinear effect at a proper incident power. In this thesis, the AF nonlinear theory is established and it is used to disscuss the SHG and bistable states. The innovations of the work and main results are listed as follows:
     1. The magnetization and susceptibility are obtained from the dynamical equations of magnetization in a uniaxial antiferromagnet with two sublattices, such as FeF2,MnF2and CoF2, whose damping term is of Gibbs style. We obtain the nonlinear susceptibilities in the style of explicit function in the presence of external magnetic field. Those results structure a solid foundation for disscussing nonlinear effects of AF.
     2. We present some methods to increase the second harmonic genera-tion(SHG) of an AF film (AFF)for a fixed input power in Voigt geometry. Firstly, the film is put between two different dielectrics, and an obliquely incident elec-tromagnetic wave is used to generate the SH waves. We find that the SH outputs depend sensitively on the incident angle and dielectric constants of the dielectrics. We find that structural design can enhance the outputs of SHG to240times of the single film.
     3. We calculate the SHG from an AFF embedded in a one-dimension photonic crystal in the Voigt geometry. The electromagnetic wave localization on the AFF leads to a giant enhancement of the SHG. The numerical results based on three typical structures show that the highest power of SH outputs reaches350times of a single AFF for the same incident power. Three narrow and obvious SHG bands are found.The SHG nonreciprocity is very obvious.
     4. We present some methods to increase the SHG of the AF film for a fixed input power in Faraday geometry. Firstly, we calculate the SHG from the AF film(AFF). For TE wave incidence, four obvious SHG bands are found. For TM wave incidence, one obvious SHG band is found. However, no SH waves can be seen for vertical incidence of pumping wave. Secondly, we calculate the SHG from the AFF embedded in a one-dimension photonic crystal. The numerical re-sults based on three typical structures show that the highest power of SH outputs reaches4400times of a single AFF for the same incident power. We find that the best structure and the best layer-thickness. The SHG nonreciprocity is very obvi-ous.
     5. To explore the third-order nonlinear effects of the AFF, we study the properties of optical bistability (OB) of the AFF. We find the criterion for the presence of the OB. The OB can be found only in a certain range of frequencies and incident angle. We also examine the AFF thickness dependence of the OB regions. The switching threshold of OB is enlarged as the incident angle in-creases.
引文
[1]冯端.凝聚态物理.高等教育出版社,2002:9-11 347-348
    [2]I. L. Lyubchanskii, N. N. Dadoenkova, et al. Rasing.Magnetic Photonic Cry-tals, J. Phys. D:Appl. Phys,2003, (36), R277-R287
    [3]M. grimsditch. Collective Behavior of Magnons in Superlattices, Phys. Rev. Lett,1983, (51):498-500
    [4]A.Kveny. Anomalous Behavior of Surface Acoustic Waves in Cu/Nb Superlat-tices. Phys. Rev. Lett.,1982, (48):166-170
    [5]P. Baumgart. Localized Phonon Modes in Fe-Pd Multilayer Structures. Phys. Rev. B,1986, (34):9004-9007
    [6]R. E. Camley, T. S. Ragman, D. L. Mills. Magnetic Excitations in Layered Media:Spin Waves and the Light-Scattering Spectrum. Phys. Rev. B,1983, (27):261-277
    [7]P. Grunberg, K. Mika. Magnetostatic Spin-Wave Modes of a Ferromagnetic Multilayer, Phys. Rev. B,1983, (27):2955-2963
    [8]P. R. Emtage, M. R. Daniel. Magnetostatic Waves and Spin Waves in Layered Ferrite Structures. Phys. Rev. B,1984, (29):212-220
    [9]R. E. Camley, D. L. Mills. Surface Polaritons on Uniaxial Antiferromagnets. Phys. Rev. B.,1982, (26):1280-1287
    [10]N. S. Almeida, D. L. Mills. Nonlinear Infrared Response of Antiferromag-nets. Phys. Rev. B.,1987, (36):2015-2013
    [11]王奇,吴中,王利强.反铁磁晶体表面上的非线性电磁波.中国科学,1998,(28):1135-1142
    [12]王选章,磁性多层膜的线性和非线性静磁波与磁极化子.中国科学院博士学位论文,2002:52
    [13]Xuan-Zhang Wang, Hua Li. Nonlinear Polaritons in Antiferromagnetic /Nonmagnetic Superlattices. Phy. Rev. B,2005, (72):054403-054412
    [14]Xuan-zhang wang, Shu-fang Fu. Dispersion Properties of Nonlinear Bulk Polaritons in Uniaxial Antiferromagnetic/Nonmagnetic Superlattices. J. magn. magn. Materials,2003, (271):334-347
    [15]P. N. Butcher and D. Cotter. The Elements of Nonlinear Op-ticmm.Cambridge U. Press, Cambridge,1990, (5):211-226.
    [16]D. L. Mills. Nonlinear Optics. Springer, New York.1998:5.
    [17]S. C. Lim, J. Osman, and D. R. Tilley. Calculation of Nonlinear Magnetic Susceptibility Tensors for a Ferromagnet. J. Phys. D,1999, (32):755-763
    [18]A. V. Petukhov, I. L. Lyubchanskii, Th. Rasing. Theory of Nonlinear Mag-neto-optical Imaging of Magnetic Domains and Domain Walls. Phy. Rev. B, 1997, (56):2680-2687
    [19]A. Fedyanin, Takashi Yoshida. Nonlinear Magneto-Optical Kerr effect in Gyrotropic Pphotonic band gap structures:magneto-photonic microcavities. Journal of Magnetism and Magnetic Materials,2003, (258-259):96-98
    [20]M. Fiebig, K. Miyano, Y. Tomioka. Nonlinear Magneto-Optical Properties of Colossal Magnetoresistive Manganites. Phy. Rev. Let.2001, (86): 6002-6005
    [21]S. C. Lim, J. Osman and D. R. Tilley. Calculation of Nonlinear Magnetic Susceptibility Tensors for a Uniaxial Antiferromagnet. J. Phys. D.2000, (33): 2899-2912
    [22]N. S. Almeida and D. L. Mills. Nonlinear Infrared Response of Antiferro-magnet. Phys. Rev. B,1987, (36):2015-2023
    [23]S. Vukovich, S. N. Gavrilin. Nonlinearelectromagnetic Waves in an Anti-ferromagnetic Plate Subjected to an External Magnetic Field. Sov. Phys. JETP.,1990, (71):964-968
    [24]D. Frohlich, Th. Kiefer, St. Leute.Nonlinear Spectroscopy of Antiferromag-net. Appl. Phys. B.,1999, (68):465-471
    [25]K. H. Bennemann.Nonlinear Optics in Metals,1999, Oxford,213
    [26]A. Kirilyuk. Nonlinear Optics in application to magnetic surfaces and thin films.J. Phys. D:Appl. Phys.,2002, (35):R189-R207
    [27]V. Kirilyuk, A. Kirilyuk. A Combined Nonlinear and Linear Magneto-Optical Microscopy, Appl. Phys. Lett.,1997, (70):2306-2308
    [28]A. V. Petukhov, I. L. Lyubchanskii. Theory of Nonlinear Magneto-Optical Imaging of Magnetic Domains and Domain Walls. Phys. Rev. B,1997, (56): 2680-2687
    [29]D. Frohlich, Th. Kiefer,.Nonlinear Spectroscopy of Antiferromagnet. Appl. Phys. B.,1999, (68):465-471
    [30]K. Abraha and D. R. Tilley. Theory of Far Infrared Properties of Magnetic Surfaces Films and Superlattices. Surf. Sci. Rep,1996, (24):125-222
    [31]A. A. Fedyanin, T. Yoshida. Magnetization-Induced Second-Harmonic Gen-eration in Magnetophotonic Microcavities Based on Ferrite Garnets. JETP Lett.,2002, (76):527-531
    [32]A. A. Fedyanin, K. Nishimura. Nonlinear Magneto-Optical Kerr Effect in Gyrotropic Photonic Band Gap Structures:Magneto-Photonic Microcavities. J. Magn. Magn. Mater.,2003, (258-259):96-98
    [33]王奇,A. D. Boardman,鲍家善,蔡英时.铁磁膜中静磁波的二阶非线性效应分析.中国科学(A辑),1994,(24):160-169
    [34]A. Dahn, W. Hubner, and K. H. Bennemann.Symmetry Analysis of the Nonlinear Optical Response:Second Harmonic Generation at Surfaces of Antiferromagnets. Phy. Rev. Lett.,1996, (77):3929-3932
    [35]M. Trzeciecki, A. Dahn, W. Hiibner, Symmetry Analysis of Second-Harmonic Generation at Surfaces of Antiferromagnets. Phy. Rev. B,1999, (60):1144-1160
    [36]K. Satitkovitchai, Y. Pavlyukh, and W. Hubner, Ab Initio Embedded Cluster Study of Optical Second-Harmonic Generation Below the Gap of a NiO(001) Surface. Phy. Rev. B,2003, (67):165413-165422
    [37]G. Lefkidis, W. Hubner. Ab Initio Treatment of Optical Second Harmonic Generation in NiO. Phy. Rev. Lett.,2005, (95):077401-077405
    [38]O. Ney, M. Trzeciecki,W. Hubnerl,Crystal-Field Theoretical Approach to Second Harmonic Generation on Antiferromagnetic NiO(001), CoO(001),and FeO(001) Surfaces. J. Phys.:Condens. Matter,2005, (17):7489-7510
    [39]G. Lefkidis, W. Hubner. Phononic Effects and Nonlocality Contributions to Second Harmonic Generation in NiO. Phy. Rev. B,2006, (74):155106-155125
    [40]S. Linden, M. Decker, M. Wegener. Model System for a One-Dimensional Magnetic Photonic Crystal. Phy. Rev. Lett.,2006, (97):083902-083906
    [41]K. Abraha and D. R. Tilley. Theory of Far Infrared Properties of Magnetic Surfaces Films and Superlattices. Surf. Sci. Rep.,1996, (24):129-222
    [42]Siew-Choo Lim. Magnetic Second-Harmonic Generation of an Antiferro-magnetic Film. J. Opt. Soc. Am. B.,2002, (19.6):1401-1410
    [43]Siew-Choo Lim. Second Harmonic Generation of Magnetic and Dielectric Multilayers. J. Phys.:Condens. Matter.,2006, (18):4329-4343
    [44]X-Z Wang and Xu-Rong Xu. Nonlinear Magnetostatic Surface Waves of Magnetic Multilayers:Effective-Medium Theory. Phys. Rev. B,2001,(63): 054415-054426
    [45]X-Z Wang and Shu-Fang Fu.Dispersion Properties of Nonlinear Bulk Polari-tons in Uniaxial Antiferromagnetic/Nonmagnetic Superlattices. J. Magn. Magn. Materals,2004, (271):334-347
    [46]X-Z Wang and Hua Li.Nonlinear Polaritons in Antiferromagnetic Superlat-tices. Phys. Rev. B,2005,(72):054403-054412
    [47]Jing Bai, Sheng Zhou, Feng-Li Liu and X-Z Wang.Nonlinear Infrared Trans-mission Through and Reflection Off Antiferromagnetic Films. J. Phys.:Con-dens. Matters,2007,(19):046217-046227
    [48]Yan Zhao, Hong Gao, Sheng Zhou, X-Z Wang. Nonlinear Response of Uni-axial Ferromagnets and Applications to Surface Magnetostatic Waves. J. Magn. Magn. Materials,2008, (320):2696-2703
    [49]S. Zhou, X-Z Wang. A Method of Enhancing Second-Harmonic Generation of Antiferromagnetic Film. Journal of the Optical Society of America B, 2008,(25):1639-1644
    [50]Sheng Zhou, Hua Li, Shufang Fu, and X-Z Wang. Second Harmonic Genera-tion From an Antiferromagnetic Film in One-Dimensional Photonic Crystals. Phy. Rev. B,2009, (80):205409-205421
    [51]王奇,王又发,鲍家善.反铁磁体表面空间磁孤子的频率特征.中国科学A辑,1996,(4):354-365
    [52]I. Kourakis, N. Lazarides. Self-Focusing and Envelope Pulse Generation in Nonlinear Magnetic Metamaterials, Phys. Rev. E,2007, (75),067601-067605
    [53]M. Bauer, O. Buttner, S. O. Demokritov, B. Hillebrands. Observation of Spatiotemporal Self-focusing of Spin Waves in Magnetic Films. Phys. Rev. Lett.1998,(81):3769-3772
    [54]Vincent Boucherl, Louis-Philippe Carignan. Effective Permeability Tensor and Double Resonance of Interacting Bistable Ferromagnetic Nanowires. Phys. Rev. B,2009, (80):224402-224413
    [55]E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett.,1987, (58):2059-2062
    [56]S. John. Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Phys. Rev. Lett.,1987,(58):2486-2489
    [57]M. Bauer, O. Buttner, S. O. Demokritov. Observation of Spatiotemporal Self-Focusing of Spin Waves in Magnetic Films. Phys. Rev. Lett.,1998, (81): 3769-3772
    [58]Vincent Boucherl, Louis-Philippe Carignan. Effective Permeability Tensor and Double Resonance of Interacting Bistable Ferromagnetic Nanowires. Phys. Rev. B,2009, (80):224402-224413
    [59]K. Sakoda. Optical Properties of Photonic Crystals. Berlin:Springer.2001:32
    [60]S. G. Johnson, J. D. Joannoupolos. Photonic Crystals:The Road from The-ory to Practice. Boston:Kluwer.2002:45
    [61]D. F. Sievenpiper, M. E. Sickmiller, E. Yablonovitch.3D Wire Mesh Photonic Crystals. Phys. Rev. Lett.,1996,(76):2480-2483
    [62]F. Gadot, A. de Lustrac, J-M. Lourtioz. High-Transmission Defect Modes in Two-Dimensional Metallic Photonic Crystals. J. Appl. Phys.,1999, (85): 8499-8501
    [63]D. R. Smith, D. C. Vier, W. Padilla. Loop-wire Medium for Investigating Plasmons at Microwave Frequencies. Appl. Phys. Lett.,1999, (75):1425-1431
    [64]M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. Ozbay, C. M.Soukoulis. Photonic Band Gaps Defect Characteristic and Waveguiding in Two-dimensional Disordered Dielectric and Metallic Photonic Crystals. Phys. Rev. B.,2001, (64):195113-195120
    [65]V. Louse, J. P. Vigneron. Bistable Behaviour of a Photonic Crystal Nonlinear Cavity. Phys. B.,2003,(338):171-177
    [66]I. L. Lyubchanskii, N. N. Dadoenkova. Magnetic Photonic Crystals, J. Phys. D:Appl. Phys.,2003, (36):R277-R287
    [67]M. M. Sigalas, C. M. Soukoulis. Effect of The Magnetic Permeability on Photonic Band Gaps. Phys. Rev. B.1997, (56):959-962
    [68]N. Raj, D. R. Tilley. The Dielectric Function of Condensed Systems. Elsevie. Amsterdam,1989:Chapter 7
    [69]P. Yeh, Optical Waves in Layered Media.New York,1988:204
    [70]F. G. Bass, A. A. Bulgakov, A. P. Tetervov. High-Frequency Properties of Semicon-ductors with Superlattices. Moscow,1989:288-293
    [71]S. B. Borisov, N. N. Dadoenkova. Normal Electromagnetic Waves in Bigy-rotropic Magnetooptic Layered Structures. Opt. Spektrosk.,1993, (74):670
    [72]C-S. Kee, I. Park, H. Lim, J-E. Kim, H. Y. Park. Microwave Photonic Crys-tal Multiplexer and Its Applications. Curr. Appl. Phys.,2001, (1):84-87
    [73]A. K. Zvezdin, V. A. Kotov, Moden Magneto-Optics and Magneto-Optical Materials. Bristol:IOP.,1997:231
    [74]M. Inoue, T. Fujii. A Theoretical Analysis of Magneto-optical Farady Effect of YIG Films with Random Multiplayer Structures. J. Appl. Phys.,1997, (81):5659-5663
    [75]M. Inoue, K. Arai, T. Fujii, M. Abe. Magneto-optical Properties of One-dimensional Photonic Crystals Composed of Magnetic and Dielectric Layers. J. Appl. Phys,1998, (8):6768-6780
    [76]H. Kato, T. Matsushita, A. Takayama,. Theoretical Analysis of Optical and Magneto-optical Properties of One-dimensional Magnetophotonic Crystals. J. Appl. Phys.,2003, (93):3906-3911
    [77]S. Kahl, A. M. Grishin. Magneto-optical Rotation of a One-dimensional All-garnet Photonic Crystal in Transmission and Reflection. Phys. Rev. B.,2005, (71):205110-205115
    [78]A. Figotin, I. Vitebsky. Nonreciprocal Magnetic Photonic Crystals. Phys. Rev. E.,2001, (63):066609-066626
    [79]A. Figotin, I. Vitebsky. Electromagnetic Unidirectionality in Magnetic Photonic Crystals. Phys. Rev. B.,2003, (67):165210-165230
    [80]N. N. Akhmediev, S. B. Borisov, A. K. Zvezdin. Nonlinear Optical Suscepti-bility of Magnetically Ordered Crystals, Sov. Phys. Solid State.,1985, (27): 650-657
    [81]O. A. Aktsipetrov, O. V. Braginskii, D. A. Esikov. Nonlinear Optics of Gyro-tropic Media:Second Harmonic Generation in Rare-earth Iron Garnets. So-viet Journal of Quantum Electronics.,1990, (20):259-263
    [82]Th. Rasing. Nonlinear Magneto-optics. J. Magn. Magn. Mater.,1997, (175): 35-50
    [83]T. V. Murzina, T. V. Misuryaev, A. F. Kravets, et al. Nonlinear Magneto-optical Kerr Effect and Plasmon-assisted SHG in Magnetic Nanomaterials Exhibiting Giant Magnetoresistance. Surf. Sci.,2001, (482):1101-1106
    [84]J. Reif, J. C. Zink, C-M.Schneider, J. Kirschner. Effects of Surface Mag-neism on Optical Second Harmonic Generation. Phys. Rev. Lett.,1991, (67): 2878-2881
    [85]E. M. Kim, S. S. Elovikov, T. V. Murzina,. Surface-enhanced Third Harmonc Generation in Silver Island Films. JETP Lett,2000, (48):600-604
    [86]T. V. Murzina, R. V. Kapra, A. A. Rassudov. Magnetization-Induced Third Harmonic Generation in Magnetophotonic Microcavities. JETP. Lett.,2003, (77):158-161
    [87]张怀武.我国太赫兹基础研究.中国基础科学.China Basic Science,2008, (1):15-20
    [88]A. Q. Markelz, A. Roitberg, E. J. Heilweil. Pulsed Terahertz Spectroscopy of DNA Bovine Serum Albumin and Collagen Between 0.1 and 0.2 THz Chem. Phys. Lett.,2002, (320):42-48.
    [89]Nagel M, Bolivar P H, Brucherseifer M, et al. Integrated THz technology for label-free genetic diagnostics.J.Appl.Lett.,2002, (80):154-156.
    [90]L. Wu, X-C Zhang, D. H. Auston. Terahertz Beam Generation by Femtosec-ond Optical Pulse in Electro-optic Materials. J. App. Phy. Lett.,1992,61 (15):1784-1786
    [91]A. D. Boardman, Yu. V. Grulyaev, S. A. Nikitov. Nonlinear Waves in Solid State Physics, edited by A. D. Boardman et. al., New York, Plenum,1990: 122-124
    [92]S. C. Lim, J. Osman, D. R. Tilley. Calculation of Nonlinear Magnetic Sus-ceptibility Tersors for a Ferromagnet., J. Phys. D:Appl. Phys.,1999, (32): 755-763
    [93]S. C. Lim, J. Osman and D.R.Tilley. Calculation of Nonlinear Magnetic Susceptibility Tersors for a Uniaxial Antiferromagnet. J. Phys. D:Appl. Phys.,2000, (33):2899-2891
    [94]廖绍彬.铁磁学(下册).科学出版社,2000:89-92
    [95]K. Abraha and D. R. Tilley. Theory of Far Infrared Properties of Magnetic Surfaces, Films and Superlattices, Surf. Sci. Rep.,1996, (24):129-222
    [96]L. Kahn, N. S. Almeida. Nonlinear Optical Response of Antiferromagnetic Superlattices:Multi-stability and Soliton Trains. Phys. Rev. B,1988, (37): 8072-8081
    [97]M. Fiebig, V. V. Pavlov, and R. V. Pisarev. Second Harmonic Generation as a Tool for Studying Electronic and Magnetic Structures of Crystals. J. Opt. Soc. Am. B 2005, (22):96-118
    [98]Satoh, Takuya; Cho, Sung-Jin; Shimura.Photoinduced Transient Faraday Ro-tation in NiO. Journal of the Optical Society of America B,2010, (7):1421-1424
    [99]F. Wang, S. N. Zhu, K. F. Li and K. W. Cheah. Third-harmonic Generation in a One-dimension Photonic-crystal-based Amorphous Nanocavity. Appl. Phys. Lett.,2006, (88):071102-071105
    [100]I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov and Th. Rasing.Magnetic photonic crystals. J. Phys. D:Appl. Phys.2003, (36):R277-R282
    [101]M. Inoue, R. Fujikawa, A. Baryshev, et al. Magnetophotonic Crystals. J. Phys. D:Appl. Phys.,2006, (39):R151-R154
    [102]A. Szoke,V. Daneu,J. Goldhar, et al. Bistable Optical Element and its Ap-plication. Appl. Phys. Lett.,1969, (15):376-379
    [103]S. L. McCall, H. M. Gibbs, G. G. Churchill, et. al. Near-ideal Self-induced-Transparency Breakup in Highly Degenerate Systems. Phys. Rev. A,1975, (12):1032-1035
    [104]R. Bonifacio and L. A. Lugiato. Cooperative radiation processes in two-level systems:Superfluorescence.Phys. Rev. A,1975, (11):1507-1521
    [105]P. W. Smith, et al. Electro-optic Nonlinear Fabry-Perot Device. IEEE J. Quantum Electron.1978, (14):207-212
    [106]J. Q. Li, et al. A Hybrid Optical Bistablity Device Based on a Fiber Bragg Grating. Chin. Phys. Lett.2003, (19):1815-1818
    [107]H. Ye. Photoelectric Hybrid Optical Bistable Device Using Fiber Bragg Grating with two Feed Signals. Chin. Phys. Lett.2004, (5):860-862
    [108]G. Lu H, H. G Ye. Optical Bistability by using a Tunable Fiber Laser with Fiber Fabry-Perot. Chin. Phys. Lett.,2004, (21):2201-2204
    [109]Ortega B.et al.Wavelength Division Multiplexing All-Fiber Hybrid Devices Based on Fabry-Perot and Gratings. Lightwave Technology, 1999,(17):1241-1247
    [110]Norbert Furstenau. Bistable Fiber-Optic Michelson Interferometer that Uses Wavelength Control. Optics Letters,1991, (16):1896-1898
    [111]宋骞,张远程.光学双稳态定态参数的计算.量子电子学,1988,(5):234-240

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700