油菜内生真菌的多样性及生防潜力评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物内生真菌有着存在的普遍性和丰富的多样性,同时有着多样的生态学作用,包括促进植物生长、增强植物的免疫性等。油菜是我国的重要油料作物,对于油菜体内的真菌和细菌类群及其防治病害的作用缺乏系统研究。鉴此,我们开展了油菜内生真菌的多样性分析,并对其防治植物真菌病害的潜力进行了研究。取得的主要研究结果如下:
     1.利用组织分离法分离纯化并鉴定了油菜内生真菌的种类,分析油菜的不同营养器官(根、茎、叶)中内生真菌的分布,不同生育期内生真菌的种类。利用数学统计分析的方法,计算了油菜内生真菌根茎叶不同部位以及整体的香农指数和辛普森指数。共获得97株油菜内生真菌,鉴定为24个目40个种,其中子囊菌是最多,占总数的84.6%。根、茎、叶中菌株的数量分别是35株,49株和13株。根茎叶不同部位的辛普森指数分别为0.936、0.962和0.731。综合油菜各部位来源的内生真菌的辛普森指数为0.959,表明油菜内生真菌存在着丰富的多样性。在所分离和鉴定的内生真菌中,Alternaria alternata和Chaetomium globosum在油菜根、茎、叶中都有分布;5种真菌(Macrophomina sp.、Aspergillus versicolor、Penicillium pinophilum、 Fusarium tricinctum和Fusarium oxysporum)只存在于根部。
     2.平板拮抗筛选试验表明:24株内生真菌能够抑制核盘菌生长的菌株,形成宽度为3-17mm的抑菌带,这些菌株属于链格孢属(Alternariasp)、曲霉属(Aspergillus)、毛壳菌属(Chaetomium)、粘帚霉Clonostachys)、Dothidea、附球菌属(Epicoccum)、镰刀菌属(Fusarium)、Leptosphaeria和Simplicillium。其中的4株真菌,即A.flavipesCanS-34A. C. globosum CanS-73、C. rosea CanS-43和L. biglobosa CanS-51的代谢产物在油菜叶片上表现出稳定的抑制核盘菌(Sclerotinia sclerotiorum)侵染的效果。此外,还筛选出6株真菌产生挥发性抗真菌物质。
     3.发现35株内生真菌可以产生吲哚乙酸(IAA),包括链格孢(Alternaria)、曲霉属(Aspergillus)、短梗霉属(Aureobasidium)、毛壳菌属(Chaetomium)附球菌属(Epicoccum)、镰刀菌属(Fusarium)、香灰菌属(Hypoxylon)、Macrophomina、黑孢菌属(Nigrospora)、Periconia、茎点霉属(Phoma)和锁掷孢酵母(Sporidiobolus)。其中的3株真菌对油菜的侧根数量有明显的促进作用,它们是Fusarium proliferatumCanR-9和两株酵母锁掷孢酵母(Sporidiobolus sp.)CanS-62和Dioszegia zsoltii CanS-69。通过两年的盆栽试验证明:A. alternata菌株CanL-18和F. tricinctum菌株CanR-70及CanR-71r显示出促进油菜生长的效果。
     4.发习见A. flavipes CanS-34A产生的抗菌物质可以抑制11个属15个种(亚种)的植物病原菌,尤其对核盘菌(S. sclerotiorum)及其近缘种(S. trifoliorum, S. minor和S. nivalis)抑制率(74.9%-100%)显著高于对其它植物病原真菌的抑制率(13.9%-71.9%)。试验还证明CanS-34A产生的抗真菌物质可以耐80℃C以下的温度处理。采用饱和硫酸铵不能盐析出CanS-34A产生的抗生物质。
     5.发现Fusarium oxysporum CanR-46产生挥发性物质(Volatile organic compounds, VOCs),这种混合物能够抑制多种植物病原真菌的生长。GC-MS鉴定出19种VOCs,其中的5-Hexenoic acid、(±)-Limonene、3,4-2H-dihydropyrana和Octanoicacid等成分具有抑制病原真菌生长的作用。发现CanR-46产生的VOCs抑制包括灰葡萄孢霉和大丽轮枝菌在内的16种植物病原菌的生长,延迟灰葡萄孢霉和大丽轮枝菌分生孢子萌发,抑制萌发后芽管的伸长。扫描电镜观察,VOCs可以破坏灰葡萄孢和大丽轮枝菌菌丝的完整性,导致菌丝干瘪。CanR-46产生VOCs可以在密闭条件下有效防治番茄果实灰霉病。通过与大丽轮枝菌分生孢子混合接种,CanR-46可以有效防治棉花黄萎病,并能够在棉花根部定殖。
     上述研究结果为进一步利用油菜内生真菌防治油菜病害奠定了基础。
The term'endophytes'refers to any organisms (bacteria or fungi) occurring within plant tissues without causing apparent hurt to that plant or showing any signs of existence in that plant. Endophytic fungi are ubiquitous and have been found in all plant species examined to date. Endophytic fungi are hyperdiverse, also. Simultaneously, endophytic fungi have diverse functional roles. In this study, the endophytic fungi were isolated from oilseed rape (Brassica napus) and identified based on morphological chacterieristics and rDNA-ITS. Biocontrol efficacy of these fungal isolates was evaluated in vitro and in vivo. The main results were summarized below:
     1. The endophytic fungi were isolated from root, stem and leaf of healthy oilseed rape. The endophytic fungi were identified based on morphology together with ITS sequences. Distribution of endophytic fungi in different organs (root, stem, leaf) and at different growing stage (seedling, budding, flowering and pod-development) was analyzed. The Shannon index (H') and Simpson's diversity index (1-D) were calculated. Total of97endophytic fungal isolates were obtained from roots (35), stems (49) and leaves (13) of oilseed rape. Forty fungal species were identified and most species (80%) belong to Ascomycota. The Simpson's diversity index of root, stem and leaf were0.936,0.962and0.731, respectively.The all species composition is highly diversified with Simpson's diversity index reaching0.959. The result indicated the diversity of ednophytic fungi of oilseed rape. The specieses Alternaria alternate and Chaetomium globosum existed in root, stem and leaf. Five specieses Macrophomina sp., Aspergillus versicolor, Penicillium pinophilum, Fusarium tricinctum and Fusarium oxysporum exist in roots only.
     2. Twenty-four isolates exhibited antifungal activity against S. sclerotiorum in dual cultures on potato dextrose agar plate forming inhibition zones of3-17mm in width. These strains included Alternaria, Aspergillus, Chaetomium, Clonostachys, Dothidea, Epicoccum, Fusarium, Leptosphaeria, Simplicillium genera. The culture filtrates of Aspergillus flavipes CanS-34A, Chaetomium globosum CanS-73, Clonostachys rosea CanS-43and Leptosphaeria biglobosa CanS-51in potato dextrose broth exhibited consistent and effective suppression of oilseed rape leaf blight caused by S. sclerotiorum. In addition, six strains were found to be able to inhibit S. sclerotiorum growth by producing volatile organic compounds.
     3. Thirty-five endophytic strains were found that could produce IAA. These fungi included Alternaria, Aspergillus, Aureobasidium, Chaetomium, Epicoccum, Fusarium, Hypoxylon, Macrophomina, Nigrospora, Periconia, Phoma and Sporidiobolus sp. The cultural filtrates of the strains Fusarium proliferatum CanR-9, Sporidiobolus sp. CanS-62and Dioszegia zsoltii CanS-69were found capable of promoting lateral root growth of oilseed rape. A. alternata CanL-18, Fusarium tricinctum CanR-70and CanR-71r, and L. biglobosa CanS-51exhibited growth-promoting effects on oilseed rape during the two-year pot experiment.
     4. The antifungal substances of Aspergillus flavipes CanS-34A have been studied. The cultural filtrates of A. flavipes CanS-34A inhibited15plant pathogenic fungi. The percentage of growth inhibition was higher for four Sclerotinia species (S. sclerotiorum, S. trifoliorum, S. minor and S. nivalis)(74.9%-100%) than for the other11fungi (13.9%-71.9%). The antifungal activity of cultural filtrates was found resistant to heat treatment below100℃.
     5. Nineteen compounds were identified in the VOCs emitted by non-pathogenic Fusarium oxysporum CanR-46via GC-MS. The Fo-VOCs inhibited growth of all the16tested fungal species, delayed conidial germination, and suppressed germ-tube elongation of Be and Vd. Damaged (shriveled and collapsed) mycelia of both Be and Vd caused by the Fo-VOCs were observed under scanning electron microscope. Four (5-hexenoic acid, limonene,3,4-2H-dihydropyran and octanoic acid) synthetic chemicals present in the Fo-VOC profile showed antifungal activity against Be and Vd. The VOCs emitted from Fo cultures significantly (P﹤0.05) reduced disease severity of Botrytis fruit rot of tomato compared to the treatment Be alone. Treatment of cotton roots with Fo provided effective control of Verticillium wilt of cotton compared to the treatment with Vd alone. Colonization of the epidermis and vascular tissues of cotton roots by a GFP-transformed strain of Fo was consistently observed under confocal laser scanning microscope.
     These results might be useful for utilization of the endophytic fungi to control diseases of oilseed rape in the future.
引文
1. 蔡英姬,金哲洙.棒曲霉菌中抗真菌肽的分离与纯化.延边大学医学学报,2006,4:238-340
    2.陈立军,孙广宇,张荣,郭井泉.油菜内生真菌的分离鉴定.石河子大学学报(自然科学版),2004,22:66-68
    3.陈利军,史洪中,陈月华.油菜内生球毛壳菌抑菌作用初步测定.河南农业科学,2005,7:54-56
    4. 陈世苹,高玉葆,梁宇.水分胁迫下内生真菌感染对黑麦草叶内游离脯氨酸和脱落酸含量的影响.生态学报,2001,21:1964-1972
    5.戴芳澜.中国真菌汇总.北京:科学出版社出版,1979.p.843
    6.董慧.拮抗性芽孢杆菌的鉴定及防治莴苣菌核病效果和机制研究.[硕士学位论文].武汉:华中农业大学图书馆,2008
    7.郭雷,朱文成,刘玮炜,丁国伟,张越乾,张守禄,邱月,谢宇.活性海洋真菌HN4-13的鉴定及其发酵优化.微生物学通报,2012,40:951-958
    8.黄健,曾顺德,张迎君.果蔬采后病害生物防治研究进展.西北园艺,2005,5:23-25,38.
    9.黄蓉.防治草莓灰霉病酵母菌株筛选及防病机制研究.[博士学位论文].武汉:华中农业大学图书馆,2011.
    10.姜道宏,李国庆,易先宏,王道本.菌核寄生菌盾壳霉的研究 Ⅱ.不同菌株培养特性及寄生致腐菌核能力的比较.华中农业大学学报,1996,3:229-230
    11.江木兰.油菜内生枯草芽孢杆菌BY-2的定殖生态、抗菌机制和防治菌核病的研究.[硕士学位论文].武汉:华中农业大学图书馆,2007
    12.金玲,巴峰,计平生,梅汝鸿.小麦内生有害细菌的发现和作用研究.植物病理学报,1996,2:123-126
    13.兰楠,祁高富,喻子牛,赵秀云.油菜内生真菌的分离鉴定及抑菌作用.华中农业大学学报,2011,30:270-275
    14.李国庆,胡圣远,王道本.菌核寄生菌Talaromyces flacus的生物学特性及寄生菌核规律初探.微生物学通报,1995,22:131-135
    15.李国庆,王道本,张顺和,但汉鸿.菌核寄生菌盾壳霉的研究Ⅰ.生物学特性及在湖北省的自然分布.华中农业大学学报,1995,14:125-130
    16.李宁,周和平,许旭,唐仕好,潘月敏,高智谋.油菜内生拮抗细菌SF4对油菜菌核病菌的抑制作用研究.安徽农业大学学报,2013,40:969-974
    17.李其利.链霉菌JK-1的鉴定及其防病潜能和防病机制的研究.武汉:华中农业大学图书馆,2011
    18.李世东,刘杏忠.食菌核葚孢霉—一种有潜力的菌核病生防菌.中国生物防治学报,2000,4:177-182
    19.李淑彬,王军,杨劲松,钟英长,周世宁,林永成.抗真菌抗生素179M产生菌的分离鉴定和生理特性研究.菌物系统,2001,20:362-367
    20.李燕萍,许杨,徐尔尼,孙红斌.红曲霉的抑菌活性物质与桔青霉素.卫生研究,1998,27:75-78
    21.刘云霞,张青,文周明.水稻内生杀虫细菌的研究.见:张之利主编,中国有害生物综合治理论文集.北京:中国农业科技出版社,1996,284
    22.马玉超,赵凯,王世伟.产紫杉醇(Taxol)内生真菌的生物多样性.菌物研究,2003,1(1):28-32
    23.马宗斌,严根土,刘桂珍,霍晓妮,贾文华.棉花黄萎病防治技术研究进展.河南农业科学,2012,2:12-17
    24.钮旭光,韩梅,何随成.内生真菌对植物抗旱性的影响.生物技术.2006,16:93-95
    25.沈其益.棉花病害-基础研究与防治.北京:科学出版社,1992
    26.孙正祥,王丰,莫春侨,张长青.内生细菌JH-10对油菜菌核病的防治作用.江西农业大学学报,2012,4(6):1146-1151
    27.谭志远,彭桂香,徐培智,艾绍英,唐栓虎,张国霞,曾凤云.普通野生稻(Oryza rufipogon)内生固氮菌多样性及高固氮酶活性.科学通报,2009,54:1885-1893
    28.万明国.源于水稻的链霉菌菌株F-1的鉴定及其防病潜力和防病机制研究.[博士学位论文].武汉:华中农业大学图书馆,2008
    29.万勇.内生细菌在重金属植物修复中的作用机理及应用研究.[博士学位论文].长沙:湖南大学图书馆,2012
    30.王凤让,毛克克,李国钧,吴铖铖,张慧娟,李大勇,宋凤鸣.印度梨形孢及其近似种Sebacina vermifera促进番茄生长发育及磷吸收.浙江大学学报(农业与生命科学版),2011,37(1):61-68
    31.王辉,刘长远,赵奎华,孙军德.一株抗辣椒疫病真菌的筛选及鉴定.吉林农业大学学报,2012,34(2):152-156
    32.王会军,陈卓君,吴毅歆等.防治十字花科作物根肿病的油菜内生细菌分离与鉴定.中国油料作物学报,2014,36(1):92-97
    33.王瑾.小叶满江红内生菌多样性的T-RFLP分析.[硕士学位论文].泉州:福建农林大学,2009
    34.王丽娟,刘苏萌,司艳红,何培新.油菜内生真菌的分离及其抑菌活性的研究.安徽农业科学,2008,36(10):4287-4288
    35.魏景超.真菌鉴定手册.上海:上海科技出版社,1979
    36.谢小平,刘长远,赵奎华,王辉,关天舒,梁春浩,贾妹,张里.黄柄曲霉ASD菌株抑菌谱测定及抑菌物质初探.中国蔬菜,2014,4:34-37
    37.杨瑞先.利用16S rDNA序列分析鉴定油菜内生细菌的研究.[硕士学位论文]杨凌:西北农林科技大学,2005.
    38.张静.湖北省灰霉病病菌区系和灰葡萄孢菌多样性研究.[博士学位论文].武汉:华中农业大学图书馆,2010
    39.张拥华,高会兰,马桂珍,李世东.粉红粘帚霉67-1菌株寄生核盘菌研究.植物病理学报,2004,34(3):211-214
    40.赵凯,平文祥,周东坡.内生真菌发酵生产紫杉醇的研究现状与展望.微生物学报,2008,48(3):403-407.
    41.周乐聪.植物病原菌核盘菌生防菌的筛选、诱变及分子改造.[博士学位论文].北京:中国农业大学图书馆,2000
    42. Acinas SG, Rodriguez-Valeraa F, Pedros-Aliob C. Spatial and temporal variation in marine bacterioplankton diversity as shown by RFLP fingerprinting of PCR amplified 16S rDNA. FEMS Microbiology Ecology, 1997, 24:27-40
    43. Adams PB, Ayers WA. Ecology of Sclerotinia species. Phytopathology, 1979, 69: 896-899
    44. Aggarwal R, Srinivas RP, Malathi VG. Assessment of genetic diversity in Chaetomium globosum, a potential biocontrol agent, by amplified fragment length polymorphism. Indian Phytopathology, 2011,63:2-5
    45. Alstrom S. Characteristics of bacteria from oilseed rape in relation to their biocontrol activity against Verticillium dahliae. Journal of Phytopathology, 2001,149(2):57-64
    46. Amin F, Razdan VK, Bhat KA. Potential of Trichoderma species as biocontrol agents of soil borne fungal propagules. Journal of Phytology, 2010, 2(10):38-41
    47. Arnold AE, Herre EA. Canopy cover and leaf age affect colonisation by tropical fungal endophytes:ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia, 2003, 95:388-398
    48. Arnold AE, Lutzoni F. Diversity and host range of foliar fungal endophytes:Are tropical leaves biodiversity hotspots? Ecology, 2007,88:541-549
    49. Arnold AE, Mayhard Z. Are tropical fungal endophytes hyperdiverse? Ecology Letters, 2000,3:267-274
    50. Arnold AE. Understanding the diversity of foliar endophytic fungi:progress, challenges, and frontiers. Fungal Biology Reviews,2007,21:51-66
    51. Assuero SG, Matthew C, Kemp PD. Morphological and physiological effects of water deficit and endophyte infection on contrasting tall fescue cult ivars. New Zealand Journal of Agicultural Research,2000,43:49-61
    52. Backman PA, Sikora RA. Endophytes:An emerging tool for biological control. Biological Control, 2008,46:1-3
    53. Banerjee D, Strobel G, Geary B, Sears J, Ezra D, Liarzi O, Coombs J. Muscodor albus strain GBA, an endophytic fungus of Ginkgo biloba from United States of America, produces volatile antimicrobials. Mycology, 2010,1(3):179-186
    54. Banerjee D, Strobel GA, Booth E. An endophytic Myrothecium inundatum producing volatile organic compounds. Mycosphere, 2010, 1(3):229-240
    55. Baniasadi F, Shahidi Bonjar GH, Baghizadeh A, Karimi Nik A, Jorjandi M, Aghighi S, Rashid Farokhi P. Biological Control of Sclerotinia sclerotiorum, causal agent of sunflower head and stem rot disease, by use of soilborne actinomycetes isolates. American Journal of Agricultural and Biological Sciences, 2009,4 (2):146-151
    56. Bartholdy BA, Berreck M, Haselwandter K. Hydroxamate siderophore synthesis by Phialocephala fortinii, a typical dark septate fungal root endophyte. Biometals, 2001, 14:33-42
    57. Belgrove A. Biological control of Fusarium oxysporum f.sp. cubense using non-pathogenic F. oxysporum endophytes. In the Faculty of Natural and Agricultural Science, University of Pretoria, Pretoria, 2007:1-171
    58. Bischoff JF, White JF. Evolutionary development of the Clavicipitaceae. In: Dighton J, White JF, Oudemans P, eds. The fungal community: Its organization and role in the ecosystem. Boca Raton, FL, USA: Taylor & Francis, 2005,505-518
    59. Bladt TT, Frisvad JC, Knudsen PB, Larsen TO. Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi. Molecules, 2013,18:11338-11376
    60. Boland GJ, Hall R. Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 1994, 16:93-108
    61. Boland GJ. Stability analysis for evaluating the influence of environment on chemical and biological control of white mold (Sclerotinia sclerotiorum) of bean. Biological Control, 1997, 9:7-14
    62. Boyle C, Gotz M, Dammann-Tugend U, Schulz B. Endophyte-host interactions III. Local vs. systemic colonisation. Symbiosis, 2001,31:259-281
    63. Brundrett MC. Diversity and classification of mycorrhizal associations. Biological Reviews,2004,79:473-495
    64. Camp AR, Dillard HR, Smart CD. Efficacy of Muscodor albus for the control of Phytophthora blight of sweet pepper and butternut squash. Plant Disease, 2008, 92(11):1488-1492
    65. Campbell WA. A new species of Coniothyrium parasitic on sclerotia. Mycologia, 1947,39:190-195
    66. Cannon PF, Simmons CM. Diversity and host preference of leaf endophytic fungi in the Iwokrama Forest Reserve, Guyana. Mycologia,2002,94(2):210-220
    67. Carroll GC. Forest endophytes:pattern and process. Canadian Journal of Botany, 1995,73(S1):1316-1324
    68. Carroll GC. The biology of endophytism in plants with particular reference to woody plants. In: Fokkema N J, van den Heuvel J eds. Microbiology of the Phyllosphere. Cambridge, U.K.:Cambridge University Press, 1986. 205-222
    69. Casinovi CG, Grandolini G, Mercantini R, Oddo N, Olivieri R, Tonolo A. A new antibiotic produced by a strain of Aspergillus flavipes. Tetrahedron Letters,1968,27: 3175-3178
    70. Chapman, Laurence R. Biologically active secondary metabolites of the fungus, Aspergillus flavipes. The Ohio State University, ProQuest, UMI Dissertations Publishing, 1993,9325471
    71. Collado J, Platas G, Gonzalez I, Pelaez F. Geographical and seasonal influences on the distribution of fungal endophytes in Quercus ilex. New Phytologist, 1999,144: 525-532
    72. Conn VM, Christopher M, Franco M. Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Applied and Environmental Microbiology,2004,70(3):1787-1794
    73. Di Poetro A, Gut-Rella M, Pachlatko JP, Schwinn, FJ. Role of antibiotics produced by Chaetomium globosum in biocontrol of Pythium ultimum, a causal agent of damping-off. Phytopathology, 1992,82:131-135
    74. Domsch KH, Gams W, Anderson TH. Compendium of soil fungi. London: Academic Press.1980
    75. Dong Z, Canny MJ, McCully MW, Roboredo MR, Cabadilla CF, Ortega E, Rodes R. A nitrogen-fixing endophyte of sugarcane stems. Plant Physiology, 1994,105: 1139-1147
    76. Droby S, Cohen L, Daus A Weiss B, Horev B, Chalutz E, Katz H, Keren-Tzur M, Shachnai A, Commercial testing of Aspire:a yeast preparation for the biological control ofpostharvest decay of citrus. Biological Control, 1998,12:97-101
    77. Dunbar J, Takala S, Barns SM, Davis JA, Kuske CR. Levels of bacterial community diversity in four arid soils compared by cultivation and16S rRNA gene cloning. Applied and Environmental Microbiology,1999,65(4):1662-1669
    78. Elena AT, Christiane B, Alexander IN. Production of gibberellic acids by an orchid-associated Fusarium proliferatum strain. Fungal Genet Biol 45:1393-1403
    79. Elvira-Recuenco M, Vuurde van JWL (2000) Natural incidence of endophytic bacteria in pea cultivars under field conditions. Canadian Journal of Microbiology, 2008,46:1036-1041
    80. Ezra D, Hess WM, Strobel GA. New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus. Microbiology, 2004, 150(12):4023-4031
    81. Fernando WGD, Nakkeeran S, Zhang Y, Savchuk S. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Protection, 2007, 26(2):100-107
    82. Fialho MB, Toffano L, Pedroso MP. Volatile organic compounds produced by Saccharomyces cerevisiae inhibit the in vitro development of Guignardia citricarpa, the causal agent of citrus black spot. World Journal of Microbiology and Biotechnology,2010,26(5):925-932
    83. Fisher PJ, Petrini O, Scott HML. The distribution of some fungal and bacterial endophytes in maize (Zea mays L.). New Phytologist, 1992, 122(2): 299-305
    84. Fitt BD, Huang YJ, van den Bosch F, West JS. Coexistence of related pathogen species on arable crops in space and time. Annu. Rev. Phytopathol. 2006, 44: 163-182
    85. Fravel D, Olivain C, Alabouvette C. Fusarium oxysporum and its biocontrol. New Phytologist, 2003,157(3):493-502
    86. Freire ES, Campos VP, Pinho RSC, Oliveira DF, Faria MR, Pohlit AM, Noberto NP, Rezende EL, Pfenning LH, Silva JRC. Volatile substances produced by Fusarium oxysporum from coffee rhizosphere and other microbes affect Meloidogyne incognita and Arthrobotrys conoides. Journal of Nematology, 2012, 44: 321-328
    87. Fuchs JG, Moenne-Loccoz Y, Defago G. Nonpathogenic Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt in tomato. Plant Disease, 1997,81(5): 492-496
    88. Gagne S, Richard C, Rousseau H, Antoun H. Xylem-residing bacteria in alfalfa roots. Canadian Journal of Microbiology, 1987, 33:996-1005
    89. Gao FK, Dai CC, Liu XZ. Mechanisms of fungal endophytes in plant protection against pathogens. African Journal of Microbiology Research, 2010, 4: 1346-1351
    90. Garbeva P, van Overbeek LS, van Vuurde JWL, van Elsas JD.6 (2001) Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microbiological Ecology,41:369-383
    91. Gasoni L, de Gurfinkel B S. The endophyte Cladorrhinum foecundissimum in cotton roots: phosphorus uptake and host growth. Mycological Research, 1997, 101: 867-870
    92. Germida JJ, Siciliano SD, Renato de Freitas J, Seib AM. Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMSMicrobiology Ecology, 1998,26(1):43-50
    93. Gilardi G, Tinivella F, Gullino ML, Garibaldi A. Seed dressing to control Fusarium oxysporum f.sp. Lactucae. Journal of Plant Diseases and Protection,2005, 112: 240-246.
    94. Gizi D, Stringlis IA, Tjamos SE. Seedling vaccination by stem injecting a conidial suspension of F2, a non-pathogenic Fusarium oxysporum strain, suppresses Verticillium wilt of eggplant. Biological Control, 2011,58(3):387-392
    95. Godoy G, Steadman J R, Dickman M B, Dickman MB, Dam R. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiological and Molecular Plant Pathology, 1990, 37(3): 179-191
    96. Gonzalez MC, Anaya AL, Glenn AE, Macias-Rubalcava ML, Hernandez-Bautista BE, Hanlin RT. Muscodor yucatanensis, a new endophytic ascomycete from Mexican chakah, Bursera simaruba. Mycotaxon,2009,110(1):363-372
    97. Govinda Rajulu MB, Thirunavukkarasu N, Suryanarayanan TS, Ravishankar JP, Gueddari NE, Moerschbacher BM. Chitinolytic enzymes from endophytic fungi. Fungal Diversity, 2010,47:43-53
    98. Grimme E, Zidack NK, Sikora RA, Sikora RA, Strobel GA, Jacobsen BJ. Comparison of Muscodor albus volatiles with a biorational mixture for control of seedling diseases of sugar beet and root-knot nematode on tomato. Plant Disease, 2007,91(2):220-225
    99. Hadley G, Perombelon M. Production of Pectic Enzymes by Rhizoctonia solani and orchid endophytes. Nature, 1963,200:1337
    100. Hallmann J, Berg G, Schulz B. Isolation procedures for endophytic microorganisms. Microbial root endophytes. Springer Berlin Heidelberg, 2006, pp.300-314
    101. Hanada RE, Pomella AWV, Costa HS, Costa HS, Bezerra JL, Loguercio LL, Pereira JO. Endophytic fungal diversity in Theobroma cacao (cacao) and T. grandiflorum (cupuacu) trees and their potential for growth promotion and biocontrol of black-pod disease. Fungal Biology, 2010, 114(11):901-910
    102. Hegedus DD, Rimmer SR. Sclerotinia sclerotiorum: when "to be or not to be" a pathogen? FEMS Microbiology Letters, 2005,251(2):177-184
    103. Hesse U, Hahn HK, Andreeva K, Forster K, Warnstorff K, Schoberlein W, Diepenbrock W. Invest igations on the influence of neotyphodium endophytes on plant growth and seed yield of Lolium perenne genotypes. Crop Science, 2004, 44: 1689-1695
    104. Hibbett, DS. Ribosomal RNA and fungal systematics. Transactions of the Mycological Society of Japan, 1992, 33:533-556
    105. Hill MO. Diversity and Evenness:A unifying notation and its consequences. Ecology,1973,54:427-432
    106. Hoffman MT, Arnold AE. Geographic locality and host identity shape fungal endophyte communities in cupressaceous trees. Mycological Research, 2008, 112(3): 331-344
    107. Huang HC, Erickson RS, Huang C. Soil treatment with fungal agents for control of apothecia of Sclerotinia sclerotiorum in bean and pea crops. Plant Pathology, 2000, 9: 53-58
    108. Huang HC, Kokko EGI, Yanke J. Phillippe RC. Bacterial suppression of basal pod rot and end rot of dry peas caused by Sclerotinia sclerotiorum. Canadian Journal of Microbiology,1993,39:227-233
    109. Huang R, Li GQ, Zhang J, Yang L, Che HJ, Jiang, DH, Huang HC. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology, 2011,101:859-869
    110. Hyakumachi M. Research on biological control of plant diseases:present state and perspectives. Journal of General Plant Pathology, 2013,79:435-440
    111. Hyde KD, Soytong K. The fungal endophyte dilemma. Fungal Diversity, 2008,33: 163-173
    112. Jalgaonwala RE, Mohite BV, Mahajan RT. A review: Natural products from plant associated endophytic fungi. Journal of Microbiology and Biotechnology Research, 2011,1(2):21-32
    113. Kalbe C, Marten P, Berg G. Strains of the genus Serratia as beneficial rhizobacteria of oilseed rape with antifungal properties. Microbiological Research, 1996, 151(4): 433-439
    114. Kay SJ, Stewart A. The effect of fungicides on fungal antagonists of onion white rot and selection of dicarboximide-resistant biotypes. Plant Pathology,1994,43(5): 863-871
    115.Khan Z, Doty SL. Characterization of bacterial endophytes of sweet potato plants. Plant and Soil, 2009,322(1-2):197-207
    116.Kirk PM, Cannon PF, Stalpers JA, Dictionary of the Fungi, 10th Edition; CABI, 2008, ISBN: 0851998267, 784 pages
    117.Knudsen GR, Eschen DJ. Potential for biocontrol of Sclerotinia sclerotiorum through colonization of sclerotia by Trichoderma harzianum. Plant Disease, 1991,75: 466-480
    118.Koitabashi M. New biocontrol method for parsley powdery mildew by the antifungal volatiles-producing fungus Kyu-W63. Journal of General Plant Pathology, 2005, 71(4):280-284
    119.Kudalkar P, Strobel G, Riyaz-Ul-Hassan S, Geary B, Sears J. Muscodor sutura, a novel endophytic fungus with volatile antibiotic activities. Mycoscience, 2012, 53(4): 319-325
    120.Kumar S, Kaushik N. Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity. PloS One, 2013,8(2):e56202
    121.Lahlali R, McGregor L, Song T, et al. Heteroconium chaetospira Induces Resistance to Clubroot via Upregulation of Host Genes Involved in Jasmonic Acid, Ethylene, and Auxin Biosynthesis. PloS One, 2014, 9(4):e94144
    122.Lahlali R, Peng G. Suppression of clubroot by Clonostachys rosea via antibiosis and induced host resistance. Plant Pathology,2013,63:447-455
    123.Larkin RP, Hopkins DL, Martin FN. Suppression of Fusarium wilt of watermelon by non-pathogenic Fusarium oxysporum and other microorganisms recovered from a disease-suppressive soil. Phytopathology, 1996, 86(8):812-819
    124.Larran S, Perello A, Simon MR, Moreno V. The endophytic fungi from wheat (Triticum aestivum L.). World Journal of Microbiology and Biotechnology, 2007, 23: 565-572
    125.Latch GCM, Hunt WF, Musgrave DR. Endophytic fungi affect growth of perennial ryegrass. New Zealand Journal of Agricultural Research,1985,28(1):165-168
    126.Lee S, Flores-Encarnacion M, Contreras-Zentella M, Garcia-Flores L, Escamilla JE, Kennedy C. Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome C biogenesis genes. Journal of Bacteriology,2004,186:5384-5391
    127.Lee SO, Kim HY, Choi GJ, Lee HB, Jang KS, Choi YH, Kim JC. Mycofumigation with Oxyporus latemarginatus EF069 for control of postharvest apple decay and Rhizoctonia root rot on moth orchid. Journal of Applied Microbiology,2009, 106: 1213-1219
    128.Li GQ, Huang HC, Acharya SN. Antagonism and biocontrol potential of Ulocladium atrum on Sclerotinia sclerotiorum. Biological Control, 2003, 28:11-18
    129.Li HY, Zhao CA, Liu CJ, Xu XF, Endophytic fungi diversity of aquatic/riparian plants and their antifungal activity in vitro. Journal of Microbiology, 2010, 48:1-6
    130.Li Y, Chen J, Bennett R, Kiddle G, Wallsgrove R, Huang Y, He Y. Breeding, inheritance, and biochemical studies on Brassica napus cv. Zhongyou 821:tolerance to Sclerotinia sclerotiorum (stem rot). 1999. 10th International Rapeseed Congress, Canberra, Australia
    131.Likar M, Regvar M. Application of temporal temperature gradient gel electrophoresis for characterisation of fungal endophyte communities of Salix caprea L. in a heavy metal polluted soil. Science of the Total Environment, 2009,407(24):6179-6187
    132.Limtong S, Koowadjanakul N. Yeasts from phylloplane and their capability to produce indole-3-acetic acid. World Journal of Microbiology and Biotechnology, 2012, 28(12):3323-3335.
    133.Liu HB, Naeem MS, Liu D, Zhu Y, Guo X, Cui P, Zhou W. Analyses of inheritance patterns and consistent expression of sporamin and chitinase PjChi-1 genes in Brassica napus. Plant Breeding, 2011,130(3):345-351.
    134.Malinowski DP, Belesky DP. Adaptations of endophyte-infected cool-season grasses to environmental stresses:Mechanisms of drought and mineral stress tolerance. Crop Science,2000,40:923-940
    135.Malinowski DP, Belesky DP. Tall fescue aluminum torelance is affected by Neotyphodium coenophyialum endophyte. Journal of Plant Nutrition, 1999, 22: 1335-1349
    136.Mari M, Guizzardi M, Brunelli M, Folchi A. Postharvest biological control of grey mould (Botrytis cinerea Pers.:Fr.) on fresh-market tomatoes with Bacillus amyloliquefaciens. Crop Protection, 1996, 15(8):699-705
    137.Maria GL, Sridhar KR, Raviraja NS. Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. Journal of Agricultural Technology, 2005,1:67-80
    138. McCain AH. A volatile antibiotic by Streptomyces griseus. Phytopathology, 1966, 56: 150
    139. McInroy JA, Kloepper JW. Studies on indigenous endophytic bacteria of sweet corn and cotton. In: O'Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms. VCH, Weinheim, Germany, 1994, pp.19-28
    140. Mcinroy JA, Kloepper JW. Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant and Soil, 1995, 173(2):337-342
    141. McInroy JA, Kloepper JWSurvey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil, 1995,173:337-342
    142. Mclaren DL, Huang HC, Rimmer SR. Hyperparasitism of Sclerotinia sclerotiorum by Talaromyces flavus. Canadian Journal of Plant Pathology, 1986, 8:43-48
    143. Mejia LC, Rojas El, Maynard Z, Bael SV, Arnold AE, Hebbar P, Herre EA. Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biological Control, 2008, 46(1):4-14
    144. Mercier J, Jimenez JI. Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biology and Technology, 2004, 31(1):1-8
    145. Mercier J, Manker DC. Biocontrol of soil-borne diseases and plant growth enhancement in greenhouse soilless mix by the volatile-producing fungus Muscodor albus. Crop Protection,2005,24(4):355-362
    146. Mercier J, Smilanick JL. Control of green mold and sour rot of stored lemon by biofumigation with Muscodor albus. Biological Control, 2005,32(3):401-407.
    147. Merriman PR. Survival of sclerotia of Sclerotinia sclerotiorum in soil. Soil Biology and Biochemistry,1976,8:385-389
    148. Miles LA, Lopera CA, Gonzalez S, de Garcia MC, Franco AE, Restrepo S. Exploring the biocontrol potential of fungal endophytes from an Andean Colombian Paramo ecosystem. BioControl, 2012, 57(5):697-710
    149. Minerdi D, Bossi S, Gullino ML, Garibaldi A. Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environmental Microbiology,2009,11:844-854
    15O. Minerdi D, Bossi S, Maffei ME, Gullino ML, Garibaldi A. Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiology Ecology, 2011,76:342-351
    151. Mitchell A M, Strobel GA, Hess WM, Vargas PN, Ezra D. A record of Muscodor crispans, a novel endophyte from Ananas ananassoides in the Bolivian Amazon. Fungal Diversity, 2008, 31,37-43
    152. Mitchell AM, Strobel GA, Moore E, Robison R, Sears J. Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology,2010, 156:270-277
    153. Moller EM, Bahnweg G, Sandermann H, Geiger HH. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Research,1992, 20(22):6115-6616
    154. Morath SU, Hung R, Bennett JW. Fungal volatile organic compounds:A review with emphasis on their biotechnological potential. Fungal Biology Reviews, 2012, 26: 73-83
    155. Muhammad H, Sumera AK, Abdul LK, Gauhar R, Youn-Ha K, Javid H, Sohn EY, Lee IJ. Gibberellin production and plant growth promotion from pure cultures of Cladosporium sp. MH-6 isolated from cucumber (Cucumis sativus L.) Mycologia, 2010, 102:989-995
    156. Nagia MMS, El-Metwally MM, Shaaban M, El-Zalabani SM, Hanna AG. Four butyrolactones and diverse bioactive secondary metabolites from terrestrial Aspergillus flavipes MM2: isolation and structure determination. Organic and Medicinal Chemistry Letters,2012,2(1):1-8
    157. Naik BS, Shashikala J, Krishnamurthy YL. Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiological Research,2009, 164(3):290-296
    158. Nakajima H, Shimomurs K, Futumoor T. Neovasipyridones A, B and C:Metabolites related to neovasinin, a phytotoxin of the fungus, Neocosmospora vasinfecta. Phytoahemistry, 1995,40(6):1643-1647
    159. Narisawa K, Usuki F. Control of Verticillium Yellows in Chinese Cabbage by the Dark Septate Endophytic Fungus LtVB3. Biological Control, 2004, 94:412-418
    16O. Nathaniels NQR, Taylor GS. Latent infection of winter oilseed rape by Leptosphaeria maculans. Plant Pathology, 1983,32:23-31
    161. Newcombe G, Shipunov A, Eigenbrode SD, Raghavendra Anil KH, Ding H, Anderson CL, Menjivar R, Crawford M, Schwarzlander M. Endophytes influence protection and growth of an invasive plant. Communications of Integrative Biology, 2009,2(1):29-31
    162. Ogawa K, Komada H. Biological control of Fusarium wilt of sweet potato by non-pathogenic Fusarium oxysporum. Annual Review Phytopathological Society of Japan,1984,50:1-9
    163. Panina Y, Fravel DR., Baker CJ, Shcherbakova LA. Biocontrol and plant pathogenic Fusarium oxysporum-induced changes in phenolic compounds in tomato leaves and roots. Journal of Phytopathology, 2007, 155:475-481
    164. Paulitz TC, Park CS, Baker R. Biological control of Fusarium wilt of cucumber with nonpathogenic isolates of Fusarium oxysporum. Canadian Journal of Microbiology, 1987,33:346-353
    165. Pereira J, Dhingra OD. Suppression of Diapothe phaseolorum f.sp. meridionalis in soybean stems by Chaetomium globosum. Plant Pathology, 1997, 46: 216-223
    166. Petrini O. Fungal endophytes of tree leaves. In: Andrews J H, Hirano SS eds. Microbial Ecology of Leaves. New York: Springer-Verlag. pp. 179-197
    167. Philipseon MN, Blair ID (1957) Bacteria in clover root tissue. Canadian Journal of Microbiology,1991,3:125-129
    168. Postrna J, Rattink H. Biological control of fusarium wilt of carnation with a nonpathogenic isolate of Fusarium oxysporum. Canadian Journal of Botany, 1992, 70:1199-1205
    169. Purdy LH. Sclerotinia sclerotiorum:history, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology, 1979, 69:875-880
    170. Raaijmakers JM, Mazzola M. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annual Review of Phytopathology, 2012, 50:403-424
    171. Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM. Thermotolerance generated by plant/fungal symbiosis. Science, 2002, 298:1581
    172. Rishbeth J. Stump protection against Fomes annosus III. Inoculation with Peniophora gigantea. Annals of Applied Biology, 1963, 52:63-77
    173. Rivera-Orduna FN, Suarez-Sanchez RA, Flores-Bustamante ZR, Gracida-Rodriguez JN, Flores-Cotera LB. Diversity of endophytic fungi of Taxus globosa (Mexican yew). Fungal Diversity, 2011,47:65-74
    174. Robert KP. The measurement of species diversity. Annual Review of Ecology and Systematics,1974,5:285-307
    175. Rocha ACS, Garcia D, Uetanabaro APT, Carneiro RTO, Araujo IS, Mattos CRR, Goes-Neto A. Foliar endophytic fungi from Hevea brasiliensis and their antagonism on Microcyclus ulei. Fungal Diversity, 2011,47:75-84
    176. Rochforta S, Fordb J, Ovendenc S, Wan SS, George S, Wildman H, Tait RM, Meurer-Grimes B, Coxd S, Coatesd J, Rhodesd D. A novel aspochalasin with HIV integrase inhibitory activity from Aspergillus flavipes. Journal of Antibiotics (Tokyo), 2005, 58(4):279-283
    177. Rodriguez MA, Cabrera G, Gozzo FC, Eberlin, MN, Godeas A. Clonostachys rosea BAFC3874 as a Sclerotinia sclerotiorum antagonist: mechanisms involved and potential as a biocontrol agent. Journal of Applied Microbiology, 2011,110: 1177-1186
    178. Rodriguez RJ, White JF, Arnold AE, Redman RS. Fungal endophytes: Diversity and functional roles. New Phytologist, 2009, 182:314-330
    179. Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, Macneil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured'microorganisms. Appllied and Environmental Microbiology,2000, 66(6):2541-2547
    180. Rouissi W, Ugolini L, Martini C, et al. Control of postharvest fungal pathogens by antifungal compounds from Penicillium expansum. Journal of Food Protection, 2013, 76(11):1879-1886
    181. Sanford CE, Coley-Smith JL, Parfitt D. Sporidesmium sclerotivorum on sclerotia of Sclerotinia. Plant Pathology,1987,36: 411-412
    182. Schena L, Nigro F, Pentimone I, Ligorio A, Ippolito A. Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biology and Technology,2003,30(3):209-220
    183. Schnabel G, Mercier J. Use of a Muscodor albus pad delivery system for the management of brown rot of peach in shipping cartons. Postharvest Biology and Technology,2006,42:121-123
    184. Schulz B, Boyle C, Draeger S, Rommert A-K, Krohn K. Endophytic fungi: a source of biologically active secondary metabolites. Mycological Research, 2002, 106: 996-1004
    185. Schulz B, Boyle C. The endophytic continuum. Mycological Research,2005,109: 661-686
    186. Schulz B, Guske S, Dammann U, Boyle C. Endophyte-host interactions II. Defining symbiosis of the endophyte-host interaction. Symbiosis, 1998, 25:213-227
    187. Schulz B, Sucker J, Aust HJ, Krohn K, Ludewig K, Jones PG, Doring D. Biologi-cally active secondary metabolites of endophytic Pezicula species. Mycological Research,1995,99:1007-1015
    188. Schulz S, Dickschat JS. Bacterial volatiles: the smell of small organisms. Natural Product Reports, 2007, 24:814-842
    189. Selvanathan S, Indrakumar I, Johnpaul M. Biodiversity of the endophytic fungi isolated from Calotropis gigantea (L.) R. Br. Recent Research in Science and Technology, 2011,3:94-100
    19O. Selvanathan S, Indrakumar I, Johnpaul M. Biodiversity of the endophytic fungi isolated from Calotropis gigantea (L.) Recent Research in Science and Technology, 2011,3:94-100
    191. Shaw M, Cooray A, Shafia A, Davis A, Devey M. Not a necrotroph but an endophyte? Implications for the epidemiology and Botrytis cinerea. Abstract Book: XVI International Botrytis Symposium (Locorotondo, Italy),2013, p10
    192. Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmuller R. The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. Journal of Biological Chemistry, 2005,280(28): 26241-26247
    193. Shipunov A, Newcombe G, Raghavendra AKH, Anderson CL. Hidden diversity of endophytic fungi in an invasive plant. American Journal of Botany, 2008, 95: 1096-1108
    194. Shishido M, Loeb BM, Chanway CP. External and internal root colonisation of lodge-pole pine seedlings by two growth-promoting Bacillus strains originated from different root microsites. Canadian Journal of Microbiology, 1995,41:707-713
    195. Silva JC, Belltiol W. Potential of non-pathogenic Fusarium oxysporum isolates for control of Fusarium wilt of tomato. Fitopatologia Brasileira, 2005,30:409-412
    196. Simpson EH. Measurement of diversity. Nature, 1949, 163:688
    197. Stierle A, Strobel G, Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 1993,260(5105):214-216
    198. Stinson AM, Zidack NK, Strobel GA, Jacobsen BJ. Mycofumigation with Muscodor albus and Muscodor roseus for control of seedling diseases of sugar beet and Verticillium wilt of eggplant. Plant Disease, 2003a, 87:1349-1354
    199. Stinson M, Ezra D, Hess WM, Sears J, Strobel G. An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Science,2003b,165:913-922
    200. Stone JK, Bacon CW, White JF. An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF(eds). Microbial endophytes. Dekker, NewYork, 2000, pp. 3-30
    201. Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R. Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. Journal of Microbiological Methods, 2010, 81(2):187-193
    202.Strobel G, Singh SK, Riyaz-Ul-Hassan S, Mitchell AM, Geary B, Sears J. An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiology Letters, 2011,320: 87-94
    203. Strobel G, Tomsheck A, Geary B, Spakowicz D, Mattner S, Mann R. Endophyte Strain NRRL 50072 producing volatile organics is a species of Ascocoryne. Mycology,2010,1(3):187-194
    204. Strobel G. Muscodor albus and its biological promise. Journal of Industrial Microbiology & Biotechnology,2006,33:514-522
    205. Strobel GA, Dirkse E, Sears J, Markworth C. Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology, 2001,147:2943-2950
    2O6. Sturz AV, Christie BR, Nowak J. Bacterial Endophytes: Potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences, 2000, 19: 1-30
    2O7. Suryanarayanan TS, Thirunavukkarasu N, Meenavalli BG, Gopalan V. Fungal endophytes:an untapped source of biocatalysts. Fungal Diversity, 2012, 54(1):19-30
    208.Sutton JC, Li D-W, Peng G, Yu H, Zhang P, Valdebenito-Sanhueza RM. Gliocladium roseum, a versatile adversary of Botrytis cinerea in crops. Plant Disease, 1997,81:316-328
    2O9. Suwannarach N, Kumla J, Bussaban B, Nuangmek W, Matsui K, Lumyong S. Biofumigation with the endophytic fungus Nodulisporium spp. CMU-UPE34 to control postharvest decay of citrus fruit. Crop Protection,2013,45:63-70
    210.Tronsmo A, Dennis C. The use of Trichoderma species to control strawberry fruit rots. The Netherlands Journal of Plant Pathology, 1977,83(1):449-455
    211. Tsavkelova E, Oeser B, Oren-Young L, Israeli M, Sasson Y, Tudzynski B, Sharon A. Identification and functional characterization of indole-3-acetamide-mediated IAA biosynthesis in plant-associated Fusarium species. Fungal Genetics and Biology, 2012,49(1):48-57
    212. Turner J, Lample JS, Ellar DJ. Stability of the 62 endotoxin from Bacillus thuringiensis sub sp. Kurstaki in a recombinant strain of Clavibacter xyli subsp. cynodontis. Applied and Environmental Microbiology, 1991,57:3522-3528
    213. Tyvaert L, Franca SC, Debode J, Hofte M. The endophyte Verticillium Vt305 protects cauliflower against Verticillium wilt. Journal of Applied Microbiology, 2014, 116:1563-1571
    214. Van Aken B, Yoon JM, Schnoor JL. Biodegradation of nitro-substituted explosives 2, 4, 6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5, 7-tetranitro-1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoids x nigra DN34). Applied and Environmental Microbiology,2004,70(1):508-517
    215.Varma A, Bakshi M, Lou B, Franken P. Piriformospora indica:A novel plant growth-promoting mycorrhizal fungus. Agricultural Research,2012,1(2):117-131
    216.Varma A, Verma S, Sahay, N, Butehorn B, Franken P. Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Applied and Environmental Microbiology,1999,65(6):2741-2744
    217.Veloso J, Diaz J. Fusarium oxysporum Fo47 confers protection to pepper plants against Verticillium dahliae and Phytophthora capsici, and induces the expression of defence genes. Plant Pathology, 2012,61(2):281-288
    218.Verma S, Varma A, Rexer K H, Hassel A, Kost G, Sarbhoy A, Franken P. Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia, 1998,90:896-903
    219. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Kogel KH. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(38):13386-13391
    22O. Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, Lee IJ. Endophytic fungi produce gibberellins and indo leacetic acid and promotes host-plant growth during stress. Molecules, 2012, 17(9):10754-10773
    221.White EC. Antibacterial filtrates from cultures of Aspergillus flavipes. Experimental Biology and Medicine,1943,54:258-259
    222.White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, MA, Gelfand DH, Sninsky JJ, White TJ eds. PCR Protocols: a Guide to methods and applications. Academic Press, San Diego, 1990, pp. 315-322
    223.Wu LQ, Guo SX. Interaction between an isolate of dark-septate fungi and its host plant Saussurea involucrate. Mycorrhiza, 2008, 18:79-85
    224.Xie J, Ghabrial SA. Molecular characterization of two mitoviruses co-infecting a hypovirulent isolate of the plant pathogenic fungus Sclerotinia sclerotiorum. Virology,2012,428:77-85
    225.Xie J, Wei D, Jiang D, Fu Y, Li G, Ghabrial S, Peng Y. Characterization of debilitation-associated mycovirus infecting the plant-pathogenicfungus Sclerotinia sclerotiorum. Journal of General Virology, 2006,87:241-249
    226.Yamagiwa Y, Inagaki Y, Ichinose Y, Toyoda K, Hyakumachi M, Shiraishi T. Talaromyces wortmannii FS2 emits β-caryphyllene, which promotes plant growth and induces resistance. Journal of General Plant Pathology, 2011,77:336-341
    227.You YH, Yoon H, Kang SM, Shin JH, Choo YS, Lee IJ, Lee JM, Kim JG. Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay. Journal of Microbiology and Biotechnology, 2012, 22(11): 1549-1556
    228. Yu X, Li B, Fu Y, Jiang D, Ghabrial SA, Li G, Peng Y, Xie J, Cheng J, Huang J, Yi X. A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proceedings of the National Academy of Sciences, USA,2010, 107:8387-8392
    229.Yu X, Li B, Fu Y, Xie J, Cheng J, Ghabrial SA, Li G, Yi X, Jiang D. Extracellular transmission of a DNA mycovirus and its use as a natural fungicide. Proceedings of the National Academy of Sciences, USA, 2013, 110: 1452-1457
    230.Yuen GY, Kerr ED, Steadman JR, Craig ML. Bacterial biocontrol of white mold disease (Sclerotinia sclerotiorum). Annu Rep Bean Improv Coop.,1992,35:54-55
    231.Zhang CL, Wang GP, Mao LJ, Komon-Zelazowska M, Yuan ZL, Lin FC, Kubicek CP. Muscodor fengyangensis sp. nov. from southeast China: morphology, physiology and production of volatile compounds. Fungal Biology, 2010, 114(10):797-808
    232.Zhang Q, Zhang J, Yang L, Jiang D, Chen W, Li G. Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biological Control, 2014, 72: 98-108