苎麻响应N、P、K亏缺差异蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苎麻是中国重要的天然纤维作物之一,苎麻具有高生物产量,一年可收获三季,强大根系等特点,需肥量较大。现今对苎麻肥料利用主要通过栽培途径进行研究,尚缺乏通过分子手段对NPK的吸收、转运和代谢机制的相关研究,苎麻蛋白质组学的研究将提升其竞争力。建立一种适用于苎麻蛋白提取及双向电泳技术体系,并能同时适用于根、茎、叶等器官,达到质谱鉴定蛋白的要求,是实现蛋白质组学研究的关键步骤。通过建立的双向电泳体系研究苎麻响应缺N、P、K的差异蛋白质组学,以此研究苎麻对NPK吸收、利用和代谢分子机制,为研究苎麻N、P、K高效利用机制提供重要的参考信息。本文以“华苎五号”为实验材料,优化建立了适于苎麻的双向电泳技术体系,并进行了响应缺N、P、K的蛋白质组学研究,其主要结果如下:
     1.优化建立的双向电泳技术体系如下:蛋白提取制备方法为改良TCA/丙酮法,蛋白裂解液为:(7M Urea,2M Thiourea,4%CHAPS,1%DTT),蛋白裂解后使用4倍预冷丙酮(-20℃C)进行蛋白纯化,等电聚焦电压为50000VH。该方法较之传统的蛋白提取方法能有效去除苎麻非蛋白杂质,并能同时适用于苎麻不同器官(根、茎、叶)。茎中蛋白最少(280±6),根中蛋白点最多(1093±20),叶片居中(765±16)。叶片中含有一定量的高丰度蛋白,在一定程度上会影响低丰度蛋白的分离,茎韧皮部作为输导组织蛋白含量较少。苎麻蛋白主要分布在PH4.5-6.5,分子量40-80KDa范围内,30%-38%蛋白分布在20-40KDa区域,主要为低分子量蛋白。考马斯亮蓝染色对苎麻叶片进行验证,同样能得到清晰的蛋白图谱,其蛋白点为780±17,说明该方法能满足质谱蛋白鉴定要求。
     2.苎麻在缺N、P、K下,相对叶绿素含量不断下降,生长速度也逐渐停止,通过蛋白质组学分析了苎麻在缺N及缺K处理6d、缺P处理3d的叶片差异蛋白,MALDI-TOF/TOF质谱鉴定分别得到32、27和51个差异蛋白。其差异蛋白可分成10类,包括光合作用、蛋白定向与储藏蛋白、能量代谢、初级代谢、疾病防御、信号传导、细胞结构、转录、次生代谢、蛋白合成等功能。
     3.苎麻在N、P、K胁迫时,细胞对C源和NADPH减少,光合作用相关蛋白下调如酮糖-1,5-二磷酸羧化酶/加氧酶大亚基以适应营养胁迫。同样能量代谢也整体下降,但缺K通过增加二磷酸核苷激酶和甘油醛-3-磷酸脱氢酶活性而加强糖酵解与光合作用的联系增强抗逆性。缺P可能通过增强己糖激酶的活性促进激素的合成,激动蛋白上调促进根生长从土壤中吸收更多的P,缺P和缺K都通过积累和分泌柠檬酸盐溶解土壤中的营养而增加抗逆性。缺N则通过维持TCA循环提供能量来适应胁迫。
     4.苎麻在NPK胁迫时通过提高次生代谢物质来抵抗胁迫,缺P时苎麻通过增强亮氨酸氨基肽酶活性以促进C、N在细胞中的流动和利用抵抗P胁迫,缺K则通过促进无机硫化物合成半胱氨酸来提高抗逆性。
     5.苎麻大量HSP家族蛋白下调,苎麻在缺素期间可能产生一些过氧化物和ROS,但在缺N和缺P时分别通过提高Cu-Zn过氧化物歧化酶、光谷氨酸过氧化物还原酶B活性对此进行清除。
     6.P胁迫下抑制蛋白下调可能对苎麻的纤维生长影响较大,同时苎麻的细胞分化和生长都在一定范围内受到抑制。苎麻在N胁迫时通过加强信号传导调节ATP和DNA的合成而调控各种生命活动,以提高对缺N的耐性,但缺P和缺K蛋白合成酶下降。
Ramie (Boehmeria nivea) is a natural fiber crops characterized by high biomass yield (three harvests per year) and a strong root system. Large amount of NPK is required for ramie growth. The current research main focus on high-efficiency NPK utilization thourgh cultural management, however, there has been little research on the molecular mechanisms of ramie related to the absorption, utilization and metabolism of nitrogen (N), phosphorus (P) and potassium (K).The study of ramie proteomics will lead to enhanced competitiveness. Establishes a two-dimensional electrophoresis system and protein extraction method that is suitable for the proteomic analysis of ramie's various parts (roots, stem and leave), also it is suitable for the requirement of protein spot identification by Mass Spectrum, which is key to the success of proteomics studies. Through the established two-dimensional electrophoresis system studies the molecular mechanisms of ramie related to the absorption, utilization and metabolism of NPK by comparative proteome analysis of the response of ramie under N, P and K deficiency, and it will provide important information for further study on the high-efficiency NPK utilization mechanism of ramie. In this study, the experimental matrial of Hua Zhu#5was used to improve and establish a two-dimensional electrophoresis system and study the comparative proteome analysis of the response of ramie under N, P and K deficiency. The main results were following:
     1. This article improves and establishes a two-dimensional electrophoresis system that is suitable for the proteomic analysis of ramie's various parts by optimizing the traditional TCA/acetone protein extraction method: Protein lysis buffer (7M urea,2M thiourea,4%CHAPS,1%DTT), protein purification (4times volume of acetone), and IPG strips (pH4-7,17cm). This system is also applied to the roots, stems and leaves of ramie. Compared with traditional method, this system can effectively remove the non-protein impurities from ramie, the protein spots obtained from the improved (823±15) significantly higher than the traditional(320±14) method, and it is suitable for the different parts of ramie and the requirement of protein spot identification by Mass Spectrum, where clear protein two-dimensional electrophoretogram can be obtained; The number of protein in the stem, roots and leaves were280±6,1093±20and765±16respectively. Higher-abundance proteins were found in the leaves, which affected the resolution of lower-abundance proteins to some extent, the stem with less protein content is the major transport tissue and less involved in other physiological functions. Ramie protein was mainly distributed in the pH range4.5-6.5with molecular weight40-80KD;30%-38%of protein was distributed in the20-40KDa region, mostly low molecular weight protein. The Coomassie Brilliant Blue procedure was used to stain2-DE gels can suitable for the requirement of protein spot identification by Mass Spectrum, which can obtain780±17protein spots.
     2. The SPAD values in N-, P-and K-deficient treatments consistently declined, and the growth of ramie finally stopped. The differentially expressed proteins in the leaves of ramie were analyzed by proteome analysis after6d of N-and K-deficient treatments and3d of P-deficient treatment by using MALDI-TOF/TOF mass spectrometry and32,27and51differential proteins were obtained, respectively. The differential proteins were functionally classified into ten categories: photosynthesis, protein destination and storage, energy metabolism, primary metabolism, disease/defense, signal transduction, cell structure, transcription, secondary metabolism and protein synthesis.
     3. Under NPK deficiency, both carbon source and NADPH supply declined in ramie. The proteins related to photosynthesis such as ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit were downregulated to adapt to nutrient stress. At the same time, the energy metabolism was generally weakened. For the K-deficient treatment, the Nucleoside diphosphate kinase and GADPH activities increased and so enhanced the connection between glycolysis and photosynthesis, thus enhancing resistance. The P deficiency may induce hormone synthesis by enhancing hexokinase activity. Actin level was upregulated and promoted root growth and absorption of more P from soil. Both P and K deficiency cause the secretion and accumulation of citrate to dissolve the nutrients from the soil and increase the stress resistance. As a response to N deficiency, the TCA cycle was sustained to provide energy to adapt to the stress.
     4. Ramie generally showed higher secondary metabolism under NPK deficiency. The P deficiency may facilitate the flow and utilization of carbon and N in the cells to enhance leucyl aminopeptidase activity and to sustain plant growth. Ramie responded to K deficiency by facilitating the synthesis of cysteine using inorganic sulfides, thus increasing resistance to K deficiency.
     5. Large quantities of proteins of the HSP family were downregulated in ramie. Due to the nutrient deficiency, some peroxides and ROS were also produced. However, in N-and P-deficient treatments the peroxides and ROS were cleared in ramie by increased activities of copper-zinc superoxide dismutase and2-cysteine peroxiredoxin B.
     6. The upregulated level of profilin due to P deficiency may significantly affect fiber growth of ramie. The cell differentiation and growth of ramie were inhibited within a certain range of P. A variety of life activities of ramie were regulated by enhancing the signal transduction responsible for synthesis of ATP and DNA under N deficiency and this may help counteract the decline of protein synthase caused by P and K deficiency and increase resistance to N deficiency.
引文
1.曹晓玲,黄道友,朱奇宏,刘守龙,朱光旭.苎麻对镉胁迫的响应及其对其它重金属吸收能力的研究.中国麻业科学,2012,34(4):190-195
    2. 曾粮斌,薛召东,严智燕,余永廷,杨瑞林.苎麻叶片主要化学成分与抗苎麻夜蛾关系的研究.湖南农业科学,2011,(19):77-7,82
    3.陈建荣,郭清泉,张学文.苎麻CCoAOMT基因全长cDNA克隆与序列分析.中国农业科学,2006,39(5):1058-1063
    4.贺波,李小定,彭定祥,葛静薇,罗均,王术娥.苎麻叶中黄酮类化合物的提取工艺研究.食品工业科技,2010,31(10):259-262
    5.黄春琼,郭安平,章霄云,刘国道.苎麻COMT基因的克隆及序列分析.中国农学通报,2008,24(5):386-391
    6.黄好,刘峰,郭清泉,张学文.苎麻生长素结合蛋白ABP1基因cDNA的克隆及表达.作物学报,2008,34(8):1358-1365
    7.贾仁清,石吟梅,陈百清等.钾对苎麻生理和产量影响的研究.中国麻作,1989,(4):27-31
    8.揭雨成,王朝云,严文淦.苎麻高产的途径.植物学杂志,1993,6:22
    9.孔维忠,熊永辉,胡小林.苎麻属药用植物化学成分和生物活性的研究概况.医学信息,2011,2:763-764
    10.李伯良.功能蛋白组学.生命的化学,1998,18(6):1-3
    11.李朝东,崔国贤,谢宁,丁莎莎,陈兵兵,白玉超.苎麻叶片SPAD值与氮素含量关系的初步研究.中国麻业科学,2011,33(1):20-23
    12.李仲昆,尹为民,王崇静,王珩,李冰.序叶苎麻多糖的提取及含量测定.中国新药杂志,2004,13(12):1378-1379
    13.李宗道.麻作的理论与技术.上海:上海科学技术出版社,1982,96-251
    14.刘朝霞,邹坤,周媛,雷晓燕.酶法预处理苎麻叶提取总酚酸的工艺优化.湖北农业科学,2011,50(10):2105-2107,2113
    15.刘峰,黄妤,郭清泉,张学文,李良勇,邓晶,谢玲玲.苎麻UDPGDH基因的cDNA克隆及表达分析.中国农业科学,2008,41(11):3542-3548
    16.刘建新,喻春明,唐守伟,朱爱国,王延周,朱四元,马雄风,熊和平.苎麻果胶合成关键酶GalAT基因的克隆及表达.中国农业科学,2009,42(2):425-433
    17.刘建新,喻春明,唐守伟,朱爱国,王延周,朱四元,马雄风,熊和平.苎麻果胶合成重要酶UGlcAE基因的克隆及组织表达.作物学报,2008,34(11):1938-1945
    18.刘桃菊,黄完基,赖占筠等.钾对苎麻养分吸收及产量品质的影响.土壤肥料,1995,(6):9-12
    19.鲁运江,胡世永.苎麻施用氯化铵氮肥研究简报.中国麻作,1998,20(2):20-22
    20.栾明宝,秦占军,陈建华,王晓飞,许英,孙志民.苎麻纤维发育相关基因FB27表达与纤维细度相关研究.2009,2009年中国作物学会学术年会论文摘要集
    21.马雄风,喻春明,唐守伟,朱爱国,王延周,朱四元,刘建新,熊和平.苎麻Actinl基因克隆及其在韧皮部纤维不同发育阶段的表达.作物学报,2010,36(1):101-108
    22.孟桂元,蒋端生,柏连阳,刘杰,邬腊梅,周静.Cd胁迫下苎麻的生长响应与富集,转运特征研究.生态科学,2012a 31(2),192-196
    23.孟桂元,周静,邬腊梅,柏连阳,刘杰,罗育才.改良剂对苎麻修复镉、铅污染土壤的影响.中国农学通报,2012b,28(2):273-277
    24.欧阳译声,周兆德,崔国贤,李贵成,李宗道.钾对苎麻碳氮代谢及纤维产量和品质的影响.中国麻作,1989,11(2):25-29
    25.彭定祥.我国麻类作物生产现状与发展趋势.中国麻业科学,2009,31(增刊1):72-78
    26.任小松,张中华,李亚玲,苟云,田仁坤.氮磷钾及微肥对苎麻产量、纤维细度的影响.耕作与栽培,2006,5:38-39
    27.佘玮,揭雨成,邢虎成,崔国贤,鲁雁伟,康万利.不同程度污染农田苎麻吸收积累镉特性研究.中国农学通报,2012,28(14):275-279
    28.佘玮,邢虎成,揭雨成,陈信波.苎麻茎皮cDNA文库的构建.中国麻业科 学,2007,29(1):16-19
    29.佘玮,邢虎成,揭雨成,康万利,黄明.苎麻茎皮EST数据库构建及肌动蛋白解聚因子(ADF)和茁-tubulin基因时空表达分析.农业生物技术学报,2010,18(2):382-388
    30.佘玮,邢虎成,秦占军,罗中钦,揭雨成.苎麻茎皮表达序列标签(ESTs)分析.热带作物学报,2008,29(2):198-201
    31.田志坚,易蓉,陈建荣,郭清泉,张学文.苎麻纤维素合成酶基因cDNA的克隆及表达分析.作物学报,2008,34(1):76-83
    32.王朝云,文淦,揭雨成.苎麻施用钙、镁、硼、锌、铜肥料效果研究.土壤肥料,1991,6:33-35
    33.王春桃,李宗道,余泰万,刘沫生,萧之平,崔国贤,薛南冬,李贵成,邓明其.苎麻优质高产施肥方案及施用技术研究.湖南农业大学学报,1994,20(4):318-324
    34.王冶,张兴,揭雨成,佘玮,邢虎成,朱守晶.苎麻对矿区土壤中重金属的原位去除效应.安徽农业科学,2012,40(3):1645-1648
    35.赵立宁,减巩固,李育君.苎麻绿原酸和黄酮含量测定.中国麻业,2003,25:62-64
    36. Abbasi F, Komatsu S. A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics,2004,4:2072-81
    37. Ahsan N, Lee D G, Alam I Kim PJ, Lee JJ, Ahn YO, Kwak SS, Lee IJ, Bahk JD, Kang KY, Renaut J, Komatsu S, Lee BH. Comparative proteomic study of arsenic-induced differentially expressed protein in rice roots reveals glutathione plays a central role during As stress. Proteomics, 2008,8:3561-3576
    38. Ahsan N, Nanjo Y, Sawada H, Kohno Y, Komatsu S. Ozone stress-induced proteomic changes in leaf total soluble and chloroplast proteins of soybean reveal that carbon allocation is involved in adaptation in the early developmental stage. Proteomics,2010,10:2605-2619
    39. Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie I. A novel experimental design for comparative two dimensional gel analysis: two dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics, 2003,3(1):36-44
    40. Ali GM, Komatsu S. Proteomic analysis of rice leaf sheath during drought stress. JProteome Res, 2006,5:396-403
    41. Alvarez S, Marsh EL, Schroeder SG, Schachtman DP. Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ, 2008,31:325-340
    42. Anders LBM, Pai P, Birgit A, BIRTE S Jan KS, Christine F. Responses of barley root and shoot proteomes to long-term nitrogen deficiency, short-term nitrogen starvation and ammonium. Plant Cell Environ, 2011,34:2024-2037
    43. Anderson NL, Anderson N G. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis, 1998, 19:1853-1861
    44. Arif I, Afridi M, Shahid U. et al. Potassium Nutrition Under Different Irrigation Levels in Selected Crops. J Pot Res, 1996,12:186-193
    45. Augustine RC, Vidali L, Kleinman KP, Bezanilla M. Actin depolymerizing factor is essential for viability in plants, and its phosphoregulation is important for tip growth. Plant J 2008,54:863-875
    46. Bahrman N, Gouy A, Devienne-Barret F, Hirel B, Vedele F, Gouis JL. Differential change in root protein patterns of two wheat varieties under high and low nitrogen nutrition levels. Plant Sci 2005,168(1):81-87
    47. Bahrman N, Le Gouis J, Negroni L, Amilhat L, Leroy P, Laine AL, Jaminon O. Differential protein expression assessed by two-dimensional gel electrophoresis for two wheat varieties grown at four nitrogen levels. Proteomics 2004, 4(3): 709-719
    48. Bao Y, Hu G, Flagel LE, Salmon A, Bezanilla M, Paterson AH, Wang Zining Wendel JF. Parallel up-regulation of the profilin gene family following independent domestication of diploid and allopolyploid cotton (Gossypium). PNAS, 2011,108(52):21152-21157
    49. Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, et al. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 1998; 391(6666):485-488
    50. Bhakti P, Alfredo SN, Paolo P, Maurizio C, Luca E. Evaluation of protein pattern changes in roots and leaves of Zea mays plants in response to nitrate availability by two-dimensional gel electrophoresis analysis. BMC Plant Biol,2009,9:113
    51. Bhushan D, Pandey A, Choudhary MK, Datta A, Chakraborty S, Chakraborty N. Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress. Mol Cell Proteomics 2007,6:1868-1884
    52. Bodzon-Kulakowska A, Bierczynska-Krzysik A, Dylag T, Drabik A, Suder P, Noga M, Jarzebinska J, Silberring J. Methods for samples preparation in proteomic research. J Chromatogr B, 2007,849:1-31
    53. Bole J B, Pittman U J. Spring soil water, precipitation, and nitrogen fertilizer: effect on barley grain protein content and nitrogen yield. Can JSoil Sci, 1980,60: 471-477
    54. Bona E, Francesco M, Maria C, Graziella B. Copper stress in Cannabis sativa roots:morphological and proteomic analysis. Caryologia, 2007,60(1-2):96-101
    55. Bonner ER, Cahoon RE, Knapke SM, Jez JM. Molecular basis of cysteine biosynthesis in plants:Structural and functional analysis of O-acetylserine sulfhydrylase from Arabidopsis thaliana. J Biol Chem, 2005,280(46): 38803-38813
    56. Boutilier R G, St-Pierre J. Surviving hypoxia without really dying. Comp Biochem Phys A, 2000,126(4):481-490
    57. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem,1976,72: 248-254
    58. Brenner SE. Errors in genome annotation. Trends Genet, 1999,15:132-133
    59. Brown RH. A difference in N use efficiency in C3 and C4 plants and its implications in adaptation and evolution. Crop Sci Soc Am, 1978,18:93-98
    60. Cakmak I, Hengeler C, Marschner H. Partitioning of shoot and rootdry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J Exp Botany, 1994,45:1245-1250
    61. Candiano G, Bruschi M, Musante L, et al. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis, 2004,25(9): 1327-1333
    62. Castellanos-Serra L, Paz-Lago D. Inhibition of unwanted proteolysis during sample preparation: evaluation of its efficiency in challenge experiments. Electrophoresis,2002,23(11):1745-1753.
    63. Cechin I, Fumis T F. Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse. Plant Sci, 2004,166:1379-1385
    64. Chaudhary B, Hovav R, Rapp R, Verma N, Udall J A, Wendel JF. Global analysis of gene expression in cotton fibers from wild and domesticated Gossypium barbadense. Evol Dev, 2008,10(5):567-582
    65. Chen SB, Gollop N, Heuer B. Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings: effect of genotype and exogenous application of glycinebetaine. JExp Bot, 2009,60:2005-2019
    66. Chen T, Qi JM, Xu JT, Chen PP, Tao AF, Chen FC, Chen W. Optimization of Two-Dimensional Gel Electrophoresis for Kenaf Leaf Proteins. Agric Sci in China, 2011b,10(12):1842-1850
    67. Chen ZJ, Cui QQ, Liang CY, Sun LL, Tian J, Liao H. Identification of differentially expressed proteins in soybean nodules under phosphorus deficiency through proteomic analysis. Proteomics, 2011a,11:4648-4659
    68. Chepyshko H, Lai CP, Huang LM, Liu JH, Shaw JF. Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis. BMC genomics, 2012,13(1): 309
    69. Chevalier F, Rossignol M. Proteomic analysis of Arabidopsis thaliana ecotypes with contrasted root architecture in response to phosphate deficiency. J plant physiol, 2011,168:1885-1890
    70. Cho JI, Ryoo N, Eom JS, Lee DW, Kim HB, Jeong SW, et al. Role of the rice hexokinases OsHXK5 and OsHXK6 as glucose sensors. Plant physiol, 2009,149(2):745-759
    71. Collins M, Duke S H. Influence of Potassium-Fertilization Rate and Form on Photosynthesis and N2 Fixation of Alfalfa. Crop Sci, 1981,21:481-485
    72. Colomb B, Bouniols A, Delpech C. Effect of various phosphorus availabilities on radiation-use efficiency in sunflower biomass until anthesis. J Plant Nutr, 1995, 18:1649-58
    73. Damerval C, Devienne D, Zivy M, Thiellement H. Technical improvements in two-dimensional electrophoresis increase the level of genetic-variation detected in wheat-seedling proteins. Electrophoresis, 1986,7:52-54
    74. Dong H, Kong X, Li W, Tang, W, Zhang, D. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Field Crop Res, 2010,119:106-113
    75. Dooki AD, Mayer-Posner FJ, Askari H, Zaiee AA, Salekdeh GH. Proteomic responses of rice young panicles to salinity. Proteomics, 2006,6:6498-507
    76. Drouin G, Dover GA. Independent gene evolution in the potato actin gene family demonstrated by phylogenetic procedures for resolving gene conversions and the phylogeny of angiosperm actin genes. JMol Evol, 1990,31(2):132-150
    77. Evans J R. Photosynthesis and nitrogen relationship in leaves of C3 plants. Oecologia,1989,78:9-19
    78. Evans JR, Terashima I. Effects of nitrogen nutrition on electron transport components and photosynthesis in spinach. Aust J Plant Physiol, 1987,14:59-68
    79. Flexas J, Bota J, Loreto F, Comic G, Sharkey TD. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol, 2004,6(3):269-279
    80. Fothergill-Gilmore LA, Michels PA. Evolution of glycolysis. Prog Biophys Mol Biol, 1993,59:105-235
    81. Francis S, Collins ED, Green AE, Guttmacher, Mark S. A vision for the future of genomics research. Nature, 2003,422:835-847
    82. Fredeen A L, Gamon J A, Field C B. Responses of photosynthesis and carbohydrate-partitioning to limitations in nitrogen and water availability in field-grown sunflower. Plant Cell Environ, 1991,14:963-970
    83. Freeman, W.M. and Hemby, S.E. Proteomics for protein expression profiling in neuroscience. Neurochem. Res,2004,29,1065-1081
    84. Ge CL, Wang ZG, Wan DZ, Ding Y, Wang YL, Shang Q, Luo SS. Proteomic Study for Responses to Cadmium Stress in Rice Seedlings. Rice Sci, 2009,16: 33-44
    85. Giavalisco P, Nordhoff E, Lehrach H, Gobom J, Klose J. Extraction of proteins from plant tissues for two-dimensional electrophoresis analysis. Electrophoresis. 2003,24:207-216
    86. Gilbert N W, Tucker T C. Growth, yields and yield components of safflower as affected by source, rate and time of application of nitrogen. Agron J, 1967,59: 54-55
    87. Goda K, Sreekala MS, Gomes A, Kaji T, Ohgi J. Improvement of plant based natural fibers of toughening green composites-effect of load application during mercerization of ramie fibers. Compos Part (A), 2006; 37:2213-2220
    88. Gorg A and Weiss W. Proteome Research: Two-Dimensional Electrophoresis and Identification Methods, in: Rabilloud, T.(Ed.), Springer, Berlin, 2000, pp.57-106
    89. Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics, 2004,4:3665-3685
    90. Gu YQ, Holzer FM, Walling LL. Over expression, purification and biochemical characterizationof the wond-induced Leucyl aminopeptidase of tomato. Eur J Biochem, 1999,263:726
    91. Guo Y, Song Y. Differential proteomic analysis of apoplastic proteins during initial phase of salt stress in rice. Plant Signaling & Behavior, 2009,4:121-122
    92. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol, 1999,17:994-999
    93. Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian SY, Ober ES, Hosseini Salekdeh G. Proteome analysis of sugar beet leaves under drought stress. Proteomics, 2005; 5(4):950-960
    94. Hak R, Rinderle-Zimmer U, Lichtenthaler HK, Natr L. Chlorophyll a fluorescence signatures of nitrogen deficient barley leaves. Photosynthetica, 1993, 28:151-159
    95. Hancock JT, Henson D, Nvirenda M, Desikan R, Harrison J, Lewis M, Hughes J, Neill SJ. Proteomic identification of glyceraldehyde 3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis. Plant Physiol Bioch, 2005,43:828-835
    96. Hirel B, Le Gouis J, Ney B, Gallais A. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot, 2007,58: 2369-2387
    97. Horton P. Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. J Exp Bot, 2000,51:475
    98. Hu G, Yalpani N, Briggs SP, Johal GS. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell, 1998; 10:1095-1105
    99. Huber S C, Sugiyama T, Alberte R S. Photosynthetic determinants of growth in maize plants: effects of nitrogen nutrition on growth, carbon fixation and photochemical features. Plant Cell Physiol, 1989,30:1063-1072
    100. Hurkman WJ, Vensel WH, Tanaka CK, Whitehand L, Altenbach SB. Effect of high temperature on albumin andglobulin accumulation in the endosperm proteome of the developing wheat grain. J Cereal Sci, 2009; 49:12-23
    101. Ideker T, Galitski T, Hood L. A new approach to decoding life: systems biology. Ann. Rev. Genom. Hum Genet, 2001,2:343-372
    102. Isaacson T, Damasceno CMB, Saravanan RS, He Y, Catala C, Saladie M, Rose JKC. Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protocols,2006,1:769-774
    103. Izsaki Z, Ivanyi I. Effect of mineral fertilization on NO3-N leaching on clay soil. Commun Soil Sci Plant Anal, 2005,36:383-391
    104. Jana H, Pavel RE, Helena RE, Miroslava V, Miroslav G, Bretislav B. Comparative analysis of proteomic changes in contrasting flax cultivars upon cadmium exposure. Electrophoresis, 2010,31:421-431
    105. Jang JC, Leon P, Zhou L, Sheen J. Hexokinase as a sugar sensor in higher plants. Plant Cell, 1997,9:5-19
    106. Jeong GK, Young JP, Jin WC, Myeon HC. Comparative proteome analysis of differentially expressed proteins induced by K+ deficiency in Arabidopsis thaliana. Proteomics,2004,4:3549-3559
    107. Jesus V, Jorrin N, Ana MM, Sira EZ, Luis V, Mari AC, Miguel C, Jose V, Besma S, Gabriel D, Inmaculada R. Plant proteomics update(2007-2008): Second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics, 2009,72:285-314
    108. Kang JG, Pyo YJ, Cho JW, Cho MH. Comparative proteome analysis of differentially expressed proteins induced by K+ deficiency in Arabidopsis thaliana. Proteomics, 2004; 4:3549-3559
    109. Katarina K, Maksym D, Ludovit S, Berezhna VV, Andrea H, Rashydov NM, Martin H. Agricultural recovery of a formerly radioactive area: Ⅱ. Systematic proteomic characterization of flax seed development in the remediated Chernobyl area. J Proteomics, 2011a, 74:1378-1384
    110. Katarina K, Michal B, Maksym D, Ludovit S, Rashydov NM, Berezhna W, Miernyk JA, Martin H. Agricultural recovery of a formerly radioactive area: Ⅰ. Establishment of high-resolution quantitative protein map of mature flax seeds harvested from the remediated Chernobyl area. Phytochemistry, 2011b,72: 1308-1315
    111.Kihara T, Wada T, Suzuki Y, Hara T, Koyama H. Alteration of citrate metabolism in cluster roots of white lupin. Plant Cell Physiol, 2003,44:901-908.
    112. Kim DW, Rakwal R, Agrawal GK, Jung YH, Shibato J, Jwa NS, Iwahashi Y, Iwahashi H, Kim DH, Shim IS, Usui K. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis, 2005, 26:4521-4539
    113. Kim SG, Wang Y, Lee CH, Mun BG, Kim PJ, Lee SY, et al. A comparative proteomics survey of proteins responsive to phosphorous starvation in roots of hydroponically-grown rice seedlings. J Korean Soc Appl Bio, 2011,54:667-677
    114. Kinya A, Kazuo Y, Masayoshi K, Masataka K,Kazuya Y, Saki H, Naoyuki I, Akiho Y. Dynamic changes in the leaf proteome of a C3 xerophyte, Citrullus lanatus (wild watermelon), in response to water deficit. Planta, 2011,233: 947-960
    115. Komatsu S, Yamada E, Furukawa K. Cold stress changes the concanavalin A-positive glycosylation pattern of proteins expressed in the basal parts of rice leaf sheaths. Amino Acids,2009,36:115-123
    116. Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, et al. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell, 2010,18,927-937
    117. Latkovic D, Jacimovic G, Sikora V, et al. Effect of Fertilization System and NO3-N Distribution on Corn Yield. Cereal Res Commun, 2011,39:289-297
    118. Lee D G, Ahsan N, Lee S H, Bahk J D, Kang K Y, Lee B H. Chilling stress-induced proteomic changes in rice root. J Plant Physiol, 2009,166:1-11
    119. Li J, Wu XD, Hao ST, Wang XJ, Ling HQ. Proteomic response to iron deficiency in tomato root. Proteomics, 2008a, 8:2299-2311
    120. Li K P, Xu C Z, Zhang K W, Yang A F, Zhang J R. Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize {Zea mays L.) plants. Proteomics, 2007,7:1501-1512
    121. Li KP, Xu CZ, Li ZX, Zhang KW, Yang AF, Zhang JR. Comparative proteome analyses of phosphorus responses in maize {Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency. Plant J, 2008b,55:927-939
    122. Li CN, Chiou SJ, Tong TS, Lee CY, Lee LT, Cheng CM. Development and validation of molecular markers for characterization of Boehmeria nivea var. nivea and Boehmeria nivea var. tenacissima. Chinese Med, 2010,5(40):2-9.
    123. Lin SK, Chang MC, Tsai YG, Lur HS. Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics, 2005,5:2140-2156
    124. Liu LJ, Chen HQ, Dai XB, Wang H, Peng DX. Effect of Planting Density and Fertilizer Application on Fiber Yield of Ramie (Boehmeria nivea). J Integr Agric, 2012,11:1199-1206
    125. Liu T, Zhu S, Tang Q, Chen P, Yu Y, Tang S. De novo assembly and characterization of transcriptome using Illumina paired-end sequencing and identification of CesA gene in ramie (Boehmeria nivea L. Gaud). BMC genomics, 2013a,14:125
    126. Liu T, Zhu S, Tang Q, Yu Y, Tang S. Identification of drought stress-responsive transcription factors in ramie (Boehmeria nivea L. Gaud). BMC Plant Biol, 2013b, 13:130
    127. Liu JX, Yu CM, Tang SW, Zhu A G, Wang YZ, Zhu SY, Ma XF, Xiong HP. Cloning and Expression of Key Enzyme Gene GalAT in Ramie Pectin Biosynthesis. Agric Sci in China, 2009,8:664-670
    128. Liu, L.J., Peng, D.X., Wang, B. 2008. Genetic Relation Analysis on Ramie [Boehmeria nivea (L.) Gaud.] Inbred Lines by SRAP Markers. Agric Sci in China,7:944-949
    129. Luo S, Ishida H, Makino A, Mae T. Fe2+ -catalyzed site-specific cleavage of the large subunit of ribulose 1,5-bisphosphate carboxylase close to the active site. J Biol Chem, 2002,277:12382-12387
    130. Lynch JP. Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol, 2011,156:1041-1049
    131. Lyons J M. Chilling injury in plants. Annu Rev Plant Physiol, 1973,24:445-466
    132. Maathuis FJM, Ichida AM, Sanders D, Schroeder JI. Roles of higher plant K+ channels. Plant Physiol, 1997; 114:1141-1149
    133. Marschner H, Kirkby EA, Cakmak I. Effect of mineral nutritional status on shoot-root partitioning of photo assimilates and cycling of mineral nutrients. J Exp Bot, 1996,47:1255-1263
    134. McDonald AJS, Ericsson T, Larsson CM. Plant nutrition, dry matter gain and partitioning at the whole-plant level. J Exp Bot, 1996,47:1245-1253
    135. Mitra MB, Elham S, Ali ASB, Andrea M, Hans PM, Naghavi MR, Vahid H, Mohsen M, Hajirezaei MR, Foad M, Bahman E, Ghasem HS. A proteomics view on the role of drought-induced senescence and oxidative stress defense in enhanced stem reserves remobilization in wheat. J Proteomics, 2011,74:1959-1973
    136. Mock HP, Grimm B. Reduction of uroporphyrinogen decarboxylase by antisense RNA expression affects activities of other enzymes involved in tetrapyrrole biosynthesis and leads to light-dependent necrosis. Plant Physiol, 1997; 113: 1101-1112
    137. Moller AL, Pedas PAI, Andersen B, Svensson B, Schjoerring JK, Finnie C. Responses of barley root and shoot proteomes to long-term nitrogen deficiency, short-term nitrogen starvation and ammonium. Plant Cell Environ, 2011,34: 2024-2037
    138. Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science, 2003,300:332-336
    139. Neta-Sharir I, Isaacson T, Lurie S, Weiss D. Dual role for tomato heat shock protein 21:Protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell, 2005,17:1829-1838
    140. Nohzadeh MS, Habibi RM, Heidari M, Salekdeh GH. Proteomics reveals new salt responsive proteins associated with rice plasma membrane. Biosci Biotechnol Biochem,2007,71:2144-2154
    141. Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, Kang NY, Lee S, Cheong H, Park OK. Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell, 2005,17:2832-2847
    142. Oosterhuis D. Physiology and nutrition of high yielding cotton in the USA. Informacoes Agronomicas Piracicaba, 2001,95:18-24
    143. Pan ZY, Liu Q, Yun Z, Guan R, Zeng WF, Xu Q, Deng XX. Comparative proteomics of a lycopene-accumulating mutant reveals the important role of oxidative stress on carotenogenesis in sweet orange (Citrus sinensis [L.] osbeck). Proteomics,2009,9:5455-5470
    144. Pandey A, Mann M. Proteomics to study genes and genomes. Nature, 2000,407: 837-846
    145. Paolo L, Dale S, Christine F, Anna MDL, Anna MM, Birte S, Domenico L, Stefania M. Comparative proteome analysis of metabolic proteins from seeds of durum wheat (cv. Svevo) subjected to heat stress. Proteomics, 2010,10: 2359-2368
    146. Park SK, Seo JB, Lee MY. Proteomic profiling of hempseed proteins from Cheungsam. Biochimica Et Biophysica Acta, 2012,1824:374-382
    147. Parker R, Flowers TJ, Moore AL, Harpham NV. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot, 2006,575:1109-1118
    148. Patterson SD, Aebersold H. Proteomics: the first decade and beyond. Nature Genet, 2003,33:311-323
    149. Prinsi B, Negri A, Pesaresi P, Cocucci M, Espen L. Evaluation of protein pattern changes in roots and leaves of Zea mays plants in response to nitrate availability by two-dimensional gel electrophoresis analysis. BMC Plant Biol, 2009,9:113
    150. Radin J W, Hartung W, Kimball BA, Mauney J R. Correlation of stomatal: conductance with photosynthetic capacity of cotton only in a CO2-enriched atmosphere-mediation by abscisic-acid. Plant Physiol, 1988,88:1058-1062
    151. Raharjo TJ, Widjaja I, Roytrakul S, Robert V. Comparative Proteomics of Cannabis sativa Plant Tissues. JBiomolecular Tech,2004,15:97-106
    152. Riccardi F, Marie-Pierre Jacquemot P G, Vincent D, Zivy M. Deciphering genetic variations of proteome responses to water deficit in maize leaves. Plant Physi Bioch,2004,42:1003-1011
    153. Rodriguez D, Zubillaga M M, Ploschuck E, et al. Leaf area expansion and assimilate prediction in sunflower growing under low phosphorus conditions. Plant Soil, 1998,202:133-147
    154. Rolland F, Baena-Gonzalez E, Sheen J. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol, 2006,57:675-709
    155. Rose JKC, Bashir S, James JG, Jahn MM, Saravanan RS. Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J, 2004,39: 715-733
    156. Rosolem C A, Calonego J C, Foloni J S S. Leaching of nitrate and ammonium from cover crop straws as affected by rainfall. Commun Soil Sci Plant Anal, 2005, 36:819-831
    157. Salekdeh GH, Komatsu S. Crop proteomics: aim at sustainable agriculture of tomorrow. Proteomics,2007,7:2976-2996
    158. Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J. A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crop Re, 2002,76:199-219
    159. Salekdeh GhH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J. Proteomic analysis of rice leaves during drought stress and recovery. Proteomics, 2002,2: 1131-1145
    160. Sangakkara U R, Frehner M, Nosberger J. Effect of soil moisture and potassium fertilizer on shoot water potential, photosynthesis and partitioning of carbon in mungbean and cowpea. JAgron Crop Sci, 2000,185:201-207
    161. Saravanan RS, Rose JK. A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics, 2004,4: 2522-2532
    162. Sepideh T, Matthias W, Manzar H, Mohammad RN, Kambiz Q Mohammad RH, Mansoor O, Bahman YS, Abdelbagi MI, Ghasem HS. A comparative proteome approach to decipher the mechanism of rice adaptation to phosphorous deficiency. Proteomics,2009,9:159-170
    163. Setsuko K. Research on the Rice Proteome: The contribution of proteomics technology in the creation of abiotic stress-tolerant plants. Rice, 2008,1:154-165
    164. Shangguan Z P. Regulation of nitrogen nutrition on photosynthetic characteristics of winter wheat in dryland. Plant Nutr Fert Sci, 1997,3:105-110
    165. Shaw MM and Riederer BM. Sample preparation for two-dimensional gel electrophoresis. Proteomics, 2003,3:1408-1417
    166. Shibato J, Kim DW, Oh MK, Kim MK, Shim IS, Iwahashi H, Masuo Y, Rakwal R. Gel-based proteomics approach for detecting low nitrogen-responsive proteins in cultivated rice species. Physiol Mol Biol Plant, 2009,15:31-41
    167. Shimshi D. The effect of nitrogen supply on some indices of plant-water relations of beans (Phaseolus vulgaris L.). New Phytol, 1970,69:413-424
    168. Sirover MA. Subcellular dynamics of multifunctional protein regulation: mechanisms of GAPDH intracellular translocation. J Cell Biochem, 2012,113: 2193-2200
    169. Song J, Braun G, Bevis E, Doncaster K. A simple protocol for protein extraction of recalcitrant fruit tissues suitable for 2-DE and MS analysis. Electrophoresis, 2006,27:3144-3151
    170. Song Y, Masison DC. Independent regulation of Hsp70 and Hsp90 chaperones by Hsp70/Hsp90-organizing protein Stil (Hopl). J Biol Chem, 2005,280: 34178-34185
    171. Starcevic L, Latkovic D, Marinkovic B. Mineral nitrogen in the soil and its effect on corn yield. Annales UMCS Sec E, 2003,58:177-184
    172. Steer B T, Harrigan E K S. Rates of nitrogen supply during different developmental stages affect yield components of safflower (Carthamus tinctorius L.). Field Crops Res, 1986,14:221-231
    173. Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri G M, Carnemolla B, et al.. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis, 2004,25:1327-1333.
    174. Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ, Millar AH. The impact of oxidative stress on Arabidopsis mitochondria. Plant J, 2002,32:891-904
    175. Taiz L, Zeiger E. Plant Physiology: Mineral Nutrition. The Benjamin/Cummings Publishing Company, Inc. Redwood City, 1991, CA
    176. Takuya F, Akira S, Jun W, Takuro S, Mitsuru O. Metabolic alterations proposed by proteome in rice roots grown under low P and high Al concentration under low pH. Plant Sci, 2007,172:1157-1165
    177. Tatar O, E.Ilker FA, Tonk H, Aygun, O Caylak. Impact of different nitrogen and potassium application on yield and fiber quality of ramie (Boehmeria nivea). Int J Agric Biol, 2010,12:369-372
    178. The International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature, 2001,409:860-921
    179. Torabi S, Wissuwa M, Heidari M, Naghavi MR, Gilany K, Hajirezaei MR, Omidi M, Bahman YS, Ismail AM, Salekdeh GH. A comparative proteome approach to decipher the mechanism of rice adaptation to phosphorous deficiency. Proteomics,2009,9:159-170
    180. Toth VR, Meszaros I, Veres S, Nagy J. Effects of the available nitrogen on the photosynthetic activity and xanthophyll cycle pool of maize in field. J Plant Physiol, 2002,159:627-634
    181. Valcu CM and Schlink K. Efficient extraction of proteins from woody plant samples for two-dimensional electrophoresis. Proteomics, 2006,6:1599-1605
    182. Vandahl, BB, Christiansen, G, Birkelund, S. Preparation of bacterial samples for 2-D PAGE. In The Protein Protocols Handbook (pp.121-130).2009, Humana Press.
    183. Varshvsky A. The N-end rule: Fuctions, mysteries, uses. PNAS, 1996,93:12142
    184. Vincent D, Lapierre C, Pollet B, Comic G, Negroni L, Zivy M. Water Deficits Affect Caffeate O-Methyltransferase, Lignification, and Related Enzymes in Maize Leaves.A Proteomic Investigation. Plant Physiol, 2005,137:949-960
    185. Wang R, Guegler K, LaBrie ST, Crawford NM. Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell, 2000,12: 1491-1509
    186. Wang W, Tai FJ, Chen SN. Optimizing protein extraction from plant tissues for enhanced proteomics analysis. JSep Sci, 2008a,31:2032-2039
    187. Wang WX, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci, 2004,9:244-252
    188. Wang YH, Garvin DF, Kochian LV. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol, 2001,127:345-359
    189. Wang B, Liu LJ, Wang XX, Yang JY, Sun ZX, Zhang N, Gao SM, Xing XL, Peng, DX. Transgenic ramie [Boehmeria nivea (L.) Gaud.]:factors affecting the efficiency of Agrobacterium tumefaciens-mediated transformation and regeneration. Plant Cell Rep, 2009,28:1319-1327
    190. Wang, W, Scali, M, Vignani, R, Spadafora, A, Sensi, E, Mazzuca, S, Cresti, M. Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds. Electrophoresis, 2003,24: 2369-2375
    191. Wang W, Tai FJ, Chen SN. Optimizing protein extraction from plant tissues for enhanced proteomics analysis. J Sep Sci, 2008b,31:2032-2039
    192. Wang XX, Wang B, Liu LJ, Cui XP, Yang JY, Wang H, Jiang H, Luo BB, Long Z, Dou WX, Zhang N, Peng DX. Isolation of high quality RNA and construction of a suppression subtractive hybridization library from ramie (Boehmeria nivea L. Gaud.). Mol Biol Rep, 2010,37:2099-2103
    193. Westermeier R and Naven T. Proteomics in practice: A laboratory manual of proteome analysis practical proteomics. Weinheim: WILEY-VCA Verlag Gmbh, 2002.
    194. Wasinger VC, Cordwell SJ, Cerpa PA, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery SI. Progress with gene-product mapping of the mollicutes: Mycoplasma genitalium. Electrophoresis, 1995,16: 1090-1094.
    195. Wolf D D, Kimbrough E L, Blaser R E. Photosynthetic Efficiency of Alfalfa with Increasing Potassium Nutrition. Crop Sci, 1976,16:292-298
    196. Wolosiuk RA, Pontis HG. Studies on sucrose sythase. Arch Biochem Biophys, 1974,165:140-145
    197. Woodson WR, Park KY, Drory A, Larsen PB, Wang H. Expression of ethylene biosynthetic-pathway transcripts insenescing carnation flowers. Plant Physiol, 1992,99:526-532
    198. Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng XW. Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol, 2003,132:1260-1271
    199. Wu YH, Wu M, He GW, Zhang X, Li WG, Gao Y, Li ZH, Wang ZY, Zhang CG Glyceraldehyde-3-phosphate dehydrogenase: A universal internal control for Western blots in prokaryotic and eukaryotic cells. Anal Biochem, 2012,423: 15-22
    200. Xie CJ, Wang D, Yang XY. Protein Extraction Methods Compatible with Proteomic Analysis for the Cotton Seedling. Crop Sci, 2009,49:395-402
    201. Xiong L, Zhu JK. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ, 2002,25:131-139
    202. Xu G, Fan X, Miller AJ. Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol, 2012,63:153-182
    203. Xu CP, Xu Y, Huang BR. Protein Extraction for Two-Dimensional Gel Electrophoresis of Proteomic Profiling in Turfgrass. Crop Sci, 2008,48: 1608-1614
    204. Yamaguchi M, Sharp RE. Complexity and coordination of root growth at low water potentials: recent advances from transcriptomic and proteomic analyses. Plant Cell Environ,2010,33:590-603
    205. Yan JX, Devenish AT, Wait R, Stone T, Lewis S, Fowler S. Fluorescence two dimenal difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli. Proteomics, 2002,2:1682-1698
    206. Yan S, Tang Z, Su W, Sun W. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics, 2005,5:235-244
    207. Yan JX, Wait R, Berkelman T, Rachel A, Jules AW, Colin HW, Michal JD. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis, 2000,21:3666-3672
    208. Yang B, Zhou M, Shu WS, Lan CY, Ye ZH, Qiu RL, Jie YC, Cui GX, Wong MH. Constitutional tolerance to heavy metals of a fiber crop, ramie (Boehmeria nivea), and its potential usage. Environ Pollut, 2010,158:551-558
    209. Yang H, Xu L, Cui H, Zhong B, Liu G, Shi H. Low nitrogen-induced expression of cyclophilin in Nicotiana tabacum. J Plant Res, 2013,126:121-129
    210. Yang QS, Wang YQ, Zhang J, Shi W, Qian C, Peng X. Identification of aluminum-responsive proteins in rice roots by a proteomic approach: Cysteine synthase as a key player in Al response. Proteomics, 2007,7:737-749
    211. Yun Z, Jin SA, Ding YD, Wang Z, Gao HJ, Pan ZY, Xu J, Cheng YJ, Deng XX. Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage. JExp Bot, 2012,63:2873-2893
    212. Zimmermann, Bauermann RU, Morales F. Effects of growing site and nitrogen fertilization on biomass production and lignin content of linseed (Linum usitatissimum L.). J Sci Food Agric, 2006,86:415-419
    213. Zubillaga M M, Arist I J P, Lavado R S. Effect of Phosphorus and Nitrogen Fertilization on Sunflower (Helianthus annus L.)Nitrogen Uptake and Yield. J Agron Crop Sci, 2002,188:261-214