用户名: 密码: 验证码:
大蓟炭止血药效物质基础及止血增效作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大蓟为菊科植物蓟Cirsium japonicum DC.的干燥地上部分或根,是一味临床常用的止血药,在全国范围内均有广泛应用。大蓟用于临床常常炒炭止血,研究表明大蓟炒炭后止血作用增强,但由于炒炭后止血成分柳穿鱼叶苷含量下降,无法合理解释其炮制增效的机理,为解决这一问题,我们在本篇论文中进行了以下实验研究。
     目的:
     (1)优选实验原药材,比较不同产地大蓟炭止血药效与化学成分差异。
     (2)对大蓟炭的化学成分进行研究,阐明大蓟炒炭后的主要成分变化,揭示其转化机理。
     (3)建立实验所需动物出血模型,研究大蓟炭止血作用机制,筛选大蓟炭止血活性部位;对柳穿鱼叶苷、柳穿鱼黄素的止血药效差异,及其作用机制进行研究;对柳穿鱼叶苷、柳穿鱼黄素大鼠小肠吸收情况进行研究,比较其吸收差异。对柳穿鱼黄素大鼠小肠代谢产物进行分析。
     (4)研究不同地区大蓟炭柳穿鱼黄素含量;响应面法研究大蓟炭炮制工艺;研究大孔树脂提取、纯化柳穿鱼叶苷工艺条件;研究大蓟炒炭对其微量元素含量变化的影响。方法:
     (1)采用小鼠断尾法和玻片法测定了不同产地大蓟炭的止血药效、利用HPLC对不同地区生大蓟、大蓟炭成分差异进行比较。
     (2)采用系统提取分离法、结合正反相柱层析、大孔树脂吸附柱层析、Sephadex LH-20等分离手段,利用质谱、核磁共振分析方法对大蓟炭成分进行分离、纯化、鉴定。利用HPLC分析大蓟炒炭后变化的主要成分。
     (3)利用中医热药(附子、干姜)、干酵母、西医抗凝药物肝素钠与华法林制作小鼠出血模型,采用断尾法、毛细管法评价出血模型,比较大蓟炭对不同方法制作的出血模型小鼠出血、凝血时间的影响;系统溶剂萃取法分离大蓟不同极性部位,结合小鼠断尾法、毛细管法研究大蓟炭止血活性部位;采用小鼠断尾法、毛细管法、大鼠血凝四项、大鼠血小板CD62P阳性表达率等方法评价比较柳穿鱼叶苷、柳穿鱼黄素的止血药效差异;采用大鼠小肠外翻肠囊法、大鼠在体原位灌注法研究柳穿鱼叶苷、柳穿鱼黄素吸收机制,利用HPLC比较分析其吸收代谢产物;体外酶水解,结合LC-MS分析柳穿鱼黄素大鼠小肠吸收、代谢产物。
     (4)采用HPLC比较不同产地大蓟炭柳穿鱼黄素含量;根据中心组合试验设计原理(Box-Benhnken),采用响应面分析方法研究大蓟炭炮制工艺条件;结合HPLC法,对XAD-16吸附大孔树脂分离、纯化水相部位柳穿鱼叶苷的工艺进行研究;利用微波消解-ICP-OES接合的方法,研究大蓟炒炭对其微量元素变化的影响。结果:
     (1)不同产地的大蓟炭确实存在较大的止血作用差异,江西樟树、湖南地区产大蓟炭的止血作用最强,河北产大蓟炭也表现出一定的止血药效,安徽产大蓟炭则没有止血作用。HPLC分析显示,各地大蓟成分差异较大,相同成分含量亦存在较大差异。
     (2)从大蓟炭中共分离得到14个单体化合物,并分别进行了结构鉴定,14个化合物分别是柳穿鱼叶苷、柳穿鱼黄素、蒙花苷、刺槐素、邻苯二甲酸二丁酯、3-羟基-4-甲基苯甲酸、5-羟基-7,4’.二甲氧基黄酮醇、3.羟基苯甲酸、芹菜素-7-O-β.D.葡萄糖醛酸苷、3-羟基.4.乙基苯甲酸、粗毛豚草素葡萄糖醛酸苷、5,7-二羟基-4’-甲氧基黄酮-7-0-β-D-葡萄糖苷、5-羟基.6,4’-二甲氧基黄酮.7.O-β-D-葡萄糖苷、芹菜素。其中,四个化合物为植物首发,分别是5-羟基-7,4’-二甲氧基黄酮醇、芹菜素.7-0.β-D-葡萄糖醛酸苷、粗毛豚草素葡萄糖醛酸苷、5-羟基.6,4’-二甲氧基黄酮.7-0.β-D-葡萄糖苷。
     大蓟在制炭后,其蒙花苷、柳穿鱼叶苷的峰面积会明显减少,而出现的两个新成分峰,分别为刺槐素与柳穿鱼黄素,结合四个成分的化学结构,推断两个新成分是由生大蓟在制炭过程中,蒙花苷与柳穿鱼叶苷水解脱去双糖后生成的黄酮苷元。
     (3)中药热药、肝素钠、华法林均能造成动物出血时间的延长(P<0.05),干酵母有延长小鼠出血、凝血时间趋势,但不具统计学意义P>0.05。对各种动物出血模型,大蓟炭均显示出良好的止血效果,其止血机制可能与其能凉血止血、拮抗肝素钠对凝血酶的抑制以及类维生素K等作用有关。
     大蓟炭氯仿、乙酸乙酯、正丁醇提取部位均显示出较强止血药效。
     柳穿鱼黄素、柳穿鱼叶苷对肝素钠制作的小鼠出血模型均有明显的促凝血、止血作用,具统计学意义(P<0.05);柳穿鱼黄素中、高剂量的止血活性要优于柳穿鱼叶苷(P<0.05);柳穿鱼黄素止血药效与剂量存在一定的相关性,而柳穿鱼叶苷止血药效与剂量相关性不明显。
     大鼠血凝四项实验显示柳穿鱼黄素、柳穿鱼叶苷能显著升高大鼠FIB值(P<0.05),高剂量的柳穿鱼黄素对大鼠APTT值具有明显的减少趋势(P>0.05),但无统计学意义,提示柳穿鱼黄素、柳穿鱼叶苷止血活性可能是通过增加机体纤维蛋白原的含量,影响纤溶与抗凝系统而发挥作用;同时,柳穿鱼黄素可能具有增加内源性途径中凝血因子Ⅷ、Ⅸ、Ⅺ或Ⅻ活性的作用。
     大鼠活化血小板CD62P实验表明,柳穿鱼叶苷、柳穿鱼黄素均具能显著增加大鼠血小板CD62P阳性表达率(P<0.05);柳穿鱼黄素具有更强的活化大鼠血小板的作用,尤其是柳穿鱼黄素高剂量,其CD62P阳性表达率高于低剂量组的柳穿鱼叶苷、低剂量组的柳穿鱼黄素,甚至高于阳性药云南白药组(P均<0.05),显示出极强的血小板活化能力。实验结果还表明,柳穿鱼叶苷、柳穿鱼黄素活化大鼠血小板CD62P阳性表达率的作用具有明显的剂量正相关性。
     大鼠小肠外翻肠囊实验证明柳穿鱼叶苷、柳穿鱼黄素在十二指肠、空肠、回肠,结肠段的吸收符合零级动力学特点,空肠与回肠是两药在体内主要吸收场所,其吸收情况好于十二指肠与结肠。柳穿鱼叶苷在整个小肠段的吸收率要明显大于其苷元柳穿鱼黄素,但由于柳穿鱼黄素在大鼠小肠内发生了明显的生物转化,该实验结果并不能真实反映两成分的吸收率。
     大鼠单向肠灌流法表明柳穿鱼黄素更易被大鼠小肠吸收,其吸收速率常数要明显大于柳穿鱼叶苷(P<0.01);柳穿鱼黄素的肠流出液HPLC图和血浆HPLC图中均可以发现多个未知代谢成分,柳穿鱼叶苷肠流出液HPLC图和血浆HPLC图则显示该成分主要以原型形式吸收。
     体外酶水解结果显示,柳穿鱼黄素在小肠与血浆中发生了明显的葡萄糖醛酸化反应,LC-MS显示新产生的成分可能为柳穿鱼黄素葡萄糖苷、其甲基化产物与代谢产物。
     (4)不同地区柳穿鱼黄素含量差异较大,部分地区(河北、安徽)大蓟炭并不含柳穿鱼黄素,樟树与浙江产大蓟炭中柳穿鱼黄素含量最高,达到0.22%
     大蓟炭炮制工艺的最佳条件为投药量165g、炮制温度310℃、炮制时间13min。
     大蓟炭提取液上样质量浓度为0.077g/mL时,溶液最佳上样量为28BV,吸附流速为3BV/h,除杂溶剂为水,除杂体积为19BV,解吸液为50%乙醇,解吸液用量为12BV,解吸附流速为2BV/h。经此工艺纯化的大蓟炭样品,其所含的柳穿鱼叶苷成分质量分数可达到68%以上。
     大蓟炭中微量元素含量差异较大,其中Ca、K离子含量最高达到30mg/g以上,Fe、Mg、Mn的含量次之,Zn、Na、Cu的含量最少,含量低于0.1mg/g。大蓟炒炭后,各微量元素含量比生品大蓟均有不同程度升高;结论:
     大蓟炒炭止血增效的炮制机理与大蓟炒炭后,柳穿鱼叶苷水解生成止血作用更强的柳穿鱼黄素存在关联,且两活性单体成分的止血药效差异可能与其体内截然不同的吸收、代谢途径有关,仍值得进一步研究。同时,中药止血往往并非单一成分引起,炒炭过程中生成炭素、鞣质、游离Ca离子浓度均能影响其止血药效,制炭过程应同步考虑这些影响因素。
     论文主要创新点:
     ①大蓟品种来源较为混杂,本文首先对不同地区大蓟止血药效及成分差异做了研究,优选了药材品种,一定程度上对本课题的顺利实施提供了保障。
     ②对大蓟炭化学成分进行了提取、分离、共分离得到14个化合物,其中四个黄酮类化合物为大蓟中首发,并在此基础上,对大蓟炒炭变化的主要化学成分的转化机理进行了阐述。
     ③首次对大蓟炭柳穿鱼黄素、柳穿鱼叶苷的止血药效及其止血作用机制进行了较为全面的研究,证明了两成分的止血作用,发现了两成分之间的止血药效差异与止血作用机制。为揭示大蓟炒炭止血增效的炮制机理提供了数据支持。
     ④学术思想上,较为创新的提出了柳穿鱼黄素、柳穿鱼叶苷的止血药效差异与其体内吸收难易是否关联这么一个科学假设。并在对柳穿鱼黄素、柳穿鱼叶苷大鼠在体、离体肠吸收实验中发现,两成分吸收差异明显,并且在大鼠体内存在明显不同的生物代谢途径。进一步结合体外酶水解与LC-MS技术,我们首次对柳穿鱼黄素大鼠体内代谢产物进行了结构分析,推测了其可能的化学结构。这些研究都为大蓟炭柳穿鱼黄素药理活性进一步研究提供了理论依据。
Cirsium japonicum DC. is widely distributed all around china, its aerial parts or roots are wildely used as a clinical traditional Chinese hemostatic medcine. Studies show after been processed into Carbonized Cirsium japonicum DC., its hemostatic activity can be enhanced and its major hemostatic content pectolinarin decreases, which is apparently illogical. In order to explain this seemingly contradictory question, we made some researches in this thesis as follows.
     Objective:
     (1)Using hemostatic efficacy as indicator to optimize the selection of Cirsium japonicum DC. in different Povinces and compare the chemical constituents in Cirsium japonicum DC. from different places.
     (2)Study the chemical constituents in Carbonized Cirsium japonicum DC.; To clarify the chemical constituents been changed in Cirsium japonicum DC. after it is been processed; Reveal the mechanism of those changes during carbonizing process.
     (3)To establish experimental animal models of bleeding and study the, hemostatic mechanisms of Carbonized Cirsium japonicum DC.; To study the hemostatic fractions of Carbonized Cirsium japonicum DC.; To compare the hemostatic differences and hemostatic mechanisms of pectolinarin and pectolinaringenin; To study the absorption mechanism and absorption differences of pectolinarin and pectolinaringenin; To study metabolites of pectolinarin and pectolinaringenin and reveal its biotransformation mechanisms in rats
     (4)Study the pectolinarigenin content of Carbonized Cirsium japonicum DC. from different places; To optimize the processing method of carbonizing; To optimize the purification process of pectolinarin by macroporous absorption resin method; To study contents of trace elements in Carbonized Cirsium japonicum DC.
     Method:
     (1)The tail tip transection and glass test methods were applied to compare the hemostatic activity differences of Cirsium japonicum DC. from different places; HPLC method was applied to compare chemical constituents differences of Cirsium japonicum DC. from different places.
     (2)To investigate the chemical constituents of Carbonized Cirsium japonicum DC. by repeated silicagel column chromatography, macroporous resin adsorption chromatography, Sephadex LH-20methods, etal. The structural identification was performed by nuclear resonance spectrometry and mass spectrometry.
     To clarify the chemical constituents been changed in Cirsium japonicum DC. after it is been processed by HPLC method; Reveal the mechanism of those changes during carbonizing process based on structures of those chemical constituents been changed.
     (3)To establish animal models of hemorrhage in mice by giving an oral administration of tradional chinese herbs (Monkshood, rhizoma zingiberis, etal)、 warfarin or giving an iv of yeast or heparin sodium in mice tail; The tail tip transection and capillary tube methods were applied to study the hemostatic activity of different extracted parts from Carbonized Cirsium japonicum DC.; To compare the hemostatic differences and hemostatic mechanisms of pectolinarin and pectolinaringenin by tail tip transection methods capillary tube method, blood coagulation funtion tests and platelet activity tests; To study the absorption mechanism of pectolinarin and pectolin-aringenin by everted rat intestinal Sac Method, single-pass perfusion and HPLC mthods; To study metabolites of pectolinaringenin by LC-MS and enzymatic hydrolysis methods in vitro.
     (4)Study the pectolinarigenin content of Carbonized Cirsium japonicum DC. from different places by HPLC method; To optimize the processing method of carbonizing by Response Surface Methodology (RSM); To optimize the purification process of pectolinarin by macroporous absorption resin method; To study contents of trace elements in Carbonized Cirsium japonicum DC. by microwave digestion and ICP-OES methods.
     Results:
     (1)Carbonized Cirsium japonicum DC from Zhangshu and Hunan show stronger hemostatic effect than Carbonized Cirsium japonicum DC from Hebei. The Cirsium japonicum DC. from Anhui show no hemostatic effect and even promote the bleeding. There were differences of hemostatic effect and compounds between Carbonized Cirsium japonicum DC. from different places.
     (2)Fourteen compounds were isolated from Carbonized Cirsium japonicum DC. All their structures were identified as pectolinarin, pectolinaringenin, linarin, acacetin, dibutyl phthalate,3-hydroxy-4-methyl-benzoic acid,3,5-dihydroxy-7-methoxy-2(4-methoxy-phenyl)-chromen-4-one,3-hydroxy-benzoic acid, apigenin-7-O-β-D-glucuronide,4-ethyl-3-hydroxy-benzoic acid、hispidulin-7-O-glucuronide,5-hydroxy-2-(4-methoxy-phenyl)-7-(3,4,5-trihydroxy-6-hydroxymethyl-tetrahydro-pyran-2-yloxy)-chromen-4-one,5-hydr oxy-6-methoxy-2-(4-methoxy-phenyl)-7-(3,4,5-trihydroxy-6-hydroxymethyl-tetrahydro-pyran-2-yloxy)-chromen-4-one, apigenin by NMR and mass spectrometry method. Among those compounds,3,5-dihydroxy-7-methoxy-2(4-methoxy-phenyl)-chromen-4-one、apigenin-7-O-β-D-glucuronide、hispidulin-7-O-glucuronide、5-hydroxy-6-methoxy-2-(4-methoxy-phenyl)-7-(3,4,5-trihydroxy-6-hydroxymethyl-tetrahydro-pyran-2-yloxy)-chromen-4-one were firstly isolated from Cirsium japonicum DC.
     After Cirsium japonicum DC. been carboinzed., the contents of linarin and pectolinarin decreased sharply and contents of pectolina-ringenin and acacetin increased, we surmised that linarin and pectolinarin were hydrolyzed into acacetin and pectolinaringenin during the Carbonized processing based on their chemical structures.
     (3)The tradional chinese herbs (Monkshood、rhizoma zingiberis, etal)、warfarin and heparin sodium can all increase bleeding and coagulating time of mice, differences were significant (p<0.05), while the yeast can also increase bleeding and coagulating time of mice, but differences weren't significant (p>0.05). Carbonized Cirsium japonicum DC. can decrease bleeding and coagulating time of mice in all bleeding animal models.
     Both chloroform, ethyl acetate and n-butanol extracted parts from Carbonized Cirsium japonicum DC. show hemostatic activity.
     Both pectolinarin and pectolinaringenin can decrease the bleeding and coagulating time of mice of bleeding model induced by heparin sodium, differences were significant (p<0.05). The bleeding and coagulating time of mice in high and median dose group of pectolinaringenin were significantly shorter than pectolinarin group (p<0.05). the hemostatic activity of pectolinaringenin is dose related.
     Both pectolinarin and pectolinaringenin can significantly increase Fib in blood of rats (p<0.05). High dose group of pectolinaringenin can decrease APTT in blood of rats, but there were no significant differences (p>0.05). the results show the realtionshiop between hemostatic effection of pectolinaringenin, pectolinarin and theirs'FIB promotion effection, it also show that pectolinarin may can enhance the activity of coagulation factor VIII、IX、 XI or XII.
     Both pectolinarin and pectolinaringenin can significantly increase positive rate of CD-62P protein expression in rat platelet (p<0.05). The positive rate of CD-62P protein expression in high dose group of pectolinaringenin is dose related higher than Yunnan Baiyao group, low dose group of pectolinarin and pectolinaringenin, the differences were significant (p>0.05)
     The result reveals that the absorption of pectolinarin and pectolinaringenin both increased over time. The absorption of both ingredients among jejunum and ileum parts were higher than other Small intestinal parts. The absorption rate of pectolinarin among entire small intestinal was much higher than the absorption rate of pectolinaringenin. The absorption approach of each sample is quiet different, Obviously some bioconversion take place in the process of pectolinarigenin adsorbtion, while the pectorinarin is aborbed in prototype, so the real absorbtion rate maynot been revealed in this experiment.
     The absorption rate constant, the effective permeability coefficients (Peff), the absorption (Ma) of pectolinarin were significantly decreased than pectolinaringenin (P<0.01); We found a few unknown components in intestinal effluent and blood of pectolinaringenin group, while the pectorinarin is aborbed in prototype
     By LC-MS and enzymatic hydrolysis methods in vitro, we inferred that metabolites of pectolinaringenin in intestinal effluent may be pectolinarin-genin-glucoside or its methylation products
     (4)Pectolinarigenin in carbonized cirsium japonicum DC. from different places varied greatly. The content of pectolinarigenin in carbonized cirsium japonicum DC. from Zhangshu. Zhejiang is0.22%, which is the highest among all different places. The pectolinarigenin content in carbonized cirsium japonicum DC. from Anhui、Hebei is undetectable.
     The best processing method of carbonizing Cirsium japonicum DC. is quantity165g processing temperature310℃、processing time13min.
     The best macroporous adsorption resin method to purifying pectolinarin is loading quantity of sample28BV、adsorption velocity3BV/h、cleaning solvent water、cleaning solvent volume19BV、desorption solvent50%ethanol、desorption solvent volume12BV. desorption velocity2BV/h, after purification the purity of the pectolinarin can reach68%.
     The content of trace elements in Carbonized Cirsium japonicum DC. varied greatly, content of Ca、K reach30mg/g, content of Fe、Mg、Mn is lower than Ca、K. content of Zn、Na、Cu reach only0. lmg/g. after Cirsium japonicum DC. been carbonized, the content of trace elements in carbonized Cirsium japonicum all increased at different extent.
     New ideas of the reseacrh:
     (1)Firstly, we made research on differences of hemostatic activity and chemical constituents in Cirsium japonicum DC. from different places in order to ensure the smooth implementation of our research.
     (2)14components from Cirsium japonicum DC. were identified. Among them3,5-dihydroxy-7-methoxy-2(4-methoxy-phenyl)-chromen-4-one、apigenin-7-O-β-D-glucuronide、hispidulin-7-O-glucuronide、5-hydroxy-6-methoxy-2-(4-methoxy-phenyl)-7-(3,4,5-trihydroxy-6-hydroxymethyl-tetrahydro-pyran-2-yloxy)-chromen-4-one were firstly isolated from Cirsium japonicum DC. The chemical constituents been changed、 the mechanism of those changes during carbonizing process were firstly studied.
     (3)The hemostatic activity difference and hemostatic mechanism between pectolinarin and pectolinaringenin was firstly studied, these results construct steady base to reveal the carbonizing processing mechanism of Cirsium japonicum DC.
     (4)We formulate a scientific hypothesis which the hemostatic activity difference between pectolinarin and pectolinaringenin may connect with their different absorption rate in rat. we found in the following study that their absorption rate varied greatly and metabolic route is quiet different. The metabolites of pectolinaringenin were firstly studied by LC-MS and enzymatic hydrolysis methods in vitro. According to the results we try to infer the chemical structure of metabolites of pectolinaringenin.
     Conclusion:
     The pectolinarigenin has stronger hemostatic activity than pectolinarin, it can explain why Carbonized Cirsium japonicum DC. show stronger hemostatic activity while its hemostatic content pectolinarin decreased after been carbonized.. It also reveals that the stronger hemostatic effection of pectolinarigenin may connect with its different absorbtion approach from pectolinarin. Usually, the active ingredients in chinese medcine may not be one, so, other elements such as carbonaceous、tannins、Ca2+all should be considered, this is still worth studying.
引文
[01]魏晋·名医别录[M].北京:人民卫生出版社,1986:154
    [02]南北朝·陶弘景.本草经集注[M].北京:人民卫生出版社,1994:331
    [03]明·兰茂.滇南本草[M].第一卷.昆明:云南人民出版社,1959:21
    [04]杜汉阳,程超寰.本草药名汇考[M].上海:上海古籍出版社,2004:46
    [05]清·刘若金.本草述[M].清康熙二十九年庚午(1690)初刻本:63
    [06]宋.苏顷.本草图经[M].合肥:安徽科学技术出版社,1994:207,645
    [07]中华人民共和国卫生部药政管理局主编.中药材手册[M].北京:人民卫生出版社,1959:30
    [08]《全国中草药汇编》编写组编.全国中草药汇编.下册.北京:人民卫生出版社,1978:68
    [09]清·汪绂.医林纂要[M].合肥:安徽科学技术出版社,1993
    [10]清·严西亭.得配本草[M].上海:上海卫生出版社,1957:7
    [11]韩保昇.日华子本草蜀本草[M].安徽:安徽科学技术出版社,2007:4
    [12]凌一揆.中药学[M].上海:上海科学技术出版社,2010:7
    [13]宋·唐慎微.证类本草[M].北京:人民卫生出版社,1957:221
    [14]宋·寇宗爽.本草衍义[M].上海:商务印书馆,1937:59
    [15]肖培根.新编中药志[M].第三卷.北京:北京工业出版社,2001:9
    [16]谢宗万.中药品种理论与应用[M].北京:人民卫生出版社,2008:947
    [17]吕侠卿.中药炮制大全[M].湖南科学技术出版社,1999,1(1):40-41.
    [18]国家药典委员会.中华人民共和国药典.北京:中国医药科技出版社,2010:23
    [19]丁安伟,等.大蓟炭炮制工艺及质量标准研究[J].中药材,1998,21(11):560.
    [20]符玲,易炳学,龚千锋,等.正交试验优选大蓟最佳炮制工艺[J].中药材,2007,30(8):918-919.
    [21]杨星辰,陆颖,俞培忠.基于柳穿鱼苷元含量的大蓟炮制工艺的优化[J].中药材,2009,32(12):1819-1821
    [22]龚跃新.20味中药炒炭前后的鞣质含量测定[J].中国中药杂志,1991,16(11):664
    [23]龚千锋,符玲.大蓟炮制前后TLC及HPLC图谱的变化[J].江西中医学院学报,2004,16(6):45
    [24]钟凌云,龚千锋,张的凤,等.大蓟枳壳厚朴3种饮片炮制机理研究思路浅析[J].时珍国医国药,2005,16(10):1008-1009.
    [25]龙金江等.大蓟、大黄、石榴皮炭药炮制前后显微比较分析[J].云南中医学院学报,1999,22(1):26
    [26]植飞,孔令义,彭司勋.大蓟化学成分的研究[J].药学学报,2003,38(6):442-447.
    [27]符玲,龚千锋,钟凌云.大蓟的研究进展综述[J].江西中医药,2003,34(10):42-43.
    [28]蒋秀蕾,范春林,叶文才.大蓟化学成分的研究[J].中草药,2006,37(4):510-511.
    [29]符玲,龚千锋等.RP-HPLC法测定大蓟中柳穿鱼叶苷的含量[J].中草药,2004, 35(11):1306-1307.
    [30]钟凌云,郑晗,龚千锋,等.大蓟炭止血药效物质初步研究[J].中华中医药杂志,2011,26(1):147-149.
    [31]倪晓霓,赵宏阳,杭太俊.大蓟、小蓟中黄酮类成分的不同提取方法及含量测定[J].江苏药学与临床研究,2005,13(1):33-35.
    [32]陈雷,高宗霞,张志娟,等.大蓟总黄酮超声提取工艺研究[J].安徽农业科学,Journal of AnhuiAgri. Sci.2010,38 (4):2044-2046.
    [33]吕亚玲.大孔树脂对大蓟总黄酮吸附的研究[J].实用临床医药志,2008,12(4):52-55.
    [34]吴彦,魏和平.大蓟多糖提取分离及含量测定[J].光谱实验室,2010,27(1):98-101.
    [35]龚千锋,余香,钟凌云,等.大蓟生品及炭品中多糖不同提取方法的比较[J].中国实验方剂学杂志,2011,17(11):94-96.
    [36]符玲,王海波,王健,等.中药大蓟地上部位的Gc-MS分析[J].中国民族民间医药杂志,2010,(3):11-12.
    [37]陆颖,段书涛,潘家祜,等.中药大蓟化学成分的研究[J].天然产物研究与开发,2009,21:563-565,615.
    [38]顾玉诚,屠呦呦.大蓟化学成分的研究.中国中药杂志[J],1992,17(8):490
    [39]Chun-Nan Lin, Munehisa Arisawa, Mineo Shimizu, etal. The constituents of Cirsium japonicum DC. Var. takao -ense KITAMURA, Isolation of two new flavonoids, Cirsitakaoside and Cirsitakaogenin[J]. Chemical and Pham ac -eutical Bulletin, 1978, 26 (7):2036-2039.
    [40]Jong Cheol Park, Jong HoLee, Jae Sue Cho, ietal. A Flavone Diglycoside from Cirsium Japonicum Var Ussuri -ense[J]. Phytochemistry, 1995,39(1):261-262.
    [41]Miyaichi Y, Matsuura M, Tomimori T. Phnolic compound from the roots of Cirsium japonicum DC[J]. Natural medicines,1995,49 (1):92-94.
    [42]Miyaichi Y, Matsuura M, Tomimori T. Phenolic compoune from the roots of Cerseum japonicum DC. [J]. Natursl Medicines (Tokyo, Japan),1995,49 (1):92-94.
    [43]Kim S-J, Kim G-H. Identification of flavones in different part of Cirsium japonicum[J]. Journal of Food Science and NUtrition. 2003,8 (4):300-335.
    [44]万武杰.鄂西大蓟花活性成分的研究[D].武汉:华中科技大学,2008.
    [45]郑晗,万春鹏,张的凤,等.大蓟炭化学成分的研究[J].江西中医学院报.2009,21(2):83
    [46]任炳忠,官昭瑛,袁海滨,等.大蓟鲜花提取物对访花昆虫的引诱性气味物质研究[J].东北师人学报:自然科学版,2007,39(4):117-120.
    [47]Takaishi Y, Okuyama T, Nakano K, etal. Absolute configuration of A triolacetylene from Cirsium japonicum[J]. Phytochemistry, 1991,30 (7):2321-2324.
    [48]Takashi Y, Okuyama T, Akemi Masuda. Acetylenes from Cirsium japon-icum[J]. Phytochemis-try, 1990,29 (12):3849-3852
    [49]Takeyoshi Sugiyama, Kyohei Yamashita. Synthesis and Absolute Configuration of Nemati-cidal Constituent of Cirsium japonicum[J]. Agric Biol Chem,1980,44 (8):1983-1984.
    [50]沈月毛,周茜兰,木全章,等.滇大蓟的化学成分研究[J].中草药,1992,23(9):498-499.
    [51]倪晓霓.大蓟与小蓟的研究现状及展望[J].时珍国医国药,2005,16(6):548-549.
    [52]郑占虎,董泽宏.中药现代研究与应用[M].北京:学苑出版社,1997.
    [53]言美娜.中药大蓟化学成分及其抗肺癌A549细胞增殖作用研究[D].北京:中央民族大学,2012.
    [54]何自伟,吕长平,吴王锁,等.葵花大蓟亲脂性化学成分研究[J].西北植物学报,2007,27(9):1844-1887.
    [55]Kawazu K, Nishii Y, Nakajima S. Two nematicidal substances from roots of Cirsium japonicum[J]. Agicultural and Biological Chemistry, 1980,44(4):903-906.
    [56]张悦,阮汉利,张勇慧,等.鄂西大蓟化学成分的研究[J].医药导报,2007,26(12):1425-1426.
    [57]陈海芳,陈凯云,袁金斌,等.大蓟的止血活性初步研究.中华中医药学刊.201028(7):1458-1459.
    [58]陈美燕.槐米炒炭前后鞣质的含量比较[J].淮海医药,2006,24(3):247-248
    [59]杨凤琴,叶莉,梁军,等.宁夏大蓟提取物不同极性部位对4种革兰阳性菌的体外抑菌活性研究[J].包头医学院学报,2012,28(4):15-16.
    [60]叶莉,杨凤琴,张志宁,等.宁夏大蓟提取物不同极性部位对5种革兰阴性菌的体外抑菌活性研究[J].辽宁中医杂志,2011,10(38):2053
    [61]叶莉,杨凤琴,梁军,等.宁夏大蓟提取物不同极性部位对4种念珠菌的体外抑菌活性[J].中国方剂学杂志,2011,17(19):222-223.
    [62]罗浔,杨志荣.大蓟挥发油的GC-MS分析及其抑菌活性的研究[J].四川大学学报:自然科学版,2009,46(5):1531-1536.
    [63]Hyun LIM, Kun Ho SON, Hyeun Wook CHANG, etal. Anti-inflammatory activity of pectolinarigenin and pectolinarin isolatedfrom Cirsium chanroenicum[J]. Biol. Pharm. Bull. 2008,31 (11):2063-2067
    [64]刘素君.大蓟抗肿瘤成份筛选及其作用机制的研究[D].四川:四川大学,2006.
    [65]刘素君,郭红.大蓟总黄酮诱导肿瘤细胞凋亡作用的研究[J].时珍国医国药,2010,21(2):294-295.
    [66]刘素君,周泽斌.大蓟总黄酮对荷瘤小鼠白细胞介素-1和白细胞介素-2的影响[J].时珍国医国药,2008,19(2):333-337
    [67]王振飞,李煜等.大蓟对5种癌细胞抑制作用的研究.中华中医药学报,2008,26(4):761-762.
    [68]梁颖,黎济荣,周永忠,等.大蓟醇提物对两肾一夹高血压大鼠Intermedin变化的影响.时珍国医国,2011,22(7):1572-1573.
    [69]Roh J, Chang CL, Bhalla A, etal. Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. [J]. JBiol Chem, 2004, 279 (8):726
    [70]杨靖辉,贾月霞,任永生,等叶素1-53对大鼠动脉血压的影响及其作用机制[J].高血压杂志,2005,13(11):711.
    [71]屠锡德,杨琦,翁正丽等.大蓟降压作用的研究[J].中成药研究,1982,4(8):36
    [72]马蜂峻,赵玉珍,张建华等大蓟对动物血压的影响[J].佳木斯医学院学报,1991,14(1):10-11.
    [73]安玉兴,孙东磊,周丽娟等.菊科植物的杀线虫活性研究与应用.中国农学通报,2009,25(23):364-369.
    [74]Kazuyoshi Kawazu, YoshikiNishii, ShuheiNakajim. Two nematicidal Substances from Roots of Cirsium japonicum [J]. Afric Biol Chem,1980,44(4):903-906.
    [75]park jong-cheol, Hur joon moon, park ju Gwon, etal. Effects of methanol extract of Cirsium japonicum var. uss-uriense and its principle, hispidulin-7-0-neohespe-ridoside on hepatic alcohol-metabolizing enzymes and lipid pero-xidation in ethanol-treated rats [J]. Phytot-therapy research,2004,18(1):19-24
    [76]Yeong-Min YOO, Jung-Hwan NAM, Min-Young KIM, etal. Pectolinarin and Pectolinar-igenin of Cirsium setidens Prevent the HepaticInjury in Rats Caused by D-Galactosamine via an Antioxidant Mechanism[J]. Biol. Pharm. Bull.2008,31 (4):760-764
    [77]Yamzaki m. Biol Pharm Bull,2001,24(12):1434
    [78]Park M. K, Rhyu M, Yoon B. K, etal. Modulation of the genomic estrogen receptor pathway bywater extracts of Cirsium japonicum[J]. Archives of pharmacal research,2008, 31 (2):225-230.
    [79]perez Gutierrez R M. Phytother Res,2001,15 (6):552
    [80]Liao Z, Chen X, Wu M. Antidiabetic effect of flavones from Cirsium japonicum DC in diabetic rats [J]. Archives of pharmacal research,2010,33 (3):353-362.
    [81]Miyazawa M. Oviposition-stimulatory activity against Ostrinia zealis by esstial oil of roof part from Cirsium japonicum DC[J]. Natural Product Resarch,2003,17 (5):341-345.
    [82]Hyun Lim, Hyeun Wook Chang, KiHwan Bae, etal. Anti-inflammatory Activity of Pectolinarigenin and Pectolinarin Isolated from Cirsium chanroenicum [J]. Biol. Pharm. Bull,2008,31 (11):2063 -2067.
    [83]Yeong-Min Yoo, Jung-Hwan Nma, Min-Young Kim, etal. Pectolinarin and Pectolin-arigenin of Cirsium setidens Prevent the Hepatic Injury in Rats Caused by D-Galactosamine via an Antioxidant Mechanism[J]. Biol. Pharm Bull,2008,31 (4):760-764.
    [84]史礼貌,解成喜.新疆大蓟总黄酮的超声提取及抗氧化研究[J].食品科学,2011,32(6):123
    [85]刘路芳,马绍宾.蓟属植物的化学成分与药理作用[J].国外医药.植物药分册,2005,20(3):105-108.
    [86]徐树楠.中药临床应用大全[M].石家庄:河北科学技术出版社,1999.
    [87]Mori S, Ichii J. Cephalonoplos extracts and compositions contaning the extracts to promote fat metabolism for obesity contral[P]. Japan. 08,301,780, Nov 19,1996.
    [88]刘育明,傅汝林.大剂大蓟为主辨证治疗真性红细胞增多症一例[J].贵阳中医学院学报,2004,26(4):46-47.
    [89]国家药典委员会.中华人民共和国药典[M].化学工业出版社,2005:18
    [90]周文序,田珍.中药大、小蓟中柳穿鱼苷和芦丁的薄层扫描法定量分析[J].药物分析杂志,1994,14(6):39
    [91]丁安伟,张丽,吴丽文等.大蓟炭炮制工艺及质量标准研究[J].中药材,1998,21(11):560
    [92]刘晶,王薇,吕秀莲.大蓟微量元素的含量测定.中医药学报,1997,(2):50
    [93]杨燕飞.大蓟中黄酮类成分的鉴别与含量测定.中国药事,2006,20(5):296
    [94]萧天红.大蓟根治疗肺结核26例[J].浙江中医杂志,1987,22(11):489
    [95]祖荣生.大蓟膏治疗乳腺炎[J].福建医药杂志,1979,(4):17
    [96]张丹,周洁.大蓟临床应用浅谈[J].2004,25(3):19
    [97]吴盛荣,吴光烈.大蓟解毒汤治疗急性扁桃腺炎[J].时珍国药研究,1994,5(1):47
    [98]朱效良.中西医结合治疗尿泌系结石45例[J].实用中医药杂志,2009,25(4):753
    [99]崔箭.炭药源流论[J].辽宁中医杂志,2004,31(10):816-817
    [100]东汉·张仲景.金匮要略[M].北京人民卫生出版社,1955
    [101]唐·孙思邈.千金方[M].北京人民卫生出版社,1956
    [102]明·李时珍.本草纲目[M].北京人民卫生出版社影印,1965
    [103]清·汪昂.本草备要[M].北京人民卫生出版社,1965
    [104]清‘赵学敏.本草纲目拾遗[M].北京人民卫生出版社,1965
    [105]清·云登贡布.四部医典[M].人民卫生出版社,1983
    [106]周艳,张振凌,李连珍,等.浅谈中药/炒炭止血理论医药与保健[J].黑龙江科技信息,2007,22:253.
    [107]夏小军.浅谈炭药止血[J].甘肃中医,2005,18(2):28-29.
    [108]陈双红.与平滑肌细胞联合培养的内皮细胞的抗凝血因子、粘附分子[J].解剖学报2000,31(4):
    [109]曹琳琳,张丽.中药炭药的探究[C].中华中医药学会中药炮制分会2009年学术研讨会论文集,2009:54-57
    [110]王永泉,于冰露.中药制炭品作用原理浅析[J].实用中医药杂志,2001, (7)
    [111]陈树山,陈岳.对传统炭药止血理论与制炭工艺的剖析及建议[J].时珍国医国药2001,15(10):663
    [112]顾月芳.头发炮制止血作用研究[J].上海中医药杂志,1984,(8):48
    [113]顾月芳.血余炭粗结晶止血作用研究[J].中药通报,1986,11(8):47
    [114]陈奇.中药药理研究方法学[M].北京:人民卫生出版社,2006:478-483
    [115]任洁,钮晓淑,熊晶,等.卜(肉桂酰基)4-(苯乙胺乙酰基)哌嗪马来酸盐对 血小板聚集和血栓形成的影响[J].中国药科大学学报,2011,42(5):458-461
    [116]卞秋武,林海龙,张静,等.高血压患者血小板聚集功能与纤维蛋白原基因多态性的相关性研究[J].中华老年心脑血管病杂志,2007,9(4):232-234
    [117]徐叔云主编.药理实验方法学,第2版[M].人民卫生出版社,1991,975,1121-1122
    [118]戚新,王宇.冠心病临床表型与凝血纤溶指标的关系[J].中国临床康复,2005,9(19):9
    [119]杜力军,国月英,马立炎,等.三七止血活血机理的研究—Ⅲ·三七对凝血活素所致小鼠体内血栓形成的抑制作用[J].中药药理与临床,1995,5:26-28
    [120]宋福坤,陈玉玻.纯五倍子液的制备及止血效果观察[J].江苏中医,1998,19(3):39
    [121]王秀琴,罗向东,伍素华.曲狗草止血作用及初步安全性评价[J].第三军医大学学报,2007,29(14):1419-142
    [122]梁爱华,薛宝云,王金华,等.鲜地黄与干地黄止血和免疫作用比较研究[J].中国中药杂志,1999,24(11):663-666.
    [123]杨军,王静,陈澎禾.香叶木试止血作用的实验研究[J].中国药理学通报,1996,12(6):512
    [124]王树松,王晓风.柿叶止血成分的实验研究[J].河北中医,2005,27(1):66-67.
    [125]夏勇,吴惠岭,傅剑云,等.建立胃损伤模型的方法及选择[J].实用预防医学,2005,12(3):659-661
    [126]吴润秋,唐红波,郭建生.复方胃热康对热盛胃出血模型止血作用的影响[J].中国中医药信息杂志,2004,11(4):306-307.
    [127]陈艳芬,陈蔚文,李茹柳.大鼠寒热型胃粘膜损伤模型的研究[J].中药药理与临床,2002,18(2):44-46.
    [128]黄雪琪,陈家旭,林海,等.益气止血方对脾不统血证动物模型的治疗作用[J].北京中医药大学学报,2004,27(3):40-42
    [129]李娟,李书琴,吴红敏,等.肺出血幼兔右心室压力及肺毛细血管内皮细胞超微结构的改变[J].中华儿科杂志,2000,38:147-149.
    [130]陈克正,王卫.新生大鼠肺出血动物模型的建立及对临床的启示[J].中国当代儿科杂志,2002,4:357-36
    [131]杜悦,吴玉斌,蔡栩栩,等.内毒素致新生大鼠肺组织PELAM- 1.T- PA,PAI表达的改变及其意义仁[J].中华儿科杂志,2004,42:649-653.
    [132]司徒勋,陈克正.外源性五轻色胺大鼠肺出血模型及其与浓度关系[J].现代临床医学生物工程学杂志,2004,10(3):197-200
    [133]Niederau C, Luthen R, Niederau MC, et al. Acute experimental hemorrhagic necrotizing pancreatitis induced by feeding a choline deficient, ethionine supplemented diet. Methodology and standards. Eur Surg Res,1992,24 (Suppl 1):40-54.
    [134]Pastor CM, Vonlaufen A, Georgi F, et al. Neutrophil depletion-but not prevention of Kupffer cell activation-decreases the severity of cerulean-induced acute pancreatitis. World J Gastroenterol, 2006,12: 1219- 1224.
    [135]Rollins MD, Sudarshan S, Firpo MA, et al. Antiinflammatory effects of PPAR-gamma agonists directly correlate with PPAR-gamma expression during acute pancreatitis. J Gastrointest Surg, 2006,10:1120-1130.
    [136]Wang YJ, Sun JB, Li F, et al. Hyperlipidemia intensifies cerulein-induced acute pancreatitis associated with activation of protein kinase C in rats. World J Gastroenterol, 2006,12:2908-2913.
    [137]Hackert T, Pfeil D, Hartwig W, et al. Platelet function in acute experimental pancreatitis. J Gastrointest Surg,2007,11:439-444.
    [138]Samuel I, Yorek MA, Zaheer A, et al. Bile-pancreatic juice exclusion promotes Akt/NF-kappaB activation and chemokine production in ligation-induced acute pancreatitis. J Gastrointest Surg, 2006,10: 950-959.
    [139]Sawa H, Ueda T, Takeyama Y, et al. Role of toll-like receptor 4 in the pathophysiology of severe acute pancreatitis in mice. Surg Today, 2007,37:867-873.
    [140]Goldenberg A, Romeo AC, Moreira MB, et al. Experimental model of severe acute pancreatitis in rabbits. Acta Cir Bras,2007,22:366-371.
    [141]Zhang XP, Ye Q, Jiang XG, et al. Preparation method of an ideal model of multiple organ injury of rat with severe acute pancreatitis. World J Gastroenterol, 2007,13:4566-4573.
    [142]赵慧业,肖国衡,熊启达,等.胰实质内注射牛黄胆酸钠引起实验性大鼠急性出血性胰腺炎模型及其早期损害的研究[J].中国病理生理杂志,1986,2(2):112-113
    [143]马桂华,等.现代实验动物学[M].哈尔滨:黑龙江科技出版社,1996:246
    [144]姜永锋,等.急性胰腺炎的实验研究进展[J].国外医学外科学分册,1996,23(1):13
    [145]种兆忠,冯亦璞一个简单易行的大鼠蛛网膜下腔出血模型的建立[J].中国药理学通报,1998,14(2):185-186
    [146]Peerless SJ, Fox AJ, Komatsu K, Hunter IG. Angiographic study of vasospasm followong subarachnoid hemorrhage in monkeys. Stroke, 1982; 13:473-9
    [147]Solomn RA, Antunes JL, Chen RYZet al. Decrease in cerebral blood flow in rats after experimental subarachnoid hemorrhage: A new animal model. Stroke,1985; 16:58-64
    [148]朱庆,刘艳霞,李刚,等.改良大鼠蛛网膜下腔出血模型[J].中国药理学通报,2006,22(9):1144-1146.
    [149]陈彦克,陈衔城.自发性脑出血动物模型[J].国外医学脑血管疾病学分册,2004,12(8):576-57
    [150]Rosenberg GA, Mun-Bryce S, Wesley M, et al. Collagenase-induced intracerebral hemorrhage in rats. Stroke, 1990, 21: 801-807.
    [151]赵艳梅,余嗣明,周乾坤.黄芩苷对脑出血大鼠脑内GAT-1和GABA-AR表达的作用[J].中国新药杂志,2010(11):970-974
    [152]卫煊,杨冠,戴友林,等.激光在医学中的应用[M]京:科学出版社,1974:88
    [153]李晟,梁凤鸣,王明芳,等.FD-Nd:YAG532激光制作眼内出血模型的体会[J].中国中医眼科杂志,2000,10(1):10-11
    [154]姚芳蔚,刘红娣,钟立贤,等.眼内出血动物模型[J].中西医结合眼科,1983,3:47-47
    [155]于红.中医炭药的临床应用[J].传统医药.2007.16(22).57-57.
    [156]王美萍,周丽娜,姚秀芬.浅谈炭药的应用[J].实用中医药杂志,2007,23(10):672.
    [160]国家药典委员会.中国药典[M].北京:中国医药科技出版社,2010:23.
    [161]Shi Z. Study on the plants of tribus Cynarearum family Compositarum in China (Ⅱ) [J]. Acta Phytotaxon Sin(植物分类学报),1984,22 (5):386-396.
    [162]叶定江.中药炮制学,第1版.上海:上海科学技术出版社,1996:99.
    [163]Jean-Michel Dogne,Julien Hanson,Xavier de Leval, et al. Pharmacological characterization of N-tert-Butyl-N' -[2-(4' -methylphenylamino)-5-nitrobenzenesulfonyl]urea (BM-573), a novel Thromboxane A2 Receptor Antagonist and Thromboxane Synthase Inhibitor in a Rat Model of Arterial Thrombosis and Its Effects on Bleeding Time[J]. Pharmacology and Experimental Therapeutics, 2004,309 (2): 498-505.
    [164]Sarah Jones, Katherine L. Tucker, Tanya Sage, et al. Peripheral tachykinins and the neurokinin receptor NK1 are required for platelet thrombus formation[J]. Blood,2008,111 (2):605-612.
    [165]万军,周霞,吴纯洁,等.中药炒炭增强止血作用成分再探讨[J].时珍国医国药,2006,17(6):930-931.
    [166]Hitoshi Ishida, Takayuki Umino, Kuniro Tsuji, etal. Studies on Antihem-orrhagic Substances in Herbs Classified as Hemostatics in Chinese Medicine. VII. On the Antihemorrhagic Principle in Cirsium japonicum DC[J]. Chem.Pharm. Bull, 1987,35(2): 861-864
    [167]叶文才,王广基,唐春山,etal.柳穿鱼叶苷、蒙花苷及其组合物的制药用途.中国发明专利,CN1939327A,2007.04.04
    [168]严振,田洋,马跃平,等.雷公藤根化学成分研究[J].中国现代中药,2010,12(1):23-24.
    [169]DAI C, LIU P, LIU C, et al. Studies on chemical constituents from moss Rhodobryum roseum Ⅱ[J]. Chin J Nat Med (中国天然药物), 2006, 31(13): 1080-1082.
    [170]温晶,史海明,昝珂,等.刘寄奴的化学成分研究[J].中草药,2010,41,(6):870-873.
    [171]霍长虹,赵玉英,梁鸿,等.老鼠簕化学成分的研究[J].中国中药杂志,2005,30,(10):763-765.
    [172]Chiobouaphong P、Wannaporn D、Poolsak S、et al. Phenylethanoid and flavone glycosides from Ruellia tuberosa L. J Nat Med 2013,67: 228-233.
    [173]冯长根,李琼.香青兰化学成分研究[J].中成药,2008,28(1):94-98.
    [174]朱少晖,张前军,陈青,等.鱼眼草化学成分研究[J],中国实验方剂学杂志,2010,16(12):34-36.
    [175]李萍,张国刚,左甜甜,等.半枝莲的化学成分[J].沈阳药科大学学报,2008,25(7):549-551.
    [176]李仪奎.中药药理实验方法学[M].上海:上海科学技术出版社,1991:35
    [177]陈奇.中药药理实验方法学[M].北京:人民卫生出版社,1994:72
    [178]吴捷,曹舫,孟照俊,等.明目止血片对动物止血作用的实验观察[J].山东中医杂志,2003,22(7):426-428
    [179]曹舫,袁秉祥.地丹明目胶囊对动物止血作用的药效学研究[J].中医药学刊.2004,22(11):2082-2084
    [180]李健,张莹,王丹,等.安雪颗粒药效学实验研究[J].辽宁中医药大学学报.2012,14(3):222-223
    [181]韩俊艳.水牛角水解物的止血作用研究[D].沈阳药科大学.23-25
    [182]张卫华,张振凌,黄显峰,等.茜草饮片炒炭前后止血机制的比较[J].中华中医药杂志.2006,21(3):160-162
    [183]Wang J, XuDY, Chen P D, et al. Haemostatic conponent of carbonized scutellariae radix on blood of fevered and bleeding rats[J]. Chin J Exper Tradit Med Formul,2011,17(11):153-6.
    [184]Gao X L, Duan H F, Cui Y, et al. HPLC analysis of fresh rehmannia glutinosa libosch in serum of rats with blood heat and hemorrhage syndrome animal model[J]. China J Chin Med,2011,26(9):1067-9.
    [185]柳佳,张丽,丁安伟,等.基于中医辨证用药特点建立大鼠血热出血模型[J].中国药理学通报,2012,28(9):1319-1324.
    [186]庄晓燕,杨菁,李华侃,等.热盛胃出血小鼠模型的制作及墨旱莲对其止血作用机制的研究[J].数理医药学杂志,2010,23(1):31-33.
    [187]孙建宁.药理学[M].北京:中国中医药出版社,2013:290-291
    [188]邓硕曾,胡如兰,王廷杰,等.心脏手术中肝素耐药与抗凝血酶Ⅲ的关系[J].临床麻醉学杂志,1994,17(3):132-134
    [189]陈海芳,陈凯云,袁金斌,等.大蓟的止血活性药效初步研究[J].中华中医药学刊2010,28(07):1458-1459
    [190]Leytin V, Mody M, Semple JW, et al. Flow cytometric parameters for characterizing platelet activation by measuring P-selectin (CD62P) expression: theoretical consideration and evaluation in thrombin-treated platelet populations [J]. Biochem Biophys Res Commun,2000,269(1):85-90.
    [191]吴丽娟.临床流式细胞学检验技术[M].北京:人民军医出版社,2010:308-309.
    [192]刘艳荣.实用流式细胞术——血液病篇[M].北京大学医学出版社,2010:1,316.
    [193]刘美霞,陈文丽,段俊岭,等.流式细胞仪测定血小板表面CD62p的临床意义[J]. 右江民族医学院学报,2003,(05):689-690.
    [194]Newman PJ. Platelet GPⅡb/Ⅲa: molecular variations and alloantigen [J]. Thromb Haemost,1991,66 (1):111-118.
    [195]Michelson AD, Barnard MR, Krueger LA, et al. Circulating monocyte-platelet are a more sensitive marker of invivo platelet activation than platelet surface P-selectin. Studies in baboons, human coronary intervention, and human acute myocardial infarction [J]. Circulation,2001,10 (4):1533-1537.
    [196]李祖兰,白洁,秦晓玲,等.不同抗凝剂对血小板聚集和血小板膜糖蛋白的影响[J].军医进修学院学报,2009,31(7):699-701.
    [197]王兆丰,陈松劲,郁俊杰.标本采集对流式细胞术测定CD62P的影响[J].浙江检验医学,2006,4(4):33-35.
    [198]史桂英,石学根,龚燕春,等.三色流式细胞术检测全血中血小板活化.上海免疫学杂志,2001,21:108-110.
    [199]王志军,湛玉良,程文立,等.活化血小板流式细胞术不同检测方法比较[J].实验动物与比较医学,2008,28(1):23-25.
    [200]丘勇新,刘广亚,张雅妮,等.不同处理方法对血小板表面活化标志CD62P流式检测结果的比较[J].华南国防医学杂志,2012,26(4):326-228.
    [201]叶剑锋,严伟民,甘卓慧,等.云南白药对血小板聚集及膜糖蛋白表达的影响[J].中国现代应用药学杂志,2004,21(2):100-102.
    [202]Abrams C, Shattil SJ. Immunological detection of activation platelets in clinical disorder. Thromb Haemost,1991,65:647-650.
    [203]王建中.临床流式细胞分析[M].第1版.上海:科学技术出版社,2005:401-404.
    [204]柏冬,牛晓红等,桂枝汤在肠道不同部位的吸收研究[J].中药新药与临床药理2010,21(2):167-170
    [205]Liu TM, Jiang XH. Investigation of the absorption mechanisms of baicalin and baicalein in rats[J]. J Pharm Sci,2006,95 (6):1326-1333.
    [206]Hollman PCH, de Vries JHM, van Leeuwen SD, et al. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers[J]. Am J Clin Nutr, 1995,62 (6):1276-1282
    [207]赵艳红,贾晓斌,陈彦,等.淫羊藿黄酮类化合物的大鼠在体肠吸收研究[J].中国药学杂志,2008,2,43(3):188-191.
    [208]唐晓荞,杨祥良.灯盏花素磷脂复合物改善大鼠小肠吸收的研究[J].中国中药杂志,2005,2,30(3):222.225
    [209]李珂佳,蒋学华.大鼠原位灌注模型研究靛玉红吸收机制[J].中国药学杂志,2007,42(17):1306-1311
    [210]黄嗣航,龙晓英,袁飞,等.酚红法和改良重量法分别研究葛根素的大鼠在体肠吸收机制[J].广东药学院学报,2012,28(6):603-606.
    [211]程锦,狄留庆.在体肠段灌流模型在中药吸收研究中的应用[J].中国中医药信息 杂志,2008,15(2)97-99.
    [212]闵志强,陈科,李亚丽,等.青黛配方分散片对四氯化碳致小鼠急性肝损伤的保护作用及大鼠原位灌注试验[J].中药药理与临床,2010,26(4):38-40.
    [213]江周虹.枳壳总黄酮质量控制及吸收研究[D].浙江:浙江大学,2007:42-43.
    [214]夏丽文,董培良.羟基积雪草苷在大鼠肠内吸收的研究[J].药物评价研究,2011,34(1):22-25.
    [215]黄怀鹏,刘彩霞,李艳玲,等.黄芪甲苷的大鼠在体肠吸收动力学的研究[J].中国中药杂志,2008,33(13):1609-1611.
    [216]聂淑芳,潘卫三,杨星钢,等.对大鼠在体肠单向灌流技术中重量法的评价[J].中国新药杂志,2005,14(10):1176-1178.
    [217]李高, 方超.药物肠道吸收的生物学研究方法[J].中国药学杂志,2002,37(17):726-728.
    [218]陈泣,龚千锋,钟凌云,等.不同地区大蓟炭止血药效与成分差异的初步研究[J].世界科学技术,2012,12,
    [219]陈凯云,杨武亮,龚千峰,等.大孔吸附树脂富集大蓟中总黄酮类成分的工艺研究[J].时珍国医国药,2007,18(10):2362-2364。
    [220]THOMPSON D R. Response surface experimentation[M]. Food Industry PRESS, 1982, (6):155-158.
    [221]佟苗苗,翟延君,王添敏,等.星点设计-响应面法优化急性子多糖提取工艺[J].中成药,2011,33(7):1171-1174。
    [222]武芸,郑小江,卜贵军,等.响应面分析法优化海金沙草多糖的提取工艺[J].食品科学,2010,31(18):108-111。
    [223]胡成旭,侯欣彤,冯永宁,等.响应面法优化云芝多糖提取条件的研究[J].食品工业科技,2007,28(07):124-130。
    [224]Shamama Javed, Kanchan Kohli, Mushir Ali. Application of Response Surface Methodology To Microwave-Assisted Extraction of Lysergol from Ipomoea Genus and Its Characterization by RP HPLC-UV[J]. J Pharm Innov,2011, (6):88-96。
    [225]廖春丽,王福梅,陈兰英,等.响应面方法在优化β-胡萝卜素培养基的应用[J].中国酿造,2009,(4);115.117。
    [226]S J Kalil, F Maugeri, M I Rodrigues. Response surface analysis and simulation as a tool for bioprocess design and optimization[J]. Process Biochemistry, 2000 (35):539-550.
    [227]张志东.甘草渣总黄酮酶法提取与大孔树脂纯化工艺研究[D].2010
    [228]管庆霞,王录娜,李永吉,等.大孔吸附树脂纯化马钱子总生物碱的工艺研究[J].时珍国医国药2010,19(6):1429-1430
    [229]何伟,李伟.大孔树脂在中药成分分离中的应用[J].南京中医药大学学报,2005,21(2):134.
    [230]何宇新,于杰,李玲,等.大孔树脂分离纯化葛根总黄酮工艺研究[J].西南农业
    大学学报,2006,(06):957-960
    [231]张羽,孟宪生,谢媛媛,等.大孔树脂纯化补骨脂香豆素类化合物的研究[J].西北
    药学杂志[M],2011,(05):316、214
    [232]李敬清,康蕴天.微波消解—ICP—AES法测定石油焦中硫[J].光谱实验室,
    2001,(05):671.673
    [233]李军,刘玉玺,郭海泉,等.火焰原子吸收分光光度法测定山药药材中的微量元素
    含量的研究[J].中医学报,2013, (12):1857-1859
    [234]郝峰,贺忠翔.电感耦合等离子质谱法测定土壤中钼和钨[J].北方环境,2013,
    (12):182.183
    [235]陈燕芹,刘红.微波辅助消解ICP-AES法测定小茴香中20种元素[J].化学研究
    与应用,2014,(01):149-152
    [236]唐兴伟.微波消解-ICP-AES法测底泥中的铜、镍等金属元素[J].北方环境,
    2013,(12):188.189
    [237]王刚,陈建荣,林炳承.中药中微量元素测定的研究进展[J].药物分析杂志,2002,
    22(2):151-155.
    [238]曹治权.微量元素与中医药[M].北京:中国中医药出版社,1993:193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700