Fli-1通过调控TGFβ/smad信号通路促进小细胞肺癌发生发展的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小细胞肺癌(small cell lung cancer, SCLC)是所有肺癌中恶性程度最高的一种类型,在肺癌中约占为15%~20%。小细胞肺癌具有倍增时间短,高侵袭性、高复发性及放化疗敏感的生物学特点,大多数诊断时已为广泛期,局限期仅占1/3,而局限期和广泛期小细胞肺癌5年生存率仅为10%和2%。近20年来,小细胞肺癌的治疗并未取得明显进展,尽管患者初始治疗敏感,但大多数患者最终均因复发或进展而死亡。如何提高小细胞肺癌治疗效果已成为重要研究课题。分子靶向治疗已在多种肿瘤治疗中取得成功,但在小细胞肺癌中尚未取得突破,主要原因为发病机制不清。因此,从癌基因异常表达分析入手,明确小细胞肺癌的分子病理机制,以探索更加合适的靶点,将可能为小细胞肺癌的治疗带来突破性进展。
     研究背景:
     Fli-1(Friend leukemia virus integration1,)属于Ets (E26transformation-specific)家族的转录因子,最早由Ben-David等在Friend病毒诱导的小鼠红白血病细胞中发现。Fli-1即可以通过特异性序列结合多种基因的启动子或增强子调节基因的转录活性而发挥转录因子的功能,还可以通过蛋白质之间的相互作用来调节其它基因的活性。在正常生理条件下,Fli-1主要存在于造血系统和血管内皮细胞中,在造血和血管内皮生成等方面具有重要调节作用。本研究课题组前期工作中已经在红白血病中取得重要突破,发现在红白血病细胞系中Fli-1发挥促进细胞增殖,抑制细胞凋亡的功能。深入研究发现SHIP-1为Fli-1直接调控的靶基因,Fli-1通过抑制SHIP-1的转录活性,促使红细胞分化受阻,诱导红白血病的发生。这些研究显示Fli-1在肿瘤发生发展中发挥了癌基因的功能,提示其可能是一个良好的治疗靶点。在实体瘤方面,Fli-1在90%的尤文氏肉瘤中以EWS/Fli-1融合基因的形式存在,直接促进了细胞向恶性转化和尤文氏肉瘤的发生。近年来,我们及其他学者的研究显示Fli-1在恶性黑色素瘤、乳腺癌、卵巢癌及结直肠癌等实体肿瘤存在高表达。但Fli-1在实体瘤中的具体生物学功能,特别是该基因的分子作用机理尚不清楚。对Fli-1调控肿瘤发生发展机制的阐明有赖于对其参与调控的信号通路以及下游靶基因的识别,但目前对此所知甚少,迫切需要进一步深入探索。
     研究目的:
     1.筛查Fli-1在实体瘤中的表达谱。
     2.分析Fli-1与小细胞肺癌临床特征的相关性。
     3.全面评估Fli-1在小细胞肺癌发生发展中所发挥的生物学功能。
     4.探讨Fli-1促癌的分子机制,揭示Fli-1参与调控的信号通路以及下游靶基因。
     研究方法:
     通过免疫组化的方法筛查Fli-1在实体瘤中的表达谱,特别是在小细胞肺癌中的表达情况,统计学方法分析Fli-1与小细胞肺癌临床特征的相关性。应用小RNA干扰的方法对Fli-1进行瞬时干涉,MTT、细胞计数法、流式细胞仪、Annexin V/PI染色、Transwell和软琼脂克隆形成实验评估Fli-1对细胞增殖、细胞周期、凋亡、迁移及克隆形成能力的影响。建立逆转录病毒稳定干涉Fli-1的NCI-H446细胞模型,在整体动物水平研究Fli-1对裸鼠成瘤能力的影响。应用CO-IP(Co-Immunoprecipitation)、荧光素酶活性测试、western blot、RT-PCR等方法对分子机制进行探讨。
     研究结果:
     1.Fli-1在多种肿瘤中高表达,并且以小细胞肺癌最显著,且Fli-1的表达水平与肿瘤的分期呈正相关。
     2.Fli-1具有促进小细胞肺癌细胞增殖、细胞周期、克隆形成和抑制凋亡的功能,说明Fli-1对肿瘤的起始、形成及恶性表型的维持发挥了重要的作用。
     3.在整体动物实验中,发现Fli-1具有促进裸鼠体内成瘤能力的作用,在体内水平验证Fli-1的促癌功能。
     4.Fli-1能够与Smad3蛋白发生相互作用,并能抑制Smad3的活性。
     5.Fli-1可以明显抑制Smad3的磷酸化水平,但对其蛋白的本底水平没有影响。
     6. Fli-1能够抑制Smad3下游靶基因的转录水平,参与调控TGF-β/smad信号通路。
     研究结论:
     本项目通过于组织水平、细胞水平、动物水平和分子水平上完成了对Fli-1基因功能的研究,揭示了Fli-1在小细胞肺癌中发挥促进细胞增殖、细胞周期、克隆形成及抑制细胞凋亡的促癌基因功能。并进一步探讨了Fli-1参与调控的信号通路,阐明了Fli-1通过直接与Smad3相互作用抑制其活性,调控Smad3下游靶基因的转录,进而参与调控TGF-β/smad信号通路。本研究揭示了新的肿瘤发生发展的分子机制,并为TGF-β/smad信号通路的完整研究提供了有力的新线索。此外,本研究也为开发以Fli-1为靶点的小细胞肺癌分子靶向治疗的研究提供了理论依据和实验基础。
The molecular mechanism of Fli-1promotes development of smallcell lung cancer through regulating TGFβ/smad signaling pathway
     Small cell lung cancer (SCLC) is regarded as the most malignanttumor in all types of lung cancers, accounts for approximately15%-20%.Small cell lung cancer shared common characteristics of short populationdoubling time, high invasion and recurring, and sensitivity toradiotherapy and chemotherapy. The five-year survival of small cell lungcancer is10%for extended stage and2%for limited stage because manypeople are diagnosed at extended stage, limited stage were found only inabout one-third of patients. In the last two decades, there is littleprogression on treatment of small cell lung cancer. Although patientswith small cell lung cancer are sensitive to initial treatment, most patientsare going to be recurrent or progressive and due to die. It has been amajor research subjects to improve the therapeutic effects of small celllung cancer. Molecular targeting therapy have been successful in manykinds of tumor treatment, but failed in small cell lung cancer because themechanism of disease is unclear. Therefore, the molecular pathogenesisof small cell lung cancer is need to confirm further which should proceedwith analyzing of abnormal expression of oncogene proteins andexploring more appropriate molecular targets, which may bring breakthroughs to treatment of small cell lung cancer.
     Research background:
     Fli-1(Friend leukemia virus integration1) is an Ets (E26transformation-specific) transcription factor family member, was firstidentified as a target of proviral integration in F-MuLV-induced mouseerythroleukemia by Ben-david. As a transcription factor, Fli-1couldcombined with many the promoter regions and enhancers of the gene, orregulated transcription through protein-protein interaction. Under thephysiological conditions, Fli-1is mainly expressed on blood stem cellsand endothelial cells and plays an important regulatory role in endothelialcells growth. In the preceding work of our project group, we found Fli-1could promoted cell growgh inhibited and cell death. The study alsorevealed that SHIP-1is a direct target of Fli-1. The overexpression ofFli-1inhibited SHIP-1activities and induced erythroleukemiaprogression. These study show Fli-1play an oncogene role in tumorgeneration and development, may be a good therapeutic target. On solidtumor side, Fli-1was presented in almost90%Ewing sarcoma asEWS/Fli-1fusion gene, which directly contribute to cell transforminginto malignancy, then led to Ewing sarcoma. In recent years, our andothers study results showed Fli-1was high expressed in melanomas,breast cancer, ovarian cancer and colorectal cancer. However, the specificbiological functions of Fli-1in solid tumor and molecular mechanism of Fli-1remains unknown. Studies towards elucidating the mechanisms ofFli-1regulating tumor generation and development depends onidentification of the signaling pathway and target genes, However, weknew very little about it, and pressing need further deeper exploration andresearch.
     Research objectives:
     1. Screen the expression pattern of Fli-1in solid tumor.
     2. Analyze the correlation between the expression level of Fli-1andclinical data.
     3. Complete assess the function of Fli-1in generation and development ofsmall cell lung cancer.
     4. Discuss the mechanism of Fli-1promotes cancer, clarify the signalpathway and target genes regulated by Fli-1.
     Research method:
     Screen the expression pattern of Fli-1in solid tumor usedimmunohistochemical staining, especially in small cell lung cancer.Analyze the correlation between the expression level of Fli-1and clinicaldata by statistical method. Down-regulation of Fli-1by small interferingRNA (siRNA), MTT, cell count, flow cytometry, Annexin V/PI stain,Transwell and soft gar assay were used to assess the affection of Fli-1incell growth, cell cycle, apoptosis, migrate and ability of colony forming.Establish NCI-H446cell model of stable interference Fli-1with retrovirus to study the impact of Fli-1on tumor formation in nude mice atwhole animal level. CO-IP(Co-Immunoprecipitation), luciferase reporterassay, western blot and RT-PCR methods were used to discuss themechanism.
     Research result:
     1. Fli-1was expressed in multiple tumors, and small cell lung cancer isthe most significant. The expression level of Fli-1was correlated withtumor stage.
     2. Fli-1played a role of promote cell growth, cell cycle, colony formingand inhibit cell apoptosis, illustrated Fli-1have important function intumor initiate, formation and malignant phenotype maintain.
     3. On the whole animal level, Fli-1could significantly inhibited in vivotumorigenic ability.
     4. Fli-1interacts with Smad3and could significantly inhibited activity ofSmad3.
     5. Fli-1could inhibited phosphorylation of Smad3but do not affectbackground level of Smad3.
     6. Fli-1regulated the transcriptional activity of Smad3target genes andthe TGF-β/smad signal pathway.
     Research conclusions:
     This study completed the research on gene function of Fli-1at thecellular level, molecular level and animal level and revealed Fli-1could promote cell proliferation and colony forming ability and inhibitapoptosis as a cancer-promoting gene in small cell lung cancer. Weexplored molecular mechanism and demonstrated that Fli-1interacts withSmad3and inhibited its activity and the transcriptional activity ofdownstream target genes, and then involved regulation of TGFβ cellularsignal transduction pathway. Therefore, this research contributed tofurther understanding the molecular mechanism involved in tumorgeneration and development and provide new powerful clue forthoroughly research of TGF-β/smad signal pathway. Addition, our studyalso provided theoretical and experimental base for molecular targettherapy which specifically target Fli-1in small cell lung cancer.
引文
[1] Kong FM, Lally BE, Chang JY, et al. ACR AppropriatenessCriteria radiation therapy for small cell lung cancer[J]. Am J ClinOncol,2013,36:206-213.
    [2] Joshi M, Ayoola A, Belani CP. Small-cell lung cancer: an update ontargeted therapies[J]. Adv Exp Med Biol,2013,779:385-404.
    [3] Hurwitz JL, McCoy F, Scullin P, et al. New advances in the secondline treatment of small cell lung cancer[J]. Oncologist,2009,14:987-994.
    [4] Puglisi M, Dolly S, Faria A, et al. Treatment options for small celllung cancer-do we have more choice[J]? Br J Cancer,2010,102:629-638.
    [5] William WN Jr, Glisson BS. Novel strategies for the treatment ofsmall cell lung carcinoma[J]. Nat Rev Clin Oncol,2011,8:611-619.
    [6] Ben-David Y, Giddens EB, Bernstein A. Identification and mappingof a common proviral integration site Fli-1in erythroleukemia cellsinduced by Friend murine leukemia virus[J]. Proc Natl Acad SciUSA,1990,87:1332-1336.
    [7] Massague J, Seoane J, Wotton D. Smad transcription factors[J]. GenesDev,2005,19:2783-2810.
    [8] Schmierer B, Hill CS. TGFβ-SMAD signal transduction: molecularspecificity and functional flexibility[J]. Nat Rev Mol Cell Biol,2007,8:970-982.
    [9] L nn P, Morén A, Raja E, et al. Regulating the stability of TGFβreceptors and Smads[J]. Cell Res,2009,19:21-35.
    [10] Bailly RA, Bosselut R, Zucman J, et al. DNA-binding andtranscriptional activation properties of the EWS-FLI-1fusion proteinresulting from the t(11;22) translocation in Ewing sarcoma[J]. MolCell Biol,1994,14:3230-3241.
    [11] Laudet V, Hanni C, Stehelin D, et al. Molecular phylogeny of theETS gene family[J]. Oncogene,1999,18:1351-1359.
    [12] Maroulakou IG, Bowe DB. Expression and function of Etstranscription factors in mammalian development: a regulatorynetwork[J]. Oncogene,2000,19:6432-6442.
    [13] Findlay VJ, LaRue AC, Turner DP, et al. Understanding the roleof ETS-mediated gene regulation in complex biological processes[J].Adv Cancer Res,2013,119:1-61.
    [14] Delannoy-Courdent A, Mattot V, Fafeur V, et al. he expression of anEts1transcription factor lacking its activation domain decreases uPAproteolytic activity and cell motility, and impairs normaltubulogenesis and cancerous scattering in mammary epithelialcells[J]. J. Cell. Sci,1998,111:152134.
    [15] Mélet F, Motro B, Rossi DJ, et al. Generation of a novel Fli-1protein by gene targeting leads to a defect in thymus developmentand a delay in Friend virus-induced erythroleukemia[J]. Mol CellBiol,1996,16:2708-2718.
    [16] Hart A, Melet F, Grossfeld P, et al. Fli-1is required for murinevascular and megakaryocytic development and is hemizygouslydeleted in patients with thrombocytopenia[J]. Immunity,2000,13:167-177.
    [17] Spyropoulos DD, Pharr PN, Lavenburg KR, et al. Hemorrhage,impaired hematopoiesis, and lethality in mouse embryos carrying atargeted disruption of the Fli1transcription factor[J]. Mol CellBiol,2000,20:5643-5652.
    [18] Kawada H, Ito T, Pamela N, et al. Defective Megakaryopoiesis andabnormal erythroid development in Fli-1Gene-Targeted Mice[J].International Journal of Hematology,2001,73:463-468.
    [19] Bastian LS, Kwiatkowski BA, Breininger J, et al. Regulation of themegakaryocytic glycoprotein IX promoter by the oncogenic Etstranscription factor Fli-1[J]. Blood,1999,93:2637-2644.
    [20] Watson DK, Smyth FE, Thompson DM, et al. The ERGB/Fli-1gene:isolation and characterization of a new member of the family ofhuman ETS transcription factors[J]. Cell Growth Differ,1992,3:705-713.
    [21] Vlaeminck-Guillem V, Carrere S, Dewitte F, et al. The Ets familymember Erg gene is expressed in mesodermal tissues and neuralcrests at fundamental steps during mouse embryogenesis[J]. MechDev,2000,91:331-335.
    [22] Kola I, Brookes S, Green AR, et al. The Ets1transcription factor iswidely expressed during murine embryo development and isassociated with mesodermal cells involved in morphogeneticprocesses such as organ formation[J]. Proc Natl Acad Sci U SA,1993,90:7588-7592.
    [23] Huber TL, Kouskoff V, Fehling HJ, et al. Haemangioblastcommitment is initiated in the primitive streak of the mouseembryo[J]. Nature,2004,432:625–630.
    [24] Ueno H, Weissman IL. Clonal analysis of mouse developmentreveals a polyclonal origin for yolk sac blood islands[J]. Dev. Cell,2006,11:519–533.
    [25] Landry, JR, Kinston, S, Knezevic, K, et al. Fli1, Elf1, and Ets1regulate the proximal promoter of the LMO2gene in endothelialcells[J]. Blood,2005,106:2680–2687.
    [26] Pimanda, JE, Ottersbach, K, Knezevic, K, et al. Gata2, Fli1, and Sclform a recursively wired generegulatory circuit during earlyhematopoietic development. Proc[J]. Natl. Acad. Sci,2007,104:17692-17697.
    [27] Brown, LA, Rodaway, AR, Schilling, TF, et al. Insights into earlyvasculogenesis revealed by expression of the ETS-domaintranscription factor Fli-1in wild-type and mutant zebrafishembryos[J]. Mech. Dev,2000,90:237–252.
    [28] Spyropoulos, DD, Pharr, PN, Lavenburg, KR, et al. Hemorrhage,impaired hematopoiesis, and lethality in mouse embryos carrying atargeted disruption of the Fli1transcription factor[J]. Mol. Cell. Biol,2000,20:5643–5652.
    [29] Feng L, Maggie W, Adam R, et al. Fli-1act at the top of thetranscriptional network driving blood and endothelialdevelopment[J]. Current Biology,2008,18:1234-1240.
    [30] Folpe AL, Chand EM, Goldblum JR,et al. Expression of Fli-1, anuclear transcription factor, distinguishesvascular neoplasms frompotential mimics[J]. Am. J. Surg. Pathol,2001,25:1061-1066.
    [31] Kostyak JC, Naik UP. Megakaryopoiesis: transcriptional insightsinto megakaryocyte maturation[J]. Front Biosci,2007,12:2050-2060.
    [32] Deveaux S, Filipe A, Lemarchandel V, et al. Analysis of thethrombopoietin receptor (MPL) promoter implicates GATA and Etsproteins in the coregulation of megakaryocyte-specific genes[J].Blood,1996,87:4678-4685.
    [33] Masuya M, Moussa O, Abe T, et al. Dysregulation of granulocyte,erythrocyte, and NK cell lineages in Fli-1gene-targeted mice[J].Blood,2005,105:95-102.
    [34] Pimanda JE, Chan WY, Donaldson IJ, et al. Endoglin expression inthe endothelium is regulated by Fli-1, Erg, and Elf-1acting on thepromoter and a-8-kb enhancer[J]. Blood,2006,107:4737-4745.
    [35] Bradshaw S, Zheng WJ, Tsoi LC, et al. A role for Fli-1in B cellproliferation: implications for SLE pathogenesis[J]. Clin Immunal,2008,129:19-30.
    [36] Crossen PE, Morrison MJ, Rodley P, et al. Identification ofamplified genes in a patient with acute myeloid leukemia and doubleminute chromosomes[J]. Cancer Genet.Cytogenet,1999,113:126-133.
    [37] Tyybakinoja A, Saarinen-Pihkala U, Elonen E, Knuutila S.Amplified, lost, and fused genes in11q23-25amplicon in acutemyeloid leukemia, an array-CGH study[J]. GenesChromosomes.Cancer,2006,45:257-264.
    [38] Savli H, Sirma S, Ozbek U. Quantification of the FLI1GeneExpression By Real-Time Quantitative RT-PCR[J]. Turk J Med Sci,2003,33:21-25.
    [39] Kornblau SM, Qiu YH, Zhang N, et al. Abnormal expression of Fli-1protein is an adverse prognostic factor in acute myeloid leukemia[J].Blood,2011,118:5604-5612.
    [40] Kwiatkowski BA, Zielinska-Kwiatkowska AG, Bauer TR Jr,Hickstein DD. The ETS family member Tel antagonizes the Fli-1phenotype in hematopoietic cells[J]. Blood Cells, Molecules&Diseases,2000,26:84-90.
    [41] Kwiatkowski BA, Bastian LS, Bauer TR Jr, et al. The ets familymember Tel binds to the Fli-1oncoprotein and inhibits itstranscriptional activity[J]. The journal of biological chemistry,1998,273:17525-17530.
    [42] Cui JW, Vecchiarelli-Federico LM, Li YJ, et al. Continuous Fli-1expression plays an essential role in the proliferation and survival ofF-MuLV-induced erythroleukemia and human erythroleukemia[J].Leukemia,2009,23:1311-1319.
    [43] Lakhanpal GK, Vecchiarelli-Federico LM, Li YJ, et al. The inositolphosphatase SHIP-1is negatively regulated by Fli-1and its lossaccelerates leukemogenesis[J]. Blood,2010,116:6428-6436.
    [44] Helgason CD, Kalberer CP, Damen JE, et al. A dual role for Srchomology2domain-containing inositol-5-phosphatase (SHIP) inimmunity: aberrant development and enhanced function oflymphocytes in ship-/-mice[J]. J Exp Med,2000,191:781-794.
    [45] Liu Q, Shalaby F, Jones J, et al. The SH2-containing inositolpolyphosphate5-phosphatase, ship, is expressed duringhematopoiesis and spermatogenesis[J]. Blood,1998,91:2753-2759.
    [46] Kalesnikoff J, Sly LM, Hughes MR, et al. The role of SHIP incytokine-induced signaling[J]. Rev Physiol Biochem Pharmacol,2003,149:87-103.
    [47] Sly LM, Rauh MJ, Kalesnikoff J, et al. SHIP, SHIP2, and PTENactivities are regulated in vivo by modulation of their protein levels:SHIP is up-regulated in macrophages and mast cells bylipopolysaccharide[J]. Exp Hematol,2003,31:1170-1181.
    [48] Athanasiou M, Mavrothalassitis G, Sun-Hoffman L, et al. FLI-1is asuppressor of erythroid differentiation in human hematopoieticcells[J]. Leukemia,2000,14:439-445.
    [49] Zhang L, Eddy A, Teng T, et al. An immunological renal disease intransgenic mice that overexpress Fli-1, a member of the ets family oftranscription[J]. Mol Cell Biol,1995,15:6961-6970.
    [50] Bonetti P, Testoni M, Scandurra M, et al. Deregulation of ETS1andFli1contributes to the pathogenesis of diffuse large B-celllymphoma[J]. Blood,2013,122:2233-2241.
    [51] Bonetti P, Testoni M, Scandurra M, et al. Fli-1overexpression inhematopoietic progenitors deregulates T cell development andinduces pre-T cell lymphoblastic leukaemia/lymphoma[J]. PLoS One,2013,8: e62346.
    [52] Bock O, Hussein K, Neusch M et al. Transcription factor Fli-1expression by bone marrow cells in chronic myeloproliferativedisorders is independent of an underlying JAK2(V617F) mutation[J].Eur.J Haematol,2006,77:463-470.
    [53] Starczynowski DT, Karsan A. Deregulation of innate immunesignaling in myelodysplastic syndromes is associated with deletionof chromosome arm5q[J]. Cell Cycle,2010,9:855-856.
    [54] Delattre O, Zucman J, Plougastel B, et al. Gene fusion with an ETSDNAbinding domain caused by chromosome translocation in humantumours[J]. Nature,1992,359:162–165.
    [55] Arvand A, Denny C. Biology of EWS/ETS fusions in Ewing’sfamily tumors[J]. Oncogene,2001,20:5747-5754.
    [56] Anderson JL, Denny CT, Tap WD, Federman N. Pediatric sarcomas:translating molecular pathogenesis of disease to novel therapeuticpossibilities[J]. Pediatr Res,2012,72:112-121.
    [57] Knoop LL, Baker SJ. The splicing factor U1C repressesEWS/Fli-1-mediated transactivation[J]. J Biol Chem,2000,275:24865-24871.
    [58] Knoop LL, Baker SJ. EWS/FLI alters5’-splice site selection[J]. JBiol Chem,2001,276:22317–22322.
    [59] France KA, Anderson JL, Park A, Denny CT. Oncogenic fusionprotein EWS/FLI1down-regulates gene expression by bothranscriptional and posttranscriptional mechanisms[J]. J Biol Chem,2011,286:22750–22757.
    [60] Torlakovic EE, Slipicevic A, Fl renes VA, et al. Fli-1expression inmalignant melanoma[J]. Histol Histopathol,2008,23:1309-1314.
    [61] Sakurai T, Kondoh N, Arai M, et al. Functional roles of Fli-1, amember of the Ets family of transcription factors, in human breastmalignancy[J]. Cancer Sci,2007,98:1775-1784.
    [62] Zhang J, Guo H, Zhang H, et al. Putative tumor suppressor miR-145inhibits colon cancer cell growth by targeting oncogene Friendleukemia virus integration1gene[J]. Cancer,2011,117:86-95.
    [63] Soldani C, Scovassi AI. Poly(ADP-ribose) polymerase-1cleavageduring apoptosis: an update[J]. Apoptosis,2002,7:321-328.
    [64] Gore AJ, Philips DP, Miller WL, Bernard DJ. Differential regulationof follicle stimulating hormone by activin A and TGFB1in murinegonadotropes[J]. Reprod Biol Endocrinol,2005,63:1371-1376.
    [65] Suh N, Roberts AB, Birkey Reffey S, et al. Synthetic triterpenoidsenhance transforming growth factor beta/Smad signaling[J]. CancerRes,2003,63:1371-1376.
    [66] Kiyono K, Suzuki HI, Matsuyama H, et al. Autophagy is activatedby TGF-beta and potentiates TGF-beta-mediated growth inhibitionin human hepatocellular carcinoma cells[J]. Cancer Res,2009,69:8844-8852.
    [67] Akool el-S, Doller A, Müller R, et al. Nitric oxide induces TIMP-1expression by activating the transforming growth factor beta-Smadsignaling pathway[J]. J Biol Chem,2005,280:39403-39416.
    [68] Zhang Y, Handley D, Kaplan T, et al. High throughputdetermination of TGFβ1/SMAD3targets in A549lung epithelialcells[J]. PLoS One,2011,6: e20319.
    [69] Wakefield LM, Roberts AB. TGF-β signaling: positive and negativeeffects on tumorigenesis[J]. Curr Opin Genet Dev,2002,12:22–29.
    [70] Bierie B, Moses HL.Tumour microenvironment: TGFβ: themolecular Jekyll and Hyde of cancer[J]. Nat Rev Cancer,2006,6:506–520.
    [71] Silvestri GA, Rivera MP. Targeted therapy for the treatment ofadvanced non-small cell lung cancer: a review of the epidermalgrowth factor receptor antagonists[J]. Chest,2005,128:3975-3984.
    [72] Iwama E, Okamoto I, Harada T, et al. Development of anaplasticlymphoma kinase (ALK) inhibitors and molecular diagnosis in ALKrearrangement-positive lung cancer[J]. Onco Targets Ther,2014,7:375-385.
    [73] Schmierer B, Hill CS. TGFβ–SMAD signal transduction: molecularspecificity and functional flexibility[J]. Nature Rev. Mol. Cell Biol,2007,8:970–982.
    [74] Akhurst RJ. TGFβ signaling in health and disease[J]. Nature Genet,2004,36:790–792.
    [75] Harradine KA, Akhurst RJ. Mutations of TGFβ signaling moleculesin human disease[J]. Ann. Med,2006,38:403–414.
    [76] Derynck R. Akhurst RJ. Differentiation plasticity regulated byTGF-β family proteins in development and disease[J]. Nature CellBiol,2007,9:1000-1004.
    [77] Derynck R. Zhang YE. Smad-dependent and Smad independentpathways in TGF-β family signalling[J]. Nature,2003,425:577-584.
    [78] Shi Y. Massague J. Mechanisms of TGF-β signaling from cellmembrane to the nucleus[J]. Cell,2003,113:685–700.
    [79] Miyazawa K, Shinozaki M, Hara T, et al. Two major Smad pathwaysin TGF-β superfamily signalling[J]. Genes Cells,2002,7:1191–1204.
    [80] Akhurst RJ, Derynck R. TGF-beta signaling in cancer-adouble-edged sword[J]. Trends Cell Biol,2001,11: S44-51.
    [81] Ikushima H, Miyazono K. TGFbeta signalling: a complex web incancer progression[J]. Nat Rev Cancer,2010,10:415-424.
    [82] Akhurst RJ, Hata A. Targeting the TGFβ signalling pathway indisease. pathway in disease[J]. Nat Rev Drug Discov,2012,11:790-811.
    [83] Massague J. TGF-β in cancer[J]. Cell,2008,134:215-230.
    [84] Ikushima H, Miyazono K. Cellular contextdependent “colors” oftransforming growth factor-βsignaling[J]. Cancer Sci,2010,101:306-312.
    [85] Liu RY, Zeng Y, Lei Z, et al. JAK/STAT3signaling is requiredfor TGF-β-induced epithelial-mesenchymal transition in lung cancercells[J]. Int J Oncol,2014,44:1643-1651.
    [86] Ischenko I, Liu J, Petrenko O, et al. Transforming growthfactor-beta signaling network regulates plasticity and lineagecommitment of lung cancercells[J]. Cell Death Differ,2014, doi:10.1038/cdd.
    [87] Tang B, Yoo N, Vu M, et al. Transforming growth factor-β cansuppress tumorigenesis through effects on the putative cancer stemor early progenitor cell and committed progeny in a breast cancerxenograft model[J]. Cancer Res,2007,67:8643–8652.
    [88] Bierie B, Moses HL. Tumour microenvironment: TGFβ: themolecular Jekyll and Hyde of cancer[J]. Nature Rev Cancer,2006,6:506–520.
    [89] Roberts AB, Wakefield LM. The two faces of transforming growthfactor β in carcinogenesis[J]. Proc Natl Acad Sci USA,2003,100:8621–8623.
    [90] Li AG, Lu SL, Han G, et al. Current view of the role of transforminggrowth factor beta1in skin carcinogenesis[J]. J Investig DermatolSymp Proc,2005,10:110-117.
    [91] Padua D, Massague J. Roles of TGF beta in metastasis[J]. Cellresearch,2009,19:89-102.
    [92] Zochodne B, Truong AH, Stetler K, et al. Epo regulates erythroidproliferation and differentiation through distinct signaling pathways:implication for erythropoiesis and Friend virus-inducedeythroleukemia[J]. Oncogene,2000,19:2296-2304.
    [93] Brunen D, Willems SM, Kellner U, et al. TGF-β: an emerging playerin drug resistance[J]. Cell cycle,2013,12:2960-2968.