用户名: 密码: 验证码:
N-(4-氨基丁基)-乙基异鲁米诺功能化纳米材料的合成、发光性质及分析应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文首先综述了化学发光化学发光功能化纳米材料的研究现状及其在生物分析中的最新应用进展。近年来,发光试剂功能化的纳米材料的研究得到了人们的广泛关注,以发光试剂功能化纳米材料为分析探针和纳米界面的分析方法得到了迅速发展,在临床诊断、食品安全检测、环境监测等领域显示了重要的应用前景。但目前所制备的发光功能化纳米材料发光效率有限,对于一些生物体系中超低含量物质的测定仍存在挑战。本论文针对发展高效的发光功能化纳米材料,围绕着特殊形貌发光试剂功能化纳米材料及发光试剂功能化金纳米材料/碳纳米管复合材料的制备及无标记化学发光生物分析新方法这一研究主题,展开了一系列研究工作。成功合成了N-(4-氨丁基)-N-乙基异鲁米诺(ABEI)功能化爆米花状金纳米粒子和ABEI功能化金纳米点/壳聚糖/多壁碳纳米管复合材料,研究了其化学发光和电致化学发光性质。基于上述发光功能化纳米复合材料,发展了一系列无标记电致化学发光生物分析新方法,实现了对金属离子和抗原分子的超灵敏测定。此外,基于ABEI良好的荧光性能,进一步探讨了ABEI功能化金纳米颗粒的荧光特性及在荧光共振能量转移中的应用。主要研究内容如下:
     1.在室温乙醇溶液中,采用种晶生长法,利用ABEI还原硫辛酸和氯金酸,发展了一种制备高发光效率的爆米花状发光试剂功能化金纳米材料的简单合成方法。借助透射电子显微镜等仪器分析手段对合成的金纳米材料的形貌进行了表征,结果显示该方法成功制备了爆米花状、准球形、不规则多面体等形貌金纳米材料。进一步,通过X射线电子能谱等仪器手段对产物的表面化学组成进行了表征。结果表明,ABEI、ABEI的氧化产物通过Au-N键连接于金纳米表面,硫辛酸的还原产物通过Au-S键连接于金纳米表面。对于所合成的爆米花状金纳米粒子,其表面密布的不规则凸起使其具有更大的比较面积,在化学发光性能上明显优于前期合成的球形ABEI功能化金纳米材料。尤为重要的是,爆米花状金纳米材料可以标记生物分子如蛋白质和DNA,制备的生物探针仍具有良好的化学发光活性。这种化学发光功能化的生物探针能够被用于生物测定和临床诊断中,对公共健康、食品安全及环境监测等均具有重要意义。
     2.采用一步合成法成功制备了高密度ABEI功能化金纳米点功能化的碳纳米管。实验中先将壳聚糖吸附于羧基化碳纳米管,分离纯化后与氯金酸溶液混合均匀,而后加入ABEI溶液还原氯金酸,ABEI与碳管表面壳聚糖同时作为保护试剂连接于金纳米点表面,制备了ABEI功能化纳米点/壳聚糖/碳纳米管复合材料。借助透射电子显微镜、高角环形暗场扫描透射原子成像技术、X射线能谱仪、X射线光电子能谱和拉曼光谱等仪器手段对所合成复合材料形貌及表面特性进行了表征。分析结果表明ABEI功能化的金纳米点高密度、均匀的分布于碳纳米管表面。进一步我们研究了ABEI功能化纳米点/壳聚糖/碳纳米管复合材料的化学发光性能,结果表明该复合材料具有良好的化学发光和电致化学发光特性。基于ABEI高效的化学发光特性、壳聚糖良好的成膜特性和碳纳米管良好的导电性能,利用合成的ABEI功能化纳米点/壳聚糖/碳纳米管复合材料构建了一种新型无标记适配体传感器,并成功实现了对水体样本中的汞离子的高灵敏、特异性的测定,线性范围为1.0×10~1.0×10-8mol/L,检测限为3.2x10-9mol/L。
     3.基于前一章工作所合成的ABEI功能化金纳米点-壳聚糖-多壁碳纳米管复合材料,我们构建了电致化学发光活性传感平台,发展一种无标记免疫分析新方法用于测定氨基末端脑钠肽前体(NT-proBNP).基于氧化铟锡(Indium tin oxide, ITO)玻片电极,通过简单的滴加将经过纯化处理的复合材料滴涂于ITO电极表面,复合材料中的壳聚糖具有很好的成膜性,能够将材料稳定的固载于电极表面,同时复合材料具有优良的电致化学发光特性,作为电化学发光活性基底。而后利用戊二醛作为连接分子将人NT-proBNP单克隆抗体修饰于复合材料表面,并用牛血清蛋白对上述界面未反应的活性位点进行封闭,该修饰电极即可作为一种无标记电致化学发光免疫传感器,用于检测NT-proBNP。实验中通过监测电致化学行为对传感器的构建过程进行了表征。结果表明,该复合材料功能化的纳米界面具有良好的电致化学发光性质和电子传导能力。该传感器用于检测目标抗原NT-proBNP时展现了较宽的线性范围1.0×10-10g/mL-1.0×10-14g/mL和较低的检测限3.86×10-15g/mL。此外,研究表明该传感器具有良好的精确度、稳定性和重现性。本研究为蛋白质的检测提供了一种简单、快速、灵敏的检测方法,为无标记免疫传感器开辟了新的途径。
     4.研究了ABEI功能化金纳米粒子的荧光特性。研究结果表明ABEI功能化金纳米粒子作为纳米光学探针具有以下重要优点。第一,1.23×10-9mol/L的ABEI功能化金纳米粒子具有与7.8×10-7mol/L ABEI纯溶液可比拟的荧光发射强度。虽然功能化金纳米粒子之间存在粒子间淬灭效应、金纳米核对其表面的ABEI分子存在粒子内淬灭效应,但一个功能化金纳米粒子的荧光强度仍比单个ABEI分子强634倍。此外,纳米金具有良好的标记性能,这对将ABEI功能化金纳米粒子用作荧光探针具有重要的意义。第二,ABEI功能化金纳米粒子表现了良好的抗光漂白特性,性能优于实验室前期合成的鲁米诺功能化金纳米粒子。在激发光源持续照射45分钟后,ABEI功能化金纳米粒子仍保留70%的荧光发射强度。此外,我们将ABEI功能化金纳米作为能量给体,将吖啶黄作为能量受体,开发了一种新颖的荧光共振能量转移体系。研究表明,在不需要额外添加连接分子的情况下,二者在水溶液中就能发生有效的荧光共振能量转移。本章工作首次提出将发光试剂功能化金属纳米材料用作共振能量转移的能量给体。基于金纳米材料优良的标记特性,ABEI功能化金纳米材料-吖啶黄共振能量转移对有望应用于荧光相关的生物分析测定中。
In this dissertation, the state of arts in the field of chemiluminescence (CL), chemiluminescent functionalized nanomaterials (CF-NMs) and their applications in bioassays were reviewed. Recently, much attention has been paid to CF-NMs and a series of CF-NMs have been synthesized. The analytical method based on CL-NMs as analytical probes and analytical interface is developed rapidly, showing promising application potential in clinical diagnosis, food safety, environmental monitoring etc. However, the CL efficiency of CF-NMs is limited and it remains great challenge for the detection of trace substance in the biological systems. The aim of this dissertation is to explore the synthesis of CF-NMs with high CL yield and their applications in label-free bioassays. N-(aminobytyl)-N-(ethylisoluminol)(ABEI) functionalized gold nanopopcorns and ABEI functionalized gold nanodots onto chitosan-grafted multi-walled carbon nanotubes (ABEI-AuNDs-cs-MWCNTs) were successfully synthesized. These nanocomposites exhibited excellent CL and electrochemiluminescence (ECL) properties. Based on the as-prepared CF-NMs, novel label-free ECL biosensors for highly sensitive and selective detection of mercury and N-terminal of the prohormone brain natriuretic peptide (NT-proBNP) were developed based on the target-induced directed ECL signal change. Besides, the fluorescence property of ABEI functionalized gold nanoparticles (ABEI-AuNPs) and applications of ABEI-AuNPs in fluorescence resonance energy transfer were studied. The main results are as follows:
     1. A facile method for the synthesis of popcorn-shaped gold nanomaterials (GNMs) with high CL yield and good monodispersity by reducing LA and HAuCl4with ABEI in ethyl alcohol solution at room temperature through a seed growth method was reproted. The morphologies of GNMs were characterized by transmission electron microscopy, scanning electron microscopy and energy dispersive spectroscopy. The results showed that various morphologies of GNMs from gold nanopopcorns (AuNPCs), quasi-spherical to irregular GNMs could be obtained. The surface composition of AuNPCs was studied and the results strongly supported that ABEI, the oxidation product of ABEI and reduction product of LA were attached to a gold core by covalent bonds. A possible mechanism of shape evolution is proposed. The special morphology of AuNPCs maintains the large specific surface area and provides excellent catalytic property when involved in the CL reaction. Thus the CL functionalized AuNPCs exhibited good CL property (two orders of magnitude higher than that of ABEI functionalized gold nanoparticles in our previous work). Furthermore, DNA and protein labeled with AuNPCs showed excellent CL activity, which implies their application potential as bio-probes for immunoassay and DNA assay.
     2. A one-step strategy for high-density assembly of ABEI functionalized gold nanodots onto the sidewalls of chitosan-grafted multi-walled carbon nanotubes (ABEI-AuNDs-cs-MWCNTs) via the reduction of HAuCl4with ABEI in the presence of cs-MWCNTs. During the synthesis process, a great number of ABEI molecules as stabilizers were directly coated on the surface of ABEI-AuNDs-cs-MWCNTs. The morphology and surface composition of ABEI-AuNDs-cs-MWCNTs were studied by transmission electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy and Raman spectra. The results showed that ABEI-AuNDs uniformly distributed on the surface of composites. Furthermore, the CL and ECL properties of ABEI-AuNDs-cs-MWCNTs were studied and ABEI-AuNDs-cs-MWCNTs exhibited excellent CL and ECL properties. Based on the excellent ECL activity of ABEI-AuNDs-cs-MWCNTs and the good electro-transfer property of MWCNTs and film-forming property of chitosan, a novel label-free ECL biosensor was developed and has an extremely sensitive response to mercury ions in a liner range of1.0×10-6mol/~1.0×10-8mol/L, and the detection limit was3.2×10-9mol/L.
     3. A novel lable-free immunoassay for NT-proBNP was developed based on the ABEI-AuNDs-cs-MWCNTs as ECL sensing platform. ITO-coated glass slides were used as an assembly electrode owing to their stability, easy miniaturization and compatibility with microfabrication. After a centrifugation-ultrasonic dispersion process, ABEI-AuNDs-cs-MWCNTs were dripped onto the surface of ITO glass and ABEI-AuNDs-cs-MWCNTs functionalized ITO electrode was obtained. Glutaraldehyde molecules were used as bridge molecules for anti-NT-proBNP coated on the surface of ITO electrode. After blocking with bovine serum albumin, the electrode could be used as a label-free ECL immunosensor for the detection of NT-proBNP. ECL behavior of the modified electrode was studied by a homemade ECL system. It demonstrated that the ABEI-AuNDs-cs-MWCNTs constructed nano-interface showed high ECL intensity. The as-prepared label-free ECL immunosensor has an extremely sensitive response to NT-proBNP in a liner range of1.0×10-10g/mL-1.0×10-14g/mL with the detection limit of3.86×10-15g/mL. It also shows good precision, acceptable stability and reproducibility. This work provides a promising technique for protein detection, which may open up a new avenue for the ultrasensitive label-free immunoassays.
     4. The FL properties of as-prepared ABEI-AuNPs were studied in this work. It was observed that as-prepared ABEI-AuNPs with a concentration of1.23×10-9mol/L displayed comparable FL emission to that of the7.8×10-7mol/L ABEI solution. Although86%of the FL emission of ABEI molecules on the surface of ABEI-AuNPs was inhibited by gold cores through intra-and inter-particle quenching effects, the FL intensity of a gold nanoparticle was still-634times brighter than that of a single ABEI molecule. The as-prepared ABEI-AuNPs also exhibited much better photostability than luminol-AuNPs reported by our previous work.96%FL intensity of as-prepared ABEI-AuNPs solution remained after5min continuous excitation and only80%FL intensity of luminol-AuNPs would be kept in our previous work. Furthermore, almost70%FL intensity of ABEI-AuNPs still remained after45min. Moreover, ABEI-AuNPs and acriflavine were successfully used as energy donor and energy acceptor, respectively, to construct a novel FRET system. And an efficient energy transfer from ABEI-AuNPs to acriflavine in the solution was observed. This work demonstrates for the first time that ABEI functionalized gold nanomaterials could be used as energy donor. Taking advantage of excellent labeling property of gold nanomaterials, the FRET property between ABEI-AuNPs and acriflavine may find future applications in bioassays with FL detection.
引文
[1]Radziszewski B R. Untersuchungen uber Hydrobenzamid, Amarin und Lophin [J]. Berichte der deutschen chemischen Gesellschaft,1877,10(1):70-75.
    [2]Albrecht H O. Chemiluminescence of aminophthalic hydrazide [J]. Z Phys Chem, 1928,136(321-330.
    [3]Gleu K P W. The chemiluminescence of the dimethylbiacridylium salts [J]. Angew. Chem. Int. Ed.,1935,48(3):57-59.
    [4]Burstall F H. Optical activity dependent on co-ordinated bivalent ruthenium [J]. J. Chem. Soc.,1936,173-175.
    [5]Hercules D M, Lytle F E. CHEMILUMINESCENCE FROM REDUCTION REACTIONS [J]. J. Am. Chem. Soc.,1966,88(20):4745-4746.
    [6]Aboul-Enein H Y, Stefan R I, van Staden J F. Chemiluminescence-based (bio) sensors-An overview [J]. Crit. Rev. Anal. Chem.,1999,29(4):323-331.
    [7]Campbell A K. Chemiluminescence:Principles and applications in biology and medicine [M]. Chichester:Horwood/VCH,1988.
    [8]Champiat D. Bio-chimi-luminescence, Principes et applications [M]. Paris: Masson,1993.
    [9]Dodeigne C, Thunus L, Lejeune R. Chemiluminescence as a diagnostic tool. A review [J]. Talanta,2000,51(3):415-439.
    [10]Li F M, Zhang C H, Guo X J, et al. Chemiluminescence detection in HPLC and CE for pharmaceutical and biomedical analysis [J]. Biomed. Chromatogr.,2003, 17(2-3):96-105.
    [11]Robards K, Worsfold P J. Analytical applications of liquid-phase chemiluminescence [J]. Anal. Chim. Acta,1992,266(2):147-173.
    [12]Ding X. P, Zhang C. L, Qi J, et al. The Spectrum-Effect integrated fingerprint of Polygonum cuspidatum based on HPLC-diode array detection-flow injection-chemiluminescence [J]. Chin. J. Nat. Med,2013,11(5):546-552.
    [13]Wada M, Ochi Y, Nogami K, et al. Evaluation of hair roots for detection of methamphetamine and 3,4-methylenedioxymethamphetamine abuse by use of an HPLC-chemiluminescence method [J]. Anal. Bioanal. Chem.,2012,403(9): 2569-2576.
    [14]Kishikawa N, Ohkubo N, Ohyama K, et al. Selective determination of ubiquinone in human plasma by HPLC with chemiluminescence reaction based on the redox cycle of quinone [J]. Analy. Bioanal. Chem.,2011,400(2):381-385.
    [15]Garcia C L, Becchi M, Grenier-Loustalot M F, et al. Analysis of aromatic sulfur compounds in gas oils using GC with sulfur chemiluminescence detection and high-resolution MS [J]. Analy. Chem.,2002,74(15):3849-3857.
    [16]Wei W, Wei M, Cai Z, et al. Determination of Spectinomycin in Human Urine Using CE Coupled with Electrogenerated Chemiluminescence [J]. Chromatographia, 2011,74(3-4):349-353.
    [17]Zhang C. X, Zhang H. H, Feng M. L. Homogeneous electrogenerated chemiluminescence immunoassay using a luminol-labeled digoxin hapten [J]. Analy. Lett.,2003,36(6):1103-1114.
    [18]Haiying Y, Yaqin W, Honglan Q, et al. Electrogenerated chemiluminescence biosensor incorporating ruthenium complex-labelled Concanavalin A as a probe for the detection of Escherichia coli [J]. Biosens. Bioelectron.,2012,35(1):376-381.
    [19]Li Y. Electrogenerated Chemiluminescence Detection of Mercury(II) Ions Based on DNA Probe Labeled with Ruthenium Complex [J]. Anal. Sci.,2011,27(2): 193-196.
    [20]Qi Y, Xiu F. R, Li B. One-step homogeneous non-stripping chemiluminescence metal immunoassay based on catalytic activity of gold nanoparticles [J]. Anal. Biochem.,2014,449,1-8.
    [21]Zhang M, Xiao X, Zeng W, et al. Determination of 2-methoxyestradiol in serum samples and pharmaceutical preparations by silver nanoparticles-enhanced chemiluminescence [J]. Talanta,2014,120,331-335.
    [22]Iranifam M. Analytical applications of chemiluminescence-detection systems assisted by magnetic microparticles and nanoparticles [J]. Trac-Trends Anal. Chem., 2013,51(51-70.
    [23]Amjadi M, Manzoori J L, Hassanzadeh J, et al. Permanganate-bromide-silver nanoparticles as a new chemiluminescence system and its application to captopril determination [J]. Talanta,2013,115(600-605.
    [24]Guoxing Q, Shulin Z, Yong H, et al. A sensitive gold nanoparticles sensing platform based on resonance energy transfer for chemiluminescence light on detection of biomolecules [J]. Biosens. Bioelectron.,2013,46(119-123.
    [25]陆明刚.化学发光分析[M].合肥:安徽科技出版社,1986.
    [26]Arat T. Encyclopedia of analytical science [J]. San Diego:Aqcademic Press,1995, 1(608-626):
    [27]White E H, Bursey M M. Chemiluminescence of luminol and related hydrazides: The light emission step [J]. J. Am. Chem. Soc.,1964,86(5):941-942.
    [28]Roswell D F, White E H. The chemiluminescence of luminol and related hydrazides Meth Enzymol, [J]. Biolumin. Chemilumin.,1978,57,409-423.
    [29]Kricka L J, Thorpe G H G. Chemiluminescent and bioluminescent methods in Analytical Chemistry. A review [J]. Analyst,1983,108(1292):1274-1296.
    [30]Burdo T G, Seitz W R. Mechanism of cobalt catalysis of luminol chemiluminescence [J]. Analy. Chem.,1975,47(9):1639-1643.
    [31]Seitz W R, Suydam W W, Hercules D M. Determination of trace amounts of chromium(III) using chemiluminescence analysis [J]. Anal. Chem.,1972,44(6): 957-963.
    [32]Babko A K, Dubovenko L I. Improvement of the sensitivity of the catalytic chemiluminescence reaction for copper [J]. Anal. Chem.,1964,200(6):428-434.
    [33]Kalinichenko I E. Chemiluminescent method for determining nanogram amounts of manganese [J]. Ukr Khim Zh,1969,35(7):755-757.
    [34]Seitz W R, Hercules D M. Determination of trace amounts of iron(II) using chemiluminescence analysis [J]. Analy. Chem.,1972,44(13):2143-2149.
    [35]Kalinichenko I E, Grishchenko O M. Activation of iron salts by diethylenetriamine during the oxidation of luminol by hydrogen peroxide [J]. Ukr Khim Zh,1970,36(6):610-613.
    [36]Cui H, He C. X, Zhao G. W. Determination of polyphenols by high-performance liquid chromatography with inhibited chemiluminescence detection [J]. J. Chromatogr. A,1999,855(1):171-179.
    [37]Totter J R. The quantum yield of the chemiluminescence of dimethylbiacridinium nitrate and the mechanism of its enzymically induced chemiluminescence [J]. Photochem. Photobiol.,1964,3(3):231-241.
    [38]Maskiewicz R, Sogah D, Bruice T C. Chemiluminescent reactions of lucigenin.2. Reactions of lucigenin with hydroxide ion and other nucleophiles [J]. J. Am. Chem. Soc.,1979,101(18):5355-5364.
    [39]Maskiewicz R, Sogah D, Bruice T C. Chemiluminescent reactions of lucigenin.1. Reactions of lucigenin with hydrogen peroxide [J]. J. Am. Chem. Soc.,1979,101(18): 5347-5354.
    [40]Papadopoulos K, Nikokavouras J. Synthesis of Novel Protected Hemiaminal N-Methoxymethyl-N'-Methyl-9,9'-Biacridylidene from Lucigenin [J]. Tetrahedron Lett.,1993,34(8):1371-1372.
    [41]Rathakrishnan C, Tiku M L. Lucigenin-Dependent Chemiluminescence in Articular Chondrocytes [J]. Free Radical. Bio. Med.,1993,15(2):143-149.
    [42]Mohazzabh K M, Wolin M S. Sites of Superoxide Anion Production Detected by Lucigenin in Calf Pulmonary-Artery Smooth-Muscle [J]. Am. J. Physiol-Lung C, 1994,267(6):L815-L822.
    [43]Ruberto M. A, Grayeski M. L. Investigation of Acridinium Labeling for Chemiluminescence Detection of Peptides Separated by Capillary Electrophoresis [J]. J. Microcolumn. Sep.,1994,6(6):545-550.
    [44]Barbacanne M. A, Souchard J. P, Darblade B, et al. Detection of superoxide anion released extracellularly by endothelial cells using cytochrome c reduction, ESR, fluorescence and lucigenin-enhanced chemiluminescence techniques [J]. Free Radical. Bio. Med.,2000,29(5):388-396.
    [45]Afanas'ev I B, Ostrachovitch E A, Korkina L G. Lucigenin is a mediator of cytochrome c reduction but not of superoxide production [J]. Arch. Biochem. Biophys.,1999,366(2):267-274.
    [46]Spasojevic I, Liochev S I, Fridovich I. Lucigenin:Redox potential in aqueous media and redox cycling with O-2(-) production [J]. Arch. Biochem. Biophys.,2000, 373(2):447-450.
    [47]Peters T R, Tosk J M, Goulbourne E A. Lucigenin Chemiluminescence as a Probe for Measuring Reactive Oxygen Species Production in Escherichia-Coli [J]. Anal. Biochem.,1990,186(2):316-319.
    [48]Kahl R, Weimann A, Weinke S, et al. Detection of Oxygen Activation and Determination of the Activity of Antioxidants Towards Reactive Oxygen Species by Use of the Chemiluminigenic Probes Luminol and Lucigenin [J]. Arch. Toxicol.,1987, 60(1-3):158-162.
    [49]Veazey R. L, Nieman T. A. Chemiluminescent determination of clinically important organic reductants [J]. Anal. Chem.,1979,51(13):2092-2096.
    [50]Braun A. New Analogues of Lucigenin.3. N,N'-Di-(P-Bromophenyl)-Diacridylium Dinitrate [J]. Soc. Sci. Lodz. Acta Ch,1967, 12(101-&.
    [51]Chen G N, Xu X Q, Duan J P, et al. Flow injection and liquid chromatographic detection of amino acids based on the chemiluminescence reaction of lucigenin [J]. Anal. Commun.,1996,33(3):99-102.
    [52]Klinger W, Karge E, Kretzschmar M, et al. Luminol-and lucigenin-amplified chemiluminescence with rat liver microsomes-Kinetics and influence of ascorbic acid, glutathione, dimethylsulfoxide, N-t-butyl-a-phenylnitrone, copper-ions and a copper complex, catalase, superoxide dismutase, hexobarbital and aniline [J]. Exp. Toxicol. Pathol.,1996,48(5):447-460.
    [53]Kokado A, Arakawa H, Maeda M. Chemiluminescent assay of alkaline phosphatase using dihydroxyacetone phosphate as substrate detected with lucigenin [J]. Luminescence,2002,17(1):5-10.
    [54]Natrajan A, Sharpe D. Synthesis and properties of differently charged chemiluminescent acridinium ester labels [J]. Org. Biomol. Chem.,2013,11(6): 1026-1039.
    [55]Xu Q. F, Liu J, He Z. K, et al. Superquenching acridinium ester chemiluminescence by gold nanoparticles for DNA detection [J]. Chem. Commun., 2010,46(46):8800-8802.
    [56]Natrajan A, Wen D. Use of degradable cationic surfactants with cleavable linkages for enhancing the chemiluminescence of acridinium ester labels [J]. Rsc. Adv.,2013,3(44):21398-21404.
    [57]Natrajan A, Sharpe D, Wen D. Chemiluminescence from alkoxy-substituted acridinium dimethylphenyl ester labels [J]. Org. Biomol. Chem.,2012,10(17): 3432-3447.
    [58]林金明.化学发光基础理论与应用[M].北京:化学工业出版社,2004.
    [59]Tsunoda M, Imai K. Analytical applications of peroxyoxalate chemiluminescence [J]. Anal. Chim. Acta,2005,541(1-2):13-23.
    [60]Forster R J, Bertoncello P, Keyes T E. Electro generated Chemiluminescence [M]. Annual Review of Analytical Chemistry. Palo Alto; Annual Reviews.2009:359-385.
    [61]Li J, Wang E. K. Applications of tris(2,2'-bipyridyl)ruthenium(II) in electrochemiluminescence [J]. Chem. Rec.,2012,12(1):177-187.
    [62]Miao W J. Electrogenerated chemiluminescence and its biorelated applications [J]. Chem. Rev.,2008,108(7):2506-2553.
    [63]Hu L, Xu G. Applications and trends in electrochemiluminescence [J]. Chem. Soc. Rev.,2010,39(8):3275-3304.
    [64]Choi H. N, Cho S. H, Lee W. Y. Electrogenerated chemiluminescence from tris(2,2'-bipyridyl)ruthenium(II) immobilized in titania-perfluorosulfonated lonomer composite films [J]. Anal. Chem.,2003,75(16):4250-4256.
    [65]Gorman B. A, Francis P. S, Barnett N. W. Tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence [J]. Analyst,2006,131(5):616-639.
    [66]Chang M. M, Saji T, Bard A. J. Electrogenerated Chemiluminescence.30. Electrochemical Oxidation of Oxalate Ion in Presence of Luminescers in Acetonitrile Solutions [J]. J. Am. Chem. Soc.,1977,99(16):5399-5403.
    [67]Lytle F. E, Hercules D. M. Chemiluminescence from Reduction of Aromatic Amine Cations and Ruthenium(Iii) Chelates [J]. Photochem. Photobiol.,1971,13(2): 123-&.
    [68]Tokel N. E, Bard A. J. Electrogenerated Chemiluminescence.9. Electrochemistry and Emission from Systems Containing Tris(2,2'-Bipyridine)Ruthenium(Ii) Dichloride [J]. J. Am. Chem. Soc.,1972,94(8):2862-&.
    [69]Forster R. A, Hogan C. F. Electrochemiluminescent metallopolymer coatings: Combined light and current detection in flow injection analysis [J]. Anal. Chem.,2000, 72(22):5576-5582.
    [70]Ege D, Becker W. G, Bard A. J. Electrogenerated Chemi-Luminescent Determination of Ru(Bpy)32+at Low-Levels [J]. Anal. Chem.,1984,56(13): 2413-2417.
    [71]Leland J. K, Powell M. J. Electrogenerated Chemiluminescence-an Oxidative-Reduction Type Ecl Reaction Sequence Using Tripropyl Amine [J]. J.Electrochem. Soc.,1990,137(10):3127-3131.
    [72]Gorman B. A, Francis P. S, Barnett N W. Tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence [J]. Analyst,2006,131(5):616-639.
    [73]AAG. Chemiluminescence. [J]. J Russ Phys. Chem. Soc.,1920,52(151-185.
    [74]Stauff J, Jaeschke W. Chemiluminescence Technique for Measuring Atmospheric Trace Concentrations of Sulfur-Dioxide [J]. Atmos. Environ.,1975,9(11):1038-1039.
    [75]Matsumoto M. Advanced chemistry of dioxetane-based chemiluminescent substrates originating from bioluminescence [J]. J. Photoch. Photobio. C,2004,5(1): 27-53.
    [76]Schaap A P, Sandison M D, Handley R S. Chemical and Enzymatic Triggering of 1,2-Dioxetanes.3. Alkaline Phosphatase-Catalyzed Chemiluminescence from an Aryl Phosphate-Substituted Dioxetane [J]. Tetrahedron Lett.,1987,28(11):1159-1162.
    [77]Mu X, Li S, Lu X, et al. CE with chemiluminescence detection for the determination of thyroxine in human serum [J]. Electrophoresis,2014,35(7): 962-966.
    [78]Nagai M, Miyahara W, Sagawa H, et al. Chemiluminescence Detection of Glucose Using Ce(IV) Oxidation in a Batch System [J]. Analy. Sci.,2013,29(1): 21-24.
    [79]Kamruzzaman M, Alam A-M, Kim K M, et al. Silver Nanoparticle-Enhanced Chemiluminescence Method for Determining Naproxen Based on Europium(III)-Sensitized Ce(IV)-Na2S2O4 Reaction [J]. J. Fluoresc.,2012,22(3): 883-890.
    [80]Li Q, Zhang L, Li J, et al. Nanomaterial-amplified chemiluminescence systems and their applications in bioassays [J]. Trac-Trends Anal. Chem.,2011,30(2): 401-413.
    [81]Yan L, Honglan Q, Qiang G, et al. Nanomaterial-amplified "signal off/on" electrogenerated chemiluminescence aptasensors for the detection of thrombin [J]. Biosens. Bioelectron.,2010,26(2):754-759.
    [82]Jiang J, Zhao S, Huang Y, et al. Highly sensitive immunoassay of carcinoembryonic antigen by capillary electrophoresis with gold nanoparticles amplified chemiluminescence detection [J]. J. Chromatogra. A,2013,1282(161-166.
    [83]Xiao Y. Y, Ying S. G, Sai B, et al. Ultrasensitive enhanced chemiluminescence enzyme immunoassay for the determination of alpha-fetoprotein amplified by double-codified gold nanoparticles labels [J]. Biosens. Bioelectron.,2009,24(8): 2707-2711.
    [84]Qian X, Ying G, Jingqiu L, et al. Development of Nanomaterials Electrochemical Biosensor and Its Applications [J]. Adv. Mater. Res.,2011,418-420(2082-2085.
    [85]Khramov A N, Collinson M M. Electrogenerated chemiluminescence of tris(2,2 '-bipyridyl)ruthenium(II) ion-exchanged in nafion-silica composite films [J]. Anal. Chem.,2000,72(13):2943-2948.
    [86]Wang H Y, Xu G B, Dong S J. Electrochemiluminescence of tris(2,2 '-bipyridine)ruthenium(II) immobilized in poly(p-styrenesulfonate)-silica-Triton X-100 composite thin-films [J]. Analyst,2001,126(7):1095-1099.
    [87]Wang H. Y, Xu G. B, Dong S. J. Electrochemiluminescence of tris(2,2 '-bipyridyl)ruthenium (II) ion-exchanged in polyelectrolyte-silica composite thin-films [J]. Electroanalysis,2002,14(12):853-857.
    [88]Zhang L. L, Zheng X. W. A novel electrogenerated chemiluminescence sensor for pyrogallol with core-shell luminol-doped silica nanoparticles modified electrode by the self-assembled technique [J]. Anal. Chim. Acta,2006,570(2):207-213.
    [89]Yang X. Y, Guo Y. S, Wang A. G. Luminol/antibody labeled gold nanoparticles for chemiluminescence immunoassay of carcinoembryonic antigen [J]. Anal. Chim. Acta,2010,666(1-2):91-96.
    [90]Zhou X. M, Xing D, Zhu D. B, et al. Magnetic Bead and Nanoparticle Based Electrochemiluminescence Amplification Assay for Direct and Sensitive Measuring of Telomerase Activity [J]. Anal. Chem.,2009,81(1):255-261.
    [91]Zhu D. B, Tang Y. B, Xing D, et al. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method [J]. Anal. Chem.,2008,80(10):3566-3571.
    [92]Roux S, Garcia B, Bridot J. L, et al. Synthesis, characterization of dihydrolipoic acid capped gold nanoparticles, and functionalization by the electroluminescent luminol [J]. Langmuir,2005,21(6):2526-2536.
    [93]Li F, Tian D. Y, Cui H. Synthesis and characterizations of iso-luminol-functionalized, tadpole-shaped, gold nanomaterials [J]. Luminescence, 2013,28(1):7-15.
    [94]Tian D. Y, Zhang H. L, Chai Y, et al. Synthesis of N-(aminobutyl)-N-(ethylisoluminol) functionalized gold nanomaterials for chemiluminescent bio-probe [J]. Chem. Commun.,2011,47(17):4959-4961.
    [95]Cui H, Wang W, Duan C. F, et al. Synthesis, characterization, and electrochemiluminescence of luminol-reduced gold nanoparticles and their application in a hydrogen peroxide sensor [J]. Chem. Eur. J.,2007,13(24): 6975-6984.
    [96]Dreaden E. C, Alkilany A. M, Huang X, et al. The golden age:gold nanoparticles for biomedicine [J]. Chem. Soc. Rev.,2012,41(7):2740-2779.
    [97]Conde J, Ambrosone A, Sanz V, et al. Design of Multifunctional Gold Nanoparticles for In Vitro and In Vivo Gene Silencing [J]. ACS Nano,2012,6(9): 8316-8324.
    [98]Li Q, Li Y. W, Wu P, et al. Palladium Oxide Nanoparticles on Nitrogen-Doped Titanium Oxide:Accelerated Photocatalytic Disinfection and Post-Illumination Catalytic "Memory" [J]. Adv. Mater.,2008,20(19):3717-3723.
    [99]Duncan T. V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors [J]. J. Colloid. Interf. Sci.,2011,363(1): 1-24.
    [100]Das M, Saxena N, Dwivedi P D. Emerging trends of nanoparticles application in food technology:Safety paradigms [J]. Nanotoxicology,2009,3(1): 10-18.
    [101]Sun X, Du Y, Dong S, et al. Method for Effective Immobilization of Ru(bpy)32+on an Electrode Surface for Solid-State Electrochemiluminescene Detection [J]. Anal. Chem.,2005,77(24):8166-8169.
    [102]Zhang L. H, Xu Z. A, Sun X. P, et al. A novel alcohol dehydrogenase biosensor based on solid-state electro generated chemiluminescence by assembling dehydrogenase to Ru(bpy)(3)(2+)-Au nanoparticles aggregates [J]. Biosens. Bioelectron.,2007,22(6):1097-1100.
    [103]Roux S, Garcia B, Bridot J. L, et al. Synthesis, Characterization of Dihydrolipoic Acid Capped Gold Nanoparticles, and Functionalization by the Electroluminescent Luminol [J]. Langmuir,2005,21(6):2526-2536.
    [104]Yang X, Guo Y, Wang A. Luminol/antibody labeled gold nanoparticles for chemiluminescence immunoassay of carcinoembryonic antigen [J]. Anal. Chim. Acta, 2010,666(1-2):91-96.
    [105]Zhou X, Xing D, Zhu D, et al. Magnetic Bead and Nanoparticle Based Electrochemiluminescence Amplification Assay for Direct and Sensitive Measuring of Telomerase Activity [J]. Anal. Chem.,2008,81(1):255-261.
    [106]Millan J I, Garcia Ramos J V, Sanchez Cortes S, et al. Adsorption of lucigenin on Ag nanoparticles studied by surface-enhanced Raman spectroscopy: effect of different anions on the intensification of Raman spectra [J]. J Raman Spectrosc.,2003,34(3):227-233.
    [107]Shen W, Tian D. Y, Cui H, et al. Nanoparticle-based electrochemiluminescence immunosensor with enhanced sensitivity for cardiac troponin I using N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanoparticles as labels [J]. Biosens. Bioelectron.,2011,27(1):18-24.
    [108]Jiang J, Chai Y, Cui H. The electrogenerated chemiluminescence detection of IS6110 of Mycobacterium tuberculosis based on a luminol functionalized gold nanoprobe [J]. RSC Adv.,2011,1(2):247-254.
    [109]Chai Y, Tian D. Y, Gu J, et al. A novel electrochemiluminescence aptasensor for protein based on a sensitive N-(aminobutyl)-N-ethylisoluminol-functionalized gold nanoprobe [J]. Analyst,2011,136(16):3244-3251.
    [110]Tian D Y, Duan C. F, Wang W, et al. Ultrasensitive electrochemiluminescence immunosensor based on luminol functionalized gold nanoparticle labeling [J]. Biosens. Bioelectron.,2010,25(10):2290-2295.
    [111]He Y, Zhang H, Chai Y, et al. DNA sensor by using electrochemiluminescence of acridinium ester initiated by tripropylamine [J]. Anal. Bioanal. Chem.,2011,399(10):3451-3458.
    [112]Chai Y, Tian D Y, Wang W, et al. A novel electrochemiluminescence strategy for ultrasensitive DNA assay using luminol functionalized gold nanoparticles multi-labeling and amplification of gold nanoparticles and biotin-streptavidin system [J]. Chem. Commun.,2010,46(40):7560-7562.
    [113]Iijima S. HELICAL MICROTUBULES OF GRAPHITIC CARBON [J]. Nature,1991,354(6348):56-58.
    [114]Li J, Papadopoulos C, Xu J. Nanoelectronics:Growing Y-junction carbon nanotubes [J]. Nature,1999,402(6759):253-254.
    [115]Bachilo S. M, Strano M. S, Kittrell C, et al. Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes [J]. Science,2002,298(5602): 2361-2366.
    [116]Bhirde A. A, Patel V, Gavard J, et al. Targeted Killing of Cancer Cells in Vivo and in Vitro with EGF-Directed Carbon Nanotube-Based Drug Delivery [J]. ACS Nano,2009,3(2):307-316.
    [117]Wang J. Carbon-Nanotube Based Electrochemical Biosensors:A Review [J]. Electroanalysis,2005,17(1):7-14.
    [118]So H. M, Won K, Kim Y. H, et al. Single-Walled Carbon Nanotube Biosensors Using Aptamers as Molecular Recognition Elements [J]. J. Am. Chem. Soc.,2005,127(34):11906-11907.
    [119]Karousis N, Tagmatarchis N, Tasis D. Current Progress on the Chemical Modification of Carbon Nanotubes [J]. Chem. Rev.,2010,110(9):5366-5397.
    [120]Guo Z, Dong S. Electrogenerated Chemiluminescence from Ru(Bpy)32+ Ion-Exchanged in Carbon Nanotube/Perfluorosulfonated Ionomer Composite Films [J]. Analy. Chem.,2004,76(10):2683-2688.
    [121]Adeli M, Soleyman R, Beiranvand Z, et al. Carbon nanotubes in cancer therapy:a more precise look at the role of carbon nanotube-polymer interactions [J]. Chem. Soc. Rev.,2013,42(12):5231-5256.
    [122]Li Y, Qi H, Fang F, et al. Ultrasensitive electrogenerated chemiluminescence detection of DNA hybridization using carbon-nanotubes loaded with tris(2,2'-bipyridyl) ruthenium derivative tags [J]. Talanta,2007,72(5):1704-1709.
    [123]Tao Y, Lin Z. J, Chen X. M, et al. Functionalized multiwall carbon nanotubes combined with bis(2,2'-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) as an electrochemiluminescence sensor [J]. Sens. Actuators, B:Chem.,2008,129(2): 758-763.
    [124]Mao L, Yuan R, Chai Y, et al. Multi-walled carbon nanotubes and Ru(bpy)32+/nano-Au nano-sphere as efficient matrixes for a novel solid-state electrochemiluminescence sensor [J]. Talanta,2010,80(5):1692-1697.
    [125]Pramod P, Soumya C. C, Thomas K. G. Gold Nanoparticle-Functionalized Carbon Nanotubes for Light-Induced Electron Transfer Process [J]. J. Phys. Chem. Lett.,2011,2(7):775-781.
    [126]Novoselov K. S, Geim A. K, Morozov S. V, et al. Electric Field Effect in Atomically Thin Carbon Films [J]. Science,2004,306(5696):666-669.
    [127]Geim A. K, Novoselov K. S. The rise of graphene [J]. Nat. Mater.,2007,6(3): 183-191.
    [128]Stankovich S, Dikin D. A, Dommett G H B, et al. Graphene-based composite materials [J]. Nature,2006,442(7100):282-286.
    [129]Kamat P. V. Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support [J]. J. Phys. Chem. Lett.,2009,1(2):520-527.
    [130]Chen D, Tang L, Li J. Graphene-based materials in electrochemistry [J]. Chem. Soc. Rev.,2010,39(8):3157-3180.
    [131]Huang X, Yin Z, Wu S, et al. Graphene-Based Materials:Synthesis, Characterization, Properties, and Applications [J]. Small,2011,7(14):1876-1902.
    [132]Li S, Zhong X, Yang H, et al. Noncovalent modified graphene sheets with ruthenium(II) complexes used as electrochemiluminescent materials and photosensors [J]. Carbon,2011,49(13):4239-4245.
    [133]Sun W, Shi S, Yao T. Graphene oxide-Ru complex for label-free assay of DNA sequence and potassium ions viafluorescence resonance energy transfer [J]. Anal. Methods,2011,3(11):2472-2474.
    [134]Shen W, Yu Y. Q, Shu J. N, et al. A graphene-based composite material noncovalently functionalized with a chemiluminescence reagent:synthesis and intrinsic chemiluminescence activity [J]. Chem. Commun.,2012,48(23):2894-2896.
    [135]Yu Y. Q, Zhou M, Shen W, et al. Synthesis of electrochemiluminescent graphene oxide functionalized with a ruthenium(II) complex and its use in the detection of tripropylamine [J]. Carbon,2012,50(7):2539-2545.
    [136]Luo X, Morrin A, Killard A. J, et al. Application of Nanoparticles in Electrochemical Sensors and Biosensors [J]. Electroanal.,2006,18(4):319-326.
    [137]Lee D, Gemici Z, Rubner M. F, et al. Multilayers of Oppositely Charged SiO2 Nanoparticles:Effect of Surface Charge on Multilayer Assembly [J]. Langmuir, 2007,23(17):8833-8837.
    [138]Lin Y. S, Tsai C. P, Huang H. Y, et al. Well-Ordered Mesoporous Silica Nanoparticles as Cell Markers [J]. Chem. Mater.,2005,17(18):4570-4573.
    [139]Zhang L, Dong S. Electrogenerated Chemiluminescence Sensors Using Ru(bpy)32+Doped in Silica Nanoparticles [J]. Anal. Chem.,2006,78(14): 5119-5123.
    [140]Zhang L, Zheng X. A novel electrogenerated chemiluminescence sensor for pyrogallol with core-shell luminol-doped silica nanoparticles modified electrode by the self-assembled technique [J]. Anal. Chim. Acta,2006,570(2):207-213.
    [141]Wang X, Zhou J, Yun W, et al. Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)32+-doped silica nanoparticle aptasensor via target protein-induced strand displacement [J]. Anal. Chim. Acta,2007,598(2): 242-248.
    [142]Yuan S, Yuan R, Chai Y, et al. Sandwich-type electrochemiluminescence immunosensor based on Ru-silica@Au composite nanoparticles labeled anti-AFP [J]. Talanta,2010,82(4):1468-1471.
    [143]Ding Z, Quinn B. M, Haram S. K, et al. Electrochemistry and Electro generated Chemiluminescence from Silicon Nanocrystal Quantum Dots [J]. Science,2002,296(5571):1293-1297.
    [144]Michalet X, Pinaud F. F, Bentolila L A, et al. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics [J]. Science,2005,307(5709):538-544.
    [145]Li J, Guo S, Wang E. Recent advances in new luminescent nanomaterials for electrochemiluminescence sensors [J]. Rsc Adv.,2012,2(9):3579-3586.
    [146]Deng S, Ju H. Electrogenerated chemiluminescence of nanomaterials for bioanalysis [J]. Analyst,2013,138(1):43-61.
    [147]Gill R, Zayats M, Willner I. Semiconductor Quantum Dots for Bioanalysis [J]. Angew. Chem. Int. Ed.,2008,47(40):7602-7625.
    [148]Huang H, Tan Y, Shi J, et al. DNA aptasensor for the detection of ATP based on quantum dots electrochemiluminescence [J]. Nanoscale,2010,2(4):606-612.
    [149]Wang J, Han H, Jiang X, et al. Quantum Dot-Based Near-Infrared Electrochemiluminescent Immunosensor with Gold Nanoparticle-Graphene Nanosheet Hybrids and Silica Nanospheres Double-Assisted Signal Amplification [J]. Anal. Chem.,2012,84(11):4893-4899.
    [150]Liu M, Lin Z, Lin J. M. A review on applications of chemiluminescence detection in food analysis [J]. Anal. Chim. Acta,2010,670(1-2):1-10.
    [151]Wang C, Wu J, Zong C, et al. Chemiluminescent Immunoassay and its Applications [J]. Chin. J. Anal. Chem.,2012,40(1):3-10.
    [152]Zhao X, Hilliard L. R, Mechery S. J, et al. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles [J]. P. Natl. Acad. Sci. USA,2004,101(42):15027-15032.
    [153]Osaka T, Matsunaga T, Nakanishi T, et al. Synthesis of magnetic nanoparticles and their application to bioassays [J]. Anal. Bioanal. Chem.,2006,
    384(3):593-600.
    [154]Wang J. Nanoparticle-Based Electrochemical Bioassays of Proteins [J]. Electroanalysis,2007,19(7-8):769-776.
    [155]Zhang Z. F, Cui H, Lai C. Z, et al. Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications [J]. Anal. Chem.,2005,77(10): 3324-3329.
    [156]Tian D, Duan C, Wang W, et al. Sandwich-type electrochemiluminescence immunosensor based on N-(aminobutyl)-N-ethylisoluminol labeling and gold nanoparticle amplification [J]. Talanta,2009,78(2):399-404.
    [157]Chai Y, Tian D Y, Cui H. Electrochemiluminescence biosensor for the assay of small molecule and protein based on bifunctional aptamer and chemiluminescent functionalized gold nanoparticles [J]. Anal. Chim. Acta,2012,715(86-92.
    [158]Shen W, Tian D, Cui H, et al. Nanoparticle-based electrochemiluminescence immunosensor with enhanced sensitivity for cardiac troponin I using N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanoparticles as labels [J]. Biosens. Bioelectron.,2011,27(1):18-24.
    [159]Moon J. M, Hui Kim. Y, Cho Y. A nanowire-based label-free immunosensor: Direct incorporation of a PS A antibody in electropolymerized polypyrrole [J]. Biosens. Bioelectron.,2014,57(157-161.
    [160]Yang L, Zhao H, Fan S, et al. Label-free electrochemical immunosensor based on gold-silicon carbide nanocomposites for sensitive detection of human chorionic gonadotrophin [J]. Biosens. Bioelectron.,2014,57(199-206.
    [161]Liu S, Lin Y, Liu T, et al. Enzyme-free and label-free ultrasensitive electrochemical detection of DNA and adenosine triphosphate by dendritic DNA concatamer-based signal amplification [J]. Biosens. Bioelectron.,2014,56,12-18.
    [162]Zhang J, Zhang Z, Nie X, et al. A Label-Free Gold Nanocluster Fluorescent Probe for Protease Activity Monitoring [J]. J. Nanosci. Nanotechnol.,2014,14(6): 4029-4035.
    [163]Jin L. H, Han C. S. Eco-friendly colorimetric detection of mercury(II) ions using label-free anisotropic nanogolds in ascorbic acid solution [J]. Sens. Actuators, B-Chemical,2014,195(239-245.
    [164]Xu S, Man B, Jiang S, et al. Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate [J]. Nanotechnology,2014,25(16): 165702-165702.
    [165]de-los-Santos-Alvarez N, Lobo-Castanon M a J, Miranda-Ordieres A J, et al. Aptamers as recognition elements for label-free analytical devices [J]. TrAC Trends. Anal. Chem.,2008,27(5):437-446.
    [166]Balamurugan S, Obubuafo A, Soper S, et al. Surface immobilization methods for aptamer diagnostic applications [J]. Anal. Bioanal. Chem.,2008,390(4): 1009-1021.
    [167]Shumaker-Parry J S, Aebersold R, Campbell C T. Parallel, Quantitative Measurement of Protein Binding to a 120-Element Double-Stranded DNA Array in Real Time Using Surface Plasmon Resonance Microscopy [J]. Anal. Chem.,2004, 76(7):2071-2082.
    [168]Savran C A, Knudsen S M, Ellington A D, et al. Micromechanical Detection of Proteins Using Aptamer-Based Receptor Molecules [J]. Anal. Chem.,2004,76(11): 3194-3198.
    [169]Hwang K S, Lee S. M, Eom K, et al. Nanomechanical microcantilever operated in vibration modes with use of RNA aptamer as receptor molecules for label-free detection of HCV helicase [J]. Biosens. Bioelectron.,2007,23(4):459-465.
    [170]Huang C. C, Chiu S. H, Huang Y. F, et al. Aptamer-Functionalized Gold Nanoparticles for Turn-On Light Switch Detection of Platelet-Derived Growth Factor [J]. Anal. Chem.,2007,79(13):4798-4804.
    [171]Niu H, Yuan R, Chai Y, et al. Electrochemiluminescence of peroxydisulfate enhanced by 1-cysteine film for sensitive immunoassay [J]. Biosens. Bioelectron., 2011,26(7):3175-3180.
    [172]Han E, Ding L, Jin S, et al. Electrochemiluminescent biosensing of carbohydrate-functionalized CdS nanocomposites for in situ label-free analysis of cell surface carbohydrate [J]. Biosens. Bioelectron.,2011,26(5):2500-2505.
    [173]Li F, Cui H. A label-free electrochemiluminescence aptasensor for thrombin based on novel assembly strategy of oligonucleotide and luminol functionalized gold nanoparticles [J]. Biosens. Bioelectron.,2013,39(1):261-267.
    [174]Yu Y, Cao Q, Zhou M, et al. A novel homogeneous label-free aptasensor for 2,4,6-trinitrotoluene detection based on an assembly strategy of electrochemiluminescent graphene oxide with gold nanoparticles and aptamer [J]. Biosens. Bioelectron.,2013,43(0):137-142.
    [1]Narayanan R, El-Sayed M A. Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution [J]. Nano Letters,2004,4(7):1343-1348.
    [2]Daniel M. C, Astruc D. Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chem. Rev.,2004,104(1):293-346.
    [3]Sun S. H, Murray C. B, Weller D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices [J]. Science,2000,287(5460): 1989-1992.
    [4]Daniel M. C, Astruc D. Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology [J]. Chem. Rev.,2003,104(1):293-346.
    [5]Ouyang J, Chu C. W, Szmanda C. R, et al. Programmable polymer thin film and non-volatile memory device [J]. Nat. Mater.,2004,3(12):918-922.
    [6]Torney F, Trewyn B G, Lin V S Y, et al. Mesoporous silica nanoparticles deliver DNA and chemicals into plants [J]. Nat. Nano.,2007,2(5):295-300.
    [7]Xu J, Chen L, Choi H, et al. Assembly of metals and nanoparticles into novel nanocomposite superstructures [J]. Sci. Rep.,2013,3(
    [8]Thomas K. G, Kamat P. V. Chromophore-Functionalized Gold Nanoparticles [J]. Acc. Chem. Res.,2003,36(12):888-898.
    [9]Zhou X, Xing D, Zhu D, et al. Magnetic Bead and Nanoparticle Based Electrochemiluminescence Amplification Assay for Direct and Sensitive Measuring of Telomerase Activity [J]. Anal. Chem.,2008,81(1):255-261.
    [10]Roux S, Garcia B, Bridot J. L, et al. Synthesis, Characterization of Dihydrolipoic Acid Capped Gold Nanoparticles, and Functionalization by the Electroluminescent Luminol [J]. Langmuir,2005,21(6):2526-2536.
    [11]Tian D, Zhang H, Chai Y, et al. Synthesis of N-(aminobutyl)-N-(ethylisolurninol) functionalized gold nanomaterials for chemiluminescent bio-probe [J]. Chem. Commun.,2011,47(17):4959-4961.
    [12]Zanarini S, Rampazzo E, Ciana L. D, et al. Ru(bpy)3 Covalently Doped Silica Nanoparticles as. Multicenter Tunable Structures for Electrochemiluminescence Amplification [J]. J. Am. Chem. Soc.,2009,131(6):2260-2267.
    [13]Edwards K. A, Baeumner A. J. Optimization of DNA-tagged liposomes for use in microtiter plate analyses [J]. Anal. Bioanal. Chem.,2006,386(6):1613-1623.
    [14]Miao W, Bard A. J. Electrogenerated Chemiluminescence.77. DNA Hybridization Detection at High Amplification with [Ru(bpy)3]2+-Containing Microspheres [J]. Anal. Chem.,2004,76(18):5379-5386.
    [15]Zhang L. L, Zheng X. W. A novel electrogenerated chemiluminescence sensor for
    pyrogallol with core-shell luminol-doped silica nanoparticles modified electrode by the self-assembled technique [J]. Anal. Chim. Acta,2006,570(2):207-213.
    [16]Cui H, Wang W, Duan C. F, et al. Synthesis, Characterization, and Electrochemiluminescence of Luminol-Reduced Gold Nanoparticles and Their Application in a Hydrogen Peroxide Sensor [J]. Chem. Eur. J.,2007,13(24): 6975-6984.
    [17]Tian D, Duan C, Wang W, et al. Ultrasensitive electrochemiluminescence immunosensor based on luminol functionalized gold nanoparticle labeling [J]. Biosens. Bioelectron.,2010,25(10):2290-2295.
    [18]Shen W, Tian D, Cui H, et al. Nanoparticle-based electrochemiluminescence immunosensor with enhanced sensitivity for cardiac troponin I using N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanoparticles as labels [J]. Biosens. Bioelectron.,2011,27(1):18-24.
    [19]Sun J, Ge J, Liu W, et al. Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers:synthesis and application as a colorimetric sensor [J]. Nanoscale,2014, 6(1):255-262.
    [20]Xu J, Wilson A. R, Rathmell A. R, et al. Synthesis and Catalytic Properties of Au-Pd Nanoflowers [J]. ACS Nano,2011,5(8):6119-6127.
    [21]Xie J, Zhang Q, Lee J Y, et al. The Synthesis of SERS-Active Gold Nanoflower Tags for In Vivo Applications [J]. ACS Nano,2008,2(12):2473-2480.
    [22]Xiao J, Qi L. Surfactant-assisted, shape-controlled synthesis of gold nanocrystals [J]. Nanoscale,2011,3(4):1383-1396.
    [23]Narayanaswamy A, Xu H, Pradhan N, et al. Crystalline Nanoflowers with Different Chemical Compositions and Physical Properties Grown by Limited Ligand Protection [J]. Angew. Chem. Int. Ed.,2006,118(32):5487-5490.
    [24]Raul P. K, Devi R. R, Umlong I. M, et al. Iron oxide hydroxide nanoflower assisted removal of arsenic from water [J]. Mater. Res. Bull.,2014,49(0):360-368.
    [25]Wang W, Cui H. Chitosan-Luminol Reduced Gold Nanoflowers:From One-Pot Synthesis to Morphology-Dependent SPR and Chemiluminescence Sensing [J]. J. Phys. Chem. C,2008,112(29):10759-10766.
    [26]Adhikari B, Banerjee A. Facile Synthesis of Water-Soluble Fluorescent Silver Nanoclusters and Hgll Sensing [J]. Chem. Mater.,2010,22(15):4364-4371.
    [27]Berchmans S, Thomas P J, Rao C N R. Novel Effects of Metal Ion Chelation on the Properties of Lipoic Acid-Capped Ag and Au Nanoparticles [J]. J. Phys. Chem. B, 2002,106(18):4647-4651.
    [28]Lin S. Y, Tsai Y. T, Chen C. C, et al. Two-Step Functionalization of Neutral and Positively Charged Thiols onto Citrate-Stabilized Au Nanoparticles [J]. J. Phys. Chem. B,2004,108(7):2134-2139.
    [29]Hou W, Dasog M, Scott R W J. Probing the Relative Stability of Thiolate-and Dithiolate-Protected Au Monolayer-Protected Clusters [J]. Langmuir,2009,25(22): 12954-12961.
    [30]Maye M M, Zhong C. J. Manipulating core-shell reactivities for processing nanoparticle sizes and shapes [J]. J. Mater. Chem.,2000,10(8):1895-1901.
    [31]Zhang H, Liu M, Huang G, et al. Highly chemiluminescent gold nanopopcorns functionalized by N-(aminobutyl)-N-(ethylisoluminol) with lipoic acid as a co-stabilizing reagent [J]. J. Mater. Chem. B,2013,1(7):970-977.
    [32]Liang H, Li Z, Wang W, et al. Highly Surface-roughened“Flower-like” Silver Nanoparticles for Extremely Sensitive Substrates of Surface-enhanced Raman Scattering [J]. Adv. Mater.,2009,21(45):4614-4618.
    [33]Mayya K S, Patil V, Sastry M. On the Stability of Carboxylic Acid Derivatized Gold Colloidal Particles:The Role of Colloidal Solution pH Studied by Optical Absorption Spectroscopy [J]. Langmuir,1997,13(15):3944-3947.
    [34]Lin C. A J, Yang T. Y, Lee C. H, et al. Synthesis, Characterization, and Bioconjugation of Fluorescent Gold Nanoclusters toward Biological Labeling Applications [J]. ACS Nano,2009,3(2):395-401.
    [35]Lee K, Pan F, Carroll G T, et al. Photolithographic Technique for Direct Photochemical Modification and Chemical Micropatterning of Surfaces [J]. Langmuir, 2004,20(5):1812-1818.
    [36]Huo Z, Tsung C. k, Huang W, et al. Sub-Two Nanometer Single Crystal Au Nanowires [J]. Nano Letters,2008,8(7):2041-2044.
    [37]Kumar A, Mandal S, Pasricha R, et al. Investigation into the Interaction between Surface-Bound Alkylamines and Gold Nanoparticles [J]. Langmuir,2003,19(15): 6277-6282.
    [1]Karousis N, Tagmatarchis N, Tasis D. Current Progress on the Chemical Modification of Carbon Nanotubes [J]. Chem. Rev.,2010,110(9):5366-5397.
    [2]Baughman R H, Zakhidov A A, de Heer W A. Carbon Nanotubes--the Route Toward Applications [J]. Science,2002,297(5582):787-792.
    [3]Adeli M, Soleyman R, Beiranvand Z, et al. Carbon nanotubes in cancer therapy:a more precise look at the role of carbon nanotube-polymer interactions [J]. Chem. Soc. Rev.,2013,42(12):5231-5256.
    [4]Daniel M. C, Astruc D. Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology [J]. Chem. Rev.,2003,104(1):293-346.
    [5]Mani V, Dinesh B, Chen S. M, et al. Direct electrochemistry of myoglobin at reduced graphene oxide-multiwalled carbon nanotubes-platinum nanoparticles nanocomposite and biosensing towards hydrogen peroxide and nitrite [J]. Biosens. Bioelectron.,2014,53(0):420-427.
    [6]Kutluay A, Aslanoglu M. Nickel nanoparticles functionalized multi-walled carbon nanotubes at platinum electrodes for the detection of bromhexine [J]. Sens. Actuators B:Chemical,2014,192(0):720-724.
    [7]Wildgoose G G, Banks C E, Compton R G Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes:Methods and Applications [J]. Small, 2006,2(2):182-193.
    [8]Peng X, Chen J, Misewich J A, et al. Carbon nanotube-nanocrystal heterostructures [J]. Chem. Soc. Rev.,2009,38(4):1076-1098.
    [9]Zanella R, Basiuk E V, Santiago P, et al. Deposition of Gold Nanoparticles onto Thiol-Functionalized Multiwalled Carbon Nanotubes [J]. J. Phys. Chem. B,2005, 109(34):16290-16295.
    [10]Chauhan N, Singh A, Narang J, et al. Development of amperometric lysine biosensors based on Au nanoparticles/multiwalled carbon nanotubes/polymers modified Au electrodes [J]. Analyst,2012,137(21):5113-5122.
    [11]Gobbo P, Ghiassian S, Hesari M, et al. Electrochemistry of robust gold nanoparticle-glassy carbon hybrids generated using a patternable photochemical approach [J]. J. Mater. Chem.,2012,22(45):23971-23980.
    [12]Huang J, Xing X, Zhang X, et al. A molecularly imprinted electrochemical sensor based on multiwalled carbon nanotube-gold nanoparticle composites and chitosan for the detection of tyramine [J]. Food Res. Int.,2011,44(1):276-281.
    [13]Zhang M, Dai W, Yan M, et al. Ultrasensitive electrochemiluminescence immunosensor using PtAg@carbon nanocrystals composites as labels and carbon nanotubes-chitosan/gold nanoparticles as enhancer [J]. Analyst,2012,137(9): 2112-2118.
    [14]Cui H, Wang W, Duan C F, et al. Synthesis, characterization, and electrochemiluminescence of luminol-reduced gold nanoparticles and their application in a hydrogen peroxide sensor [J]. Chem. Eur. J.,2007,13(24): 6975-6984.
    [15]Tian D, Zhang H, Chai Y, et al. Synthesis of N-(aminobutyl)-N-(ethylisoluminol) functionalized gold nanomaterials for chemiluminescent bio-probe [J]. Chem. Commun.,2011,47(17):4959-4961.
    [16]Shen W, Tian D, Cui H, et al. Nanoparticle-based electrochemiluminescence immunosensor with enhanced sensitivity for cardiac troponin I using N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanoparticles as labels [J]. Biosens. Bioelectron.,2011,27(1):18-24.
    [17]Li F, Cui H. A label-free electrochemiluminescence aptasensor for thrombin based on novel assembly strategy of oligonucleotide and luminol functionalized gold nanoparticles [J]. Biosens. Bioelectron.,2013,39(1):261-267.
    [18]Corgier B P, Li F, Blum L J, et al. On-Chip Chemiluminescent Signal Enhancement Using Nanostructured Gold-Modified Carbon Microarrays [J]. Langmuir,2007,23(16):8619-8623.
    [19]Gobbo P, Biesinger M C, Workentin M S. Facile synthesis of gold nanoparticle (AuNP)-carbon nanotube (CNT) hybrids through an interfacial Michael addition reaction [J]. Chem. Commun.,2013,49(27):2831-2833.
    [20]Fagnoni M, Profumo A, Merli D, et al. Water-Miscible Liquid Multiwalled Carbon Nanotubes [J]. Adv. Mater.,2009,21(17):1761-1765.
    [21]O'Connell M J, Boul P, Ericson L M, et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping [J]. Chem. Phys. Letters,2001, 342(3-4):265-271.
    [22]Yang C, Sang Q, Zhang S, et al. Voltammetric determination of estrone based on the enhancement effect of surfactant and a MWNT film electrode [J]. Mater. Sci. Eng., C,2009,29(5):1741-1745.
    [23]Ogoshi T, Takashima Y, Yamaguchi H, et al. Chemically-Responsive Sol-Gel Transition of Supramolecular Single-Walled Carbon Nanotubes (SWNTs) Hydrogel Made by Hybrids of SWNTs and Cyclodextrins [J]. J. Am. Chem. Soc.,2007,129(16): 4878-4879.
    [24]Nepal D, Geckeler K. E. pH-Sensitive Dispersion and Debundling of Single-Walled Carbon Nanotubes:Lysozyme as a Tool [J]. Small,2006,2(3): 406-412.
    [25]Karajanagi S S, Yang H, Asuri P, et al. Protein-Assisted Solubilization of Single-Walled Carbon Nanotubes [J]. Langmuir,2006,22(4):1392-1395.
    [26]Kurppa K, Jiang H, Szilvay G R, et al. Controlled Hybrid Nano structures through Protein-Mediated Noncovalent Functionalization of Carbon Nanotubes [J]. Angew. Chem. Int. Ed.,2007,46(34):6446-6449.
    [27]Zorbas V, Smith A L, Xie H, et al. Importance of Aromatic Content for Peptide/Single-Walled Carbon Nanotube Interactions [J]. J. Am. Chem. Soc.,2005, 127(35):12323-12328.
    [28]Rance G A, Marsh D H, Bourne S J, et al. van der Waals Interactions between Nanotubes and Nanoparticles for Controlled Assembly of Composite Nanostructures [J]. ACS Nano,2010,4(8):4920-4928.
    [29]Yi H, Wu L. Q, Bentley W E, et al. Biofabrication with Chitosan [J]. Biomacromolecules,2005,6(6):2881-2894.
    [30]Shieh Y. T, Yang Y. F. Significant improvements in mechanical property and water stability of chitosan by carbon nanotubes [J]. Eur. Poly. J.,2006,42(12): 3162-3170.
    [31]Zhang H, Liu M, Huang G, et al. Highly chemiluminescent gold nanopopcorns functionalized by N-(aminobutyl)-N-(ethylisoluminol) with lipoic acid as a co-stabilizing reagent [J]. J. Mater. Chem. B,2013,1(7):970-977.
    [32]Chai Y, Tian D, Gu J, et al. A novel electrochemiluminescence aptasensor for protein based on a sensitive N-(aminobutyl)-N-ethylisoluminol-functionalized gold nanoprobe [J]. Analyst,2011,136(16):3244-3251.
    [33]Jiang J, He Y, Yu X, et al. A homogeneous hemin/G-quadruplex DNAzyme based turn-on chemiluminescence aptasensor for interferon-gamma detection via in-situ assembly of luminol functionalized gold nanoparticles, deoxyribonucleic acid, interferon-gamma and hemin [J]. Anal. Chim. Acta,2013,791(0):60-64.
    [34]Wang W, Cui H. Chitosan-Luminol Reduced Gold Nanoflowers:From One-Pot Synthesis to Morphology-Dependent SPR and Chemiluminescence Sensing [J]. J. Phys. Chem. C,2008,112(29):10759-10766.
    [35]Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles [J]. Proc. Nat. Acad. Sci. USA,2004,101(39):14036-14039.
    [1]Murray C J L, Lopez A D. Alternative projections of mortality and disability by cause 1990-2020:Global Burden of Disease Study [J]. Lancet,1997,349(9064): 1498-1504.
    [2]Troughton R W, Frampton C M, Yandle T G, et al. Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations [J]. Lancet,2000,355(9210):1126-1130.
    [3]Soleh M T, Foo J Y Y, Bailey U-M, et al. A rapid and cost-effective method of producing recombinant proBNP and NT-proBNP variants in Escherichia coli for immunoassay of heart failure [J]. Biotechnol. Lett.,2014,36(1):133-140.
    [4]Shi J. J, He T. T, Jiang F, et al. Ultrasensitive multi-analyte electrochemical immunoassay based on GNR-modified heated screen-printed carbon electrodes and PS@PDA-metal labels for rapid detection of MMP-9 and IL-6 [J]. Biosens. Bioelectron.,2014,55(0):51-56.
    [5]Kim J, Kwon S, Park J. K, et al. Quantum dot-based immunoassay enhanced by high-density vertical ZnO nanowire array [J]-Biosens. Bioelectron.,2014,55(0): 209-215.
    [6]Chen X, Ma Z. Multiplexed electrochemical immunoassay of biomarkers using chitosan nanocomposites [J]. Biosens. Bioelectron.,2014,55(0):343-349.
    [7]Sun B, Qiao F, Chen L, et al. Effective signal-on photoelectrochemical immunoassay of subgroup J avian leukosis virus based on Bi2S3 nanorods as photosensitizer and in situ generated ascorbic acid for electron donating [J]. Biosens. Bioelectron.,2014,54(0):237-243.
    [8]Yu F, Yu S, Yu L, et al. Determination of residual enrofloxacin in food samples by a sensitive method of chemiluminescence enzyme immunoassay [J]. Food Chem., 2014,149(0):71-75.
    [9]Liu J X, Wang L L, Liu J, et al. Development of an indirect competitive immunoassay for determination of L-hydroxyproline in milk [J]. Food Agric. Immunol.,2013,25(2):243-255.
    [10]Zhuo Y, Yi W. J, Lian W. B, et al. Ultrasensitive electrochemical strategy for NT-proBNP detection with gold nanochains and horseradish peroxidase complex amplification [J]. Biosens. Bioelectron.,2011,26(5):2188-2193.
    [11]Liang W, Li Y, Zhang B, et al. A novel microfluidic immunoassay system based on electrochemical immunosensors:An application for the detection of NT-proBNP in whole blood [J]. Biosens. Bioelectron.,2012,31(1):480-485.
    [12]Wang X, Reisberg S, Serradji N, et al. E-assay concept:Detection of bisphenol A with a label-free electrochemical competitive immunoassay [J]. Biosens. Bioelectron., 2014,53(0):214-219.
    [13]Wang H, Li H, Zhang Y, et al. Label-free immunosensor based on Pd nanoplates for amperometric immunoassay of alpha-fetoprotein [J]. Biosens. Bioelectron.,2014, 53(0):305-309.
    [14]Kong Y, Li J, Wu S, et al. Functionalization of poly(o-phenylenediamine) with gold nanoparticles as a label-free immunoassay platform for the detection of human enterovirus 71 [J]. Sens. Actuators B:Chem.,2013,183(0):187-193.
    [15]Zhang Y, Tan C, Fei R, et al. Sensitive Chemiluminescence Immunoassay for E. coli O157:H7 Detection with Signal Dual-Amplification Using Glucose Oxidase and Laccase [J]. Anal. Chem.,2013,86(2):1115-1122.
    [16]Maiolini E, Ferri E, Pitasi A L, et al. Bisphenol A determination in baby bottles by chemiluminescence enzyme-linked immunosorbent assay, lateral flow immunoassay and liquid chromatography tandem mass spectrometry [J]. Analyst,2014,139(1): 318-324.
    [17]Cui H, Wang W, Duan C F, et al. Synthesis, characterization, and electrochemiluminescence of luminol-reduced gold nanoparticles and their application in a hydrogen peroxide sensor [J]. Chem. Eur. J.,2007,13(24): 6975-6984.
    [18]Tian D, Zhang H, Chai Y, et al. Synthesis of N-(aminobutyl)-N-(ethylisoluminol) functionalized gold nanomaterials for chemiluminescent bio-probe [J]. Chem. Commun.,2011,47(17):4959-4961.
    [19]Shen W, Tian D, Cui H, et al. Nanoparticle-based electrochemiluminescence immunosensor with enhanced sensitivity for cardiac troponin I using N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanoparticles as labels [J]. Biosens. Bioelectron.,2011,27(1):18-24.
    [20]Chai Y, Tian D, Gu J, et al. A novel electrochemiluminescence aptasensor for protein based on a sensitive N-(aminobutyl)-N-ethylisoluminol-functionalized gold nanoprobe [J]. Analyst,2011,136(16):3244-3251.
    [21]Tian D, Duan C, Wang W, et al. Ultrasensitive electrochemiluminescence immunosensor based on luminol functionalized gold nanoparticle labeling [J]. Biosens. Bioelectron.,2010,25(10):2290-2295.
    [22]Adeli M, Soleyman R, Beiranvand Z, et al. Carbon nanotubes in cancer therapy:a more precise look at the role of carbon nanotube-polymer interactions [J]. Chem. Soc. Rev.,2013,42(12):5231-5256.
    [23]Zhang H, Cui H. High-density assembly of chemiluminescence functionalized gold nanodots on multiwalled carbon nanotubes and their application as biosensing platforms [J]. Nanoscale,2014,6(5):2563-2566.
    [24]Shieh Y. T, Yang Y. F. Significant improvements in mechanical property and water stability of chitosan by carbon nanotubes [J]. Eur. Poly. J.,2006,42(12): 3162-3170.
    [25]Monsan P, Puzo G, Mazarguil H. Mechanism of glutaraldehyde-protein bond formation [J]. Biochimie,1975,57(11-12):1281-1292.
    [1]Burda C, Chen X, Narayanan R, et al. Chemistry and Properties of Nanocrystals of Different Shapes [J]. Chem. Rev.,2005,105(4):1025-1102.
    [2]Daniel M. C, Astruc D. Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology [J]. Chem. Rev.,2003,104(1):293-346.
    [3]Thomas K G, Kamat P V. Chromophore-Functionalized Gold Nanoparticles [J]. Ace. Chem. Res.,2003,36(12):888-898.
    [4]Giljohann D A, Seferos D S, Daniel W L, et al. Gold Nanoparticles for Biology and Medicine [J]. Angew. Chem. Int. Ed.,2010,49(19):3280-3294.
    [5]Lee J. S, Han M S, Mirkin C A. Colorimetric Detection of Mercuric Ion (Hg2+) in Aqueous Media using DNA-Functionalized Gold Nanoparticles [J]. Angew. Chem. Int. Ed.,2007,119(22):4171-4174.
    [6]Kamat P V, Barazzouk S, Hotchandani S. Electrochemical Modulation of Fluorophore Emission on a Nanostructured Gold Film [J]. Angew. Chem. Int. Ed., 2002,41(15):2764-2767.
    [7]Ipe B I, Mahima S, Thomas K G. Light-Induced Modulation of Self-Assembly on Spiropyran-Capped Gold Nanoparticles:A Potential System for the Controlled Release of Amino Acid Derivatives [J]. J. Am. Chem. Soc.,2003,125(24): 7174-7175.
    [8]Doering W E, Piotti M E, Natan M J, et al. SERS as a Foundation for Nanoscale, Optically Detected Biological Labels [J]. Adv. Mater.,2007,19(20):3100-3108.
    [9]Nath N, Chilkoti A. A Colorimetric Gold Nanoparticle Sensor To Interrogate Biomolecular Interactions in Real Time on a Surface [J]. Anal. Chem.,2001,74(3): 504-509.
    [10]Tian D, Duan C, Wang W, et al. Ultrasensitive electrochemiluminescenee immunosensor based on luminol functionalized gold nanoparticle labeling [J]. Biosens. Bioelectron.,2010,25(10):2290-2295.
    [11]Shen W, Tian D, Cui H, et al. Nanoparticle-based electrochemiluminescence immunosensor with enhanced sensitivity for cardiac troponin Ⅰ using N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanoparticles as labels [J]. Biosens. Bioelectron.,2011,27(1):18-24.
    [12]Forster T.10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation [J]. Discuss. Faraday Soc.,1959,27(7).
    [13]Woker G. On the Theory of Fluorescence [J]. J. Phys. Chem.,1905,10(5): 370-391.
    [14]JaresErijman E A, Jovin T M. FRET imaging [J]. Nat. Biotech.,2003,21(11): 1387-1395.
    [15]Miyawaki A, Sawano A, Kogure T. Lighting up cells:labelling proteins with fluorophores [J]. Nat. Cell Bio.,2003, Suppl(S1-7.
    [16]Ling J, Huang C Z. Energy transfer with gold nanoparticles for analytical applications in the fields of biochemical and pharmaceutical sciences [J]. Anal. Methods,2010,2(10):1439-1447.
    [17]Sapsford K E, Berti L, Medintz I L. Materials for Fluorescence Resonance Energy Transfer Analysis:Beyond Traditional Donor-Acceptor Combinations [J]. Angew. Chem. Int. Ed.,2006,45(28):4562-4589.
    [18]Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. J. Am. Chem. Soc.,1993,115(19):8706-8715.
    [19]Qu L, Peng Z A, Peng X. Alternative Routes toward High Quality CdSe Nanocrystals [J]. Nano Letters,2001,1(6):333-337.
    [20]Hermanson G T. Bioconjugate techniques [M]. San Diego:Academic Press,1996.
    [21]Li F, Cui H. A label-free electrochemiluminescence aptasensor for thrombin based on novel assembly strategy of oligonucleotide and luminol functionalized gold nanoparticles [J]. Biosens. Bioelectron.,2013,39(1):261-267.
    [22]Haixiang Z, Xijuan T, Zhenghua S. Determination of Picogram Amounts of Dihydroxybenzenes in Water Samples with Luminol-lysozyme Chemiluminescence System [J]. J. Chin. Chem. Soc.,2012,59(12):1512-1519.
    [23]Ma G, Zhou J, Tian C, et al. Luminol electrochemiluminescence for the analysis of active cholesterol at the plasma membrane in single Mammalian cells [J]. Anal. Chem.,2013,85(8):3912-3917.
    [24]Cui H, Wang W, Duan C. F, et al. Synthesis, Characterization, and Electrochemiluminescence of Luminol-Reduced Gold Nanoparticles and Their Application in a Hydrogen Peroxide Sensor [J]. Chem. Eur. J.,2007,13(24): 6975-6984.
    [25]Tian D, Zhang H, Chai Y, et al. Synthesis of N-(aminobutyl)-N-(ethylisoluminol) functionalized gold nanomaterials for chemiluminescent bio-probe [J]. Chem. Commun.,2011,47(17):4959-4961.
    [26]Wang W, Xiong T, Cui H. Fluorescence and Electrochemiluminescence of Luminol-Reduced Gold Nanoparticles:Photostability and Platform Effect [J]. Langmuir,2008,24(6):2826-2833.
    [27]Cumberland S L, Strouse G F. Analysis of the Nature of Oxyanion Adsorption on Gold Nanomaterial Surfaces [J]. Langmuir,2001,18(1):269-276.
    [28]Demers L M, Mirkin C A, Mucic R C, et al. A Fluorescence-Based Method for Determining the Surface Coverage and Hybridization Efficiency of Thiol-Capped Oligonucleotides Bound to Gold Thin Films and Nanoparticles [J]. Anal. Chem.,2000, 72(22):5535-5541.
    [29]Lakowicz J R. Principles of fluorescence spectroscopy [M].2nd ed. New York: Kluwer Academic/Plenum,1999.
    [30]Turro N J, Ramamurthy V, Scaiano J C. Modern molecular photochemistry of organic molecules [M]. Sausalito, Calif.:University Science Books,2010.
    [31]Tan L, Li Y, Drake T J, et al. Molecular beacons for bioanalytical applications [J]. Analyst,2005,130(7):1002-1005.
    [32]Bhattacharjee D, Dey D, Chakraborty S, et al. Development of a DNA sensor using a molecular logic gate [J]. J. Biol. Phys.,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700