多种形态和孔隙结构羟基磷灰石陶瓷制备技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羟基磷灰石(HA)的分子结构和钙磷比与正常骨的无机成分非常近似,能与活体组织形成化学性键合,是目前国际上公认的适用于临床应用的生物活性陶瓷材料。但是由于HA陶瓷的脆性,其力学强度无法满足体内承力部位植入的需要,大大限制了它的临床应用。因此,改善HA陶瓷的力学性能至关重要。除了作为组织工程支架材料外,不同形态及孔隙结构的HA还广泛应用于离子交换、催化剂载体、生物医药等领域。
     本文采用溶胶-凝胶法制备了多孔球粒、致密球粒、纤维堆积型支架等一系列不同形态及孔隙结构的HA陶瓷制品;通过自粘结和自充填工艺改善了HA支架的力学性能;采用体式显微镜(SM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、抗压强度测试等分析手段,系统地研究了不同形态及孔隙结构HA陶瓷的性能;通过体内和体外实验比较评价了其生物学性能。获得的主要结论如下:
     (1)以沉淀法制备出的纳米HA浆料为原料,采用溶胶-凝胶法成功地制备了尺寸为150-1500μm的多孔和致密HA球粒。多孔球粒的孔隙率约为20%,抗压强度6.9±0.3MPa;致密球粒孔隙率为4.7±0.6%,抗压强度为8.9±0.4MPa.
     (2)改变HA加入量、搅拌速率、搅拌时间和搅拌温度以研究工艺参数对球粒性能和形态的影响。搅拌速率是影响HA球粒尺寸和球形度的最大因素,球粒的微结构主要受初始HA浆料加入量的影响,其他工艺参数对其几乎没有影响,结合粒子滤除等造孔方法可以控制多孔HA球粒的孔隙结构。保持其它制备条件不变时,随着搅拌速率的增大,球粒的平均尺寸明显减小,球形度变好;同一搅拌速率下,随着HA负载量和搅拌温度的升高球粒的平均尺寸增大,球形度变差;超过2h后,搅拌时间对球粒的平均尺寸几乎没有影响,但是搅拌时间越长,球形度越好。
     (3)以微米级HA粉体为原料,采用溶胶-凝胶法得到凝胶化球粒和纤维。将凝胶化的球粒和纤维进行洗涤、干燥和常压烧结,最后采用热等静压进行二次烧结得到半透明HA球粒和纤维。半透明HA球粒的致密度为99.1±0.3%,晶粒大小为2.2μm,抗压强度为10.2±0.4MPa.
     (4)对不同密度的球粒进行仿生矿化和间充质干细胞培养。矿化结果显示多孔表面生成HA的量高于致密和半透明HA陶瓷,相对于半透明HA陶瓷,致密HA陶瓷表面上形成的晶体数量较多,尺寸较小;细胞培养结果显示多孔HA陶瓷上细胞增殖情况优于致密和半透明HA陶瓷,与之相反,细胞分化水平低于致密和半透明HA陶瓷;三者均具有良好的细胞相容性,无细胞毒性。将多孔HA球粒和致密HA球粒堆积成微孔结构不同、宏孔结构相同的多孔支架后,植入狗的腹腔内1、3个月,结果显示多孔HA球粒堆积支架的异位成骨情况远优于致密HA球粒堆积支架。
     (5)在纳米HA浆料中加入海藻酸钠(SA)制成混合悬浮物,通过针头挤入到氯化钙溶液中进行凝胶化赋形得到连续长纤维,将纤维洗净后堆积到模具中,加压定型后进行烧结得到贯通性良好的HA纤维堆积多孔支架。将纤维堆积支架的生坯浸入混合悬浮物中抽取真空后离心,得到HA自粘结纤维多孔支架。控制针头直径可以控制HA纤维堆积多孔支架的孔径,控制压缩高度可以控制孔隙率。当孔隙率为50%时,自粘附前后多孔支架的抗压强度分别为2.9士0.4MPa和13.2±0.6MPa,力学性能得到了有效改善。仿生矿化和细胞实验结果显示纤维支架均具有良好的生物活性,自粘结工艺处理后的多孔纤维支架具有更为粗糙的表面,细胞向内部长入的趋势更加明显。
     (6)HA纤维与石蜡球共同加入HA/SA的混合悬浮物中混合均匀,填入模具后浸入氯化钙溶液中,正己烷浸泡除去石蜡球后用去离子水洗净、干燥烧结后得到HA纤维自充填多孔支架。随着石蜡球添加量的增大,孔与孔之间的贯通性增大,宏孔的孔隙表面均会出现分布均匀的微米和亚微米尺寸的微孔结构。HA纤维均匀分布在基体中,不会产生聚集,烧结过后纤维和基体之间的界面没有明显的分离。随着造孔剂加入量的增多,支架的抗压强度逐渐减小,加入纤维可以提高多孔支架的抗压强度,而且当造孔剂的量增多时,加入和未加入纤维的支架的抗压强度的差距增大。
Hydroxyapatite (HA), which has similar crystal structure and Ca/P ratio to the main inorganic component of normal bone and can form a chemical bond with live tissues, has internationally recognized as a bioactive ceramic for clinical applications. Due to the bittleness of HA ceramics, they are not suitable to be used in clinical load-bearing sites. So that the application of HA ceramics have been restricted. Therefore, it is significant to improve the mechanical properties of HA ceramics. Except as the tissue engineering scaffold material, HA with different morphology and pore structure is widely used in ionic exchange, catalytic carrier, biomedicine application, et al.
     In this paper, a series of HA ceramics with different morphology and pore structure, such as porous spheres, dense spheres, fiber-accumulated scaffolds, et al., were fabricated by using the sol-gel method. The self-adhering and self-filled process were used to enhance the mechanical strength of HA scaffolds. Stereomicroscope (SM), scanning electron microscopy (SEM), X-ray deffractomerer (XRD) and mechanical tester were used to study the properties of HA ceramics with different morphology and pore structure. Their biological properties were evaluated by the experiments in vivo and vitro. Main conclusions are drown as follows:
     (1) Using the HA slurry prepared via a precipitation process as the raw materials, porous and dense spheres with the size of150-1500um had been fabricated successfully by sol-gel method. Porous HA sphere with the porosity of20%hold a compressive strength of6.9±0.3MPa and dense HA spheres with the porosity of4.7±0.6%hold a compressive strength of8.9±0.4MPa were fabricated via a specific dried and sintered process.
     (2) The factors, such as HA loading, stirring rate, stirring time and stirring temperature, which influence the property and morphology of these spheres were investigated. The stirring rate is the major influencing factor for the size and sphericity and the HA loading is the major influencing factor for the micro-structure of spheres. The other technical parameters have slight effects on the the structure. The pore structure can be controlled combined with other pore-forming method, for example, particle leaching method. The mean size decreases obviously and the sphericity becomes better as the stirring rate increases when the other preparation process keep constant. The mean size increases and the sphericity becomes worse as the HA loading and stirring temperature increases. After2h, stirring time has a slight effect on the mean size, but sphericity becomes better as the stirring time increases.
     (3) Using the micro-sized HA powders as the raw materials, the gelated spheres and fibers were obtained by sol-gel method. Translucent HA spheres and fibers were obtained after rinsed, dried, and pressureless sintering and hot isostatic pressing. The HA sphere with the porosity of20%hold a grain size of2.2μm and a compressive strength of6.9±0.3MPa.
     (4) Spheres with different density was biomimetic mineralized and cultured with mesenchymal cells. The mineralization results show that the amount of HA formed on the porous surface is more than that of dense and translucent HA ceramics. Compared with translucent HA ceramics, the mount of crystallines formed on the surface of dense HA is more, but the size is smaller. The results of cell cuture show that the proliferation of cells on porous HA ceramics is better than dense and translucent HA ceramics, in contast, the lever of cell differentiation is lower. All of them have good cell compatibility and have no cytotoxicity. HA scaffolds with different micro-pore structure and same macro-pore structure were fabricated by accumulating spheres. These scaffolds were implanted in the abdominal cavity of dog for1and3months. The results show the ectopic bone formation of the scaffolds accumulated by porous HA spheres is much better that that of the scaffolds accumulated by dense HA spheres.
     (5) Nano-HA slurry was mixed with sodium alginate (SA) to obtain a mixed suspension and then directly injected into a fibrous structure in a CaCl2solution. Subsequent pressing in a mold and sintering allowed the formation of HA fiber-deposited scaffolds (DS) with good interconnectivity. The DS green was immersed into the mixed suspension and centrifuged to obtain the green of HA fiber-self-adhering scaffolds (BS). The diameter of fibers can be tuned by changing the needle gauge and the porosity of these scaffolds can be controlled by varying the level of compression. The compression strength is improved obviously via self-adhering process. When their porosity is50%, the compression strengths of DS and BS are2.9±0.4MPa and13.2±0.6MPa, respectively. Bio-mineralization and cell culture confirm that both of DS and BS have a good bioactivity. The scaffolds treated by self-adhering process have a more rough surface and have a clearer trend of cells grown into scaffolds.
     (6) HA fibers were added into HA/SA suspension with was spheres. The mixture was filled in a mold and immersed in a CaCl2solution. Paraffin spheres were removed by soaking in n-hexane. HA fiber-self-filled porous scaffolds were obtained after washed, dried and sintered. The interconnectivity increases with the paraffin wax spheres increase. Many micro-and submicron-sized pores exist on the wall of macro-pores. In the fiber-filled scaffolds, HA fibers distribute in the matrix uniformly and the interface between fibers and matrix is tightly bound without obvious separation. The compressive strength of the scaffolds decreases as the addition of paraffin wax spheres increase. The addition of fibers can improve the compressive strength obviously, and the difference between the fiber-filled scaffolds and the scaffolds without fibers increase as the addition of paraffin wax spheres increase.
引文
[1]HENCH L L. Bioceramies:From concept to clinic [J]. Journal of the American Ceramic Society,1991, 74(7):1487-1510.
    [2]NEREM R M. Tissue engineering in the USA [J]. Medical & Biological Engineering & Computing, 1992,30(4):8-12.
    [3]CAO Y L, VACANTI C A, UPTON J, et al. Transplantation of chondrucytes utilizing polymer-cell constructs to produce new cartilage in the shape of a human ear [J]. Plastic and Reconstructive Surgery, 1997,100(2):297-302.
    [4]PARK J B, LAKES R S. Biometerials:an introduction [M].Plenum Press, New York,1992.
    [5]BLACK J. Biological Performance of Materials [M]. Marcel Dekker, Inc,1992.
    [6]SILVER F H. Biomaterials, Medical devices and tissue engineering:An integrated approach [M]. Chapman and Hall,1994.
    [7]俞耀庭.生物医用材料[M].天津大学出版社,2000.
    [8]张兴栋,颓怨伟.蓬勃发展的生物医学材料科学与工程[C].中国材料研究学会15周年纪念册,2006,84-90.
    [9]WONG J Y, BRONZINO J D. Biomaterials [M]. CRC Press,2006.
    [10]尹玉姬,李方,叶芬,等.生物医用材料[M].化工进展,2001,2(4):4-7.
    [11]阮建明,邹俭鹏,黄伯云.生物材料学[M].科学出版社,2004.
    [12]李坚.生物质复合材料学[M].科学出版社,2008.
    [13]CHEN Y, ZHANG T H, GAN C H, et al. Wear studies of hydroxyapatite composite coating reinforced by carbon nanotubes [J]. Carbon,2007,45(5):998-1004.
    [14]ZHENG X T, ZHOU S B, LI X H, et al. Shape memory properties of poly (D, L-lactide) /hydroxypatite composites [J]. Biomaterials,2006,27(24):4288-4295.
    [15]王迎军,刘康时.生物医学材料的研究与发展[J].中国陶瓷,1998,34(5):26-29.
    [16]崔福斋,郭牧遥.生物陶瓷材料的应用及其发展前景[J].药物分析杂志,2010,30(7):1343-1347.
    [17]BLOOM W, FAWCETTT D W. A textbook of histology [M]. W. B. Saunders. Philadelphia,1986.
    [18]FIERZ F C, BECKMANN F, HUSER M, et al. The morphology of anisotropic 3D-printed hydroxyapatite scaffolds [J]. Biomaterials,2008,29(28):3799-3806.
    [19]KAY M I, YOUNG R A, POSNER A S. Crystal structure of hydroxyapatite [J]. Nature,1964,204: 1050-1052.
    [20]周宏卉.改性羟基磷灰石制备及结构表征[D].四川:四川大学应用化学,2007.
    [21]LEON Y, LEON C A. New perspectives in mercury porosimetry [J]. Advances in Colloid and Interface Science,1998,76-77(3):341-372.
    [22]KUBOKI Y, TAKITA H, KOBAYASHI D, et al. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures:topology of osteogenesis [J]. Journal of Biomedical Materials Research,1998,39(2):190-199.
    [23]STORY B J, WAGNER W R, GAISSER D M, et al. In vivo performance of a modified CSTi dental implant coating [J]. The international journal of oral maxillofacial implants,1998,13(6):749-757.
    [24]HULBERT S F, YOUNG F A, MATHEWS R S, et al. Potential of ceramic materials as permanently implantable skeletal prostheses [J]. Journal of Biomedical Materials Research,1970,4(3):433-456.
    [25]ITALA A I, YLANEN H O, EKHOLM C, et al. Pore diameter of more than 100 micron is not requisite for bone ingrowth in rabbits [J]. Journal of Biomedical Materials Research,2001,58(6): 679-683.
    [26]YUAN H, KURASHINA K, DE BRUIJN J D, et al. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics [J]. Biomaterials,1999,20(19):1799-1806.
    [27]GONG Y H, ZHOU Q L, GAO C Y, et al. In vitro and in vivo degradability and cytocompatibility of poly (L-lactic acid) scaffold fabricated by a gelatin particle leaching method [J]. Acta Biomaterialia,2007, 3(4):531-540.
    [28]CANNILLO V, CHIELLINI F, FABBRI P, et al. Production of Bioglass 45S5-Polycaprolactone composite scaffolds via salt-leaching [J]. Composite Structure,2010,92(8):1823-1832.
    [29]ZHAO J, DUAN K, ZHANG J W, et al. Preparation of highly interconnected porous hydroxyapatite scaffolds by chitin gel-casting [J]. Materials Science and Engineering C,2011,31(3):697-701.
    [30]郭来阳,张静微,赵婧,等.具有良好贯通性的颗粒造孔支架的制备与表征[J].无机材料学报,2011,26(1):17-21.
    [31]VILA M, SANCHEZ-SALCEDO S, CICUENDEZ M, et al. Novel biopolymer-coated hydroxyapatite foams for removing heavy-metals from polluted water [J]. Journal of Hazardous Materials, 2011,192(1):71-77.
    [32]ZHAO J, GUO L Y, YANG X B, et al. Preparation of bioactive porous HA/PCL composite scaffolds [J]. Applied surface science,2008,255(5):2942-2946.
    [33]PENG Q, QU S X, LU X Y, et al. Fabricating hydroxyapatite spherulites with characteristic microporous structure by chitin sol emulsified in oil and gelatinized in situ [J]. Key Engineering Materials, 2005,284-286(3):419-422.
    [34]LANDI E, VALENTINI F, TAMPIERI A. Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porousity for biomedical applications [J]. Acta Biomaterialia,2008,4(6):1620-1626.
    [35]DAI X S, SHIVKUMAR S. Electrospinning of hydroxyapatite fibrous mats [J]. Materials Letters, 2007,61(13):2735-2738.
    [36]CUI W G, LI X H, XIE C Y, et al. Hydroxyapatite nucleation and growth mechanism on electrospun fibers functionalized with different chemical groups and their combinations [J]. Biomaterials,2010,31(7): 4620-4629.
    [37]YANG S F, YANG H Y, CHI X P, et al. Rapid prototyping of ceramic lattices for hard tissue scaffolds[J]. Materials & Design,2008,29(9):1802-1809.
    [38]MIRANDA P, SAIZ E, GRYN K, et al. Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications [J]. Acta Materialia,2006,2(4):457-466.
    [39]CHEN Q Z, THOUAS G A. Fabrication and characterization of sol-gel derived 45S5 Bioglass-ceramic scaffolds [J]. Acta Biomaterialia,2011,7(10):3616-3626.
    [40]吕迎,李慕勤.多孔羟基磷灰石生物陶瓷的研究现状与进展[J].佳木斯大学学报(自然科学版),2003,21(4):439-444.
    [41]牛金龙,张镇西,蒋大宗.多孔羟基磷灰石生物陶瓷的合成和特性研究进展[J].生物医学工程学杂志,2002,19(2):302-305.
    [42]HUTMACHER D W. Scafolds in tissue engineering bone and cartilage [J]. Biomaterials,2000, 21(24):2529-2543.
    [43]孙祥云,李见.几种生物陶瓷的进展[J].材料导报,1992,(4):25-30.
    [44]WANG R Z, CUI F Z, LU H B, ET AL. Synthesis of nanophase hydroxyapatite/collagen composite [J]. Journal of Materials Science Letters,1995,14(7):490-492.
    [45]JI H X, MARQUIS P M, et al. Sintering behaviour of hydroxyapatite reinforced with 20 wt%Al2O3 [J]. Journal of Materials Science,1993,28(7):1941-1945.
    [46]REIS R L, MONTERIRO F J, HASTINGS G W. Stability of hydroxylapatite plasma-sprayed coated Ti-6AI-4V under cyclic bending in simulated physiological solutions [J]. Journal of Materials Science: Materials in Medicine,1994,5(6-7):457-462.
    [47]TRANQUILI P L, MEROLLI A, PALMACCI O, et al. Evaluation of different preparations of plasma-spray hydroxyapatite coating on titanium alloy and duplex stainless steel in the rabbit [J]. Journal of Materials Science:Materials in Medicine,1994,5(6-7):345-349.
    [48]MARTIN R I, BROWN PW. Mechanical properties of hydroxyapatite formed at physiological temperature [J]. Journal of Materials Science:Materials in Medicine,1995,6 (3):138-143.
    [49]储成林,朱景川,尹钟大,等.致密羟基磷灰石(HA)生物陶瓷烧结行为和力学性能[J].功能材料,1999,30(6):606-609.
    [50]韩钰,施雨湘,张凡,等.致密羟基磷灰石生物陶瓷烧结技术研究进展[J].材料科学与工艺,2006,14(5):558-560.
    [51]RUYS A, SORRELL C, BRANDWOOD ARTHUR, et al. Hydroxyapatite sintering characteristics: correlation with powder morphology by high resolution microscopy [J]. Journal of Materials Science Letters,1995,14(10):744-747.
    [52]BEST S, BONFIELD W. Processing behaviour of hydroxyapatite powders with contrasting morphology [J]. Journal of Materials Science:Materials in Medicine,1994,5(4):516-521.
    [53]ROYER A, VIGUIE J C, HEUGHEBAERT M, et al. Stoichiometry of hydroxyapatite:influence on the flexural strength [J]. Journal of Materials Science:Materials in Medicine,1993,4(1):76-82.
    [54]TAMPIERI A, GELOTTI G, SZONTANGH F, et al. Sintering and characterization of HA and TCP bioceramics with control of their strength and phase purity [J]. Journal of Materials Science:Materials in Medicine,1997,8(1):29-37.
    [55]CHAKI T K, WANG P E. Densification and strengthening of silver-reinforced hydroxyapatite-matrix composite prepared by sintering [J]. Journal of Materials Science:Materials in Medicine,1994,5(8): 533-542.
    [56]LANDUYT P, LI F, KEUSTERMANS J P, et al. The influence of high sintering temperatures on the mechanical properties of hydroxylapatite [J]. Journal of Materials Science:Materials in Medicine,1995, 6(1):8-13.
    [57]PAUCHIU E, WANG P E, CHAKI T K. Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate [J]. Journal of Materials Science:Materials in Medicine,1993, 4(2):150-158.
    [58]ZHANG X, GUBBELS G H A, TERPSTRA R, et al. Toughening of calcium hydroxyapatite with silver particles [J]. Journal of Materials Science,1997,32(4):235-243.
    [59]HALOUANI R, BERNACHE-ASSOLANT D, CHAMPION E, et al. Microstructure and related mechanical properties of hot pressed hydroxyapatite ceramics [J]. Journal of Materials Science:Materials in Medicine,1994,5(8):563-568.
    [60]陈明源,邱莉.羟基磷灰石陶瓷的制备—活性生物陶瓷研究之二[J].广西大学学报(自然科学版),2001,26(2):79-82.
    [61]席文君,唐凤凰,何昕等.烧结工艺和掺杂对羟基磷灰石陶瓷性能的影响[J].功能材料,1996,27(3):274-276.
    [62]李蔚,高濂.纳米羟基磷灰石粉体的制备和低温烧结[J].过程工程学报,2002,2(4):305-308.
    [63]唐膺,翁文剑,陆剑平.热压烧结羟基磷灰石生物陶瓷[J].中国陶瓷,1994,2(9):4-7.
    [64]TAN N, KOU Z L, DING Y H, et al. Novel substantial reductions in sintering temperatures for preparation of transparent hydroxyapatite bioceramics under ultrahigh pressure [J]. Scripta Materialia, 2011,65(9):819-822.
    [65]井奥洪二,宗宫重行,吉村昌弘.儃僗僩僔俩为侪儞仉侦傛傞准安定正方晶僕儖僐倾粒子分散倾俺伙带僩僙俦侩僣僋僗[C].日本僙俦侩僋僗协会学术论文誌,1991,99(1):196-203.
    [66]WANG P E, CHAKI T K. Sintering behavior and mechanical propertites of hydroxyapatite and dicalcium phosphate [J]. Journal of Materials Science:Materials in Medicine,1993,4(2):150-158.
    [67]VARMA H K, SIVAKUMAR R. Dense hydroxyapatite ceramics through gel casting technique [J]. Materials Letters,1996,29(1-3):57-61.
    [68]OKADA M, FURUZONO T. Low-temperature synthesis of nanoparticle-assembled, transparent, and low-crystallized hydroxyapatite blocks [J]. Journal of Colloid and Interface Science,2011,360(2): 457-462.
    [69]WANG J W, SHAW L L. Transparent nanocrystalline hydroxyapatite by pressure-assisted sintering [J]. Scripta Materialia,2010,63(6):593-596.
    [70]出井裕,罔野道治[C].第7回SPS研究会讲演要旨集,东京:日本SPS研究会,2002:54-55.
    [71]CHAUDHRY A A,YAN H X, GONG K N, et al. High-strength nanograined and translucent hydroxyapatite monoliths via continuous hydrothermal synthesis and optimized spark plasma sintering [J]. Acta Biomaterilia,2011,7(2):791-799.
    [72]蔡杰,徐耕夫,李文兰,等.羟基磷灰石的微波快速烧结研究[J].中国科学院研究生院学报,1996,13(2):315-316.
    [73]KUTTY M G, LOERTSCHER J, TINGAW R. Microwave sintering ofnanocrystalline hydroxyapatite [J]. Ceramic Engineering and Science Proceedings,2001,22(4):3-10.
    [74]BOSE S, DASGUPTA S, TARAFDER S, et al. Microwave processed nanocrystalline hydroxyapateite:Simultaneous enhancement of mechanical and biological properties [J]. Acta biomaterilia,2010,6(9):3782-3790.
    [75]RMAACHNADRA RAO R, ROOPA H N, KANNAN T S. Solid state synthesis and thermal stability of HAP and HAP-β-TCP composite ceramic powders [J]. Journal of Materials Science:Materials in Medicine,1997,8(8):511-518.
    [76]王学江,汪建新,李玉宝,等.常压下纳米级羟基磷灰石针状晶体的合成[J].高技术通讯,2000,11:92-94.
    [77]冯凌云,李世普,陈闻杰.羟基磷灰石溶胶对W-256癌肉细胞和艾式腹水瘤细胞增殖的影响[J].中国有色金属学报,1999,9(3):651-654.
    [78]王志强,马铁成,韩趁涛,等.湿法合成纳米羟基磷灰石粉末的研究[J].无机盐工业,2001,33(1):3-5.
    [79]LIU D M, YANG Q. TROCZYNSKI T, et al. Structural evolation of sol-gel-drived hydroxyapatite [J]. Biomaterials,2002,23(7):1679-1787.
    [80]石袁媛,刘昌胜.溶胶-凝胶法制备纳米羟基磷灰石[J].中国医学科学学报,2002,2:129-133.
    [81]刘学铭,王杏乔,丁经绪,等.水热反应及其应用[J].化学通报,1982,4:39-43.
    [82]廖其龙,徐光亮,周大利,等.水热合成纳米羟基磷灰石粉末及其结构表征[J].四川大学学报,2002,3:69-71.
    [83]徐光亮,聂轶霞,赖振宇.水热合成羟基磷灰石纳米粉体的研究[J].无机材料学报,2002,17(3):600-604.
    [84]MONMA H, KAMIYA T. Preparation of hydroxyapatite by the hydrolysis of brushite [J]. Journal of Materials science,1987,22:4247-4250.
    [85]MONMA H, DENO S, KANAZAWA T. Prepertites of hydroxyapatite prepared by the hydrolysis of tricalcium phosphate [J]. Journal of Chemical Technology and Biotechnology,1981,31:15-24.
    [86]任卫,曹献英,冯凌云,等.纳米羟基磷灰石合成及表面改性的途径及方法[J].硅酸盐通报,2002,1:38-43.
    [87]窦妍,李东旭,曹丰,等.羟基磷灰石微球制备方法的研究进展[J].材料导报,2010,S2:417-419.
    [88]王旭东,王迎军,魏坤,等.聚己内酯/纳米羟基磷灰石复合微球中的药物分布及体外释放[J].硅酸盐学报,2008,36(9):1225-1230.
    [89]TUNG M S, O'FARRELL T J. Effect of ethanol on the formation of calcium phosphates [J]. Colloids Surface,1996,110(2):191-198.
    [90]王斌,刘道杰.羟基磷灰石色谱在生物分子分离中的应用[J].药物分析杂志,2008,28(6): 1009-1013.
    [91]MIZUSHIMA Y, IKOMA T, TANAKA J, et al. Injectable porous hydroxyapatite microparticles as a new carrier for protein and lipophilic drugs [J]. Journal of Controlled Release,2006,110(2):260-265.
    [92]SUN R X, LU Y P, CHEN K Z. Preparation and characterization of hollow hydroxyapatite microspheres by spray drying method [J]. Materials Science and Engineering:C,2009,29(4):1088-1092.
    [93]CHO J S, KO Y N, KOO H Y, et al. Synthesis of nano-sized biphasic calcium phosphate ceramics with spherical shape by flame spray pyrolysis [J]. Journal of Materials Science:Materials in Medicine, 2010,21(4):1143-1149.
    [94]WENG J, WANG M, CHEN J Y. Plasma-sprayed calcium phosphate particles with high bioactivity and their use in bioactive scaffolds [J]. Biomaterials,2002,23(13):2623-2629.
    [95]HUTCHENS S A, BENSON R S, EVANS B R, et al. Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel [J]. Biomaterials,2006,27(26):4661-1670.
    [96]KLINKAEWNARONG J, SWATSITANG E, MASINGBOON C, et al. Synthesis and characterization of nanocrystalline HAp powders prepared by using aloe vera plant extracted solution [J]. Current Applied Physics,2010,10(2):521-525.
    [97]WANG Y S, HASSAN M S, Gunawan P, et al. Polyelectrolyte mediated formation of hydroxyapatite microspheres of controlled size and hierarchical structure [J]. Journal of Colloid and Interface Science, 2009,339(1):69-77.
    [98]WANG P, YOOK S W, JUN S H, et al. Synthesis of nanoporous calcium phosphate spheres using poly(acrylic acid) as a structuring unit [J]. Materials Letters,2009,63(13-14):1207-1209.
    [99]QIU C F, XIAO X F, LIU R F, et al. Biomimetic synthesis of spherical nano-hydroxyapatite with polyvinylpurrolidone as template [J]. Materials Science and Technology,2008,24(5):612-617.
    [100]ZHAO Y F, MA J. Triblock co-polymer templating synthesis of mesostructured hydroxyapatite [J]. Microposous and Mesoporous Materials,87(2):110-117.
    [101]YE F, GUO H F, ZHANG H J, et al. Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system [J]. Acta Biomaterialia,2010,6(6):2212-2218.
    [102]HE Q J, HUANG Z L, CHENG X K, et al. Thermal stability of porous A-type carbonated hydroxyapatite spheres [J]. Materials Letters,2008,62(3):539-542.
    [103]ZHANG H G, ZHU Q S, WANG Y. Morphologically controlled synthesis of hydroxyapatite with partial substitution of fluorine [J]. Chemistry of Materials,2005,17(23):5824-5830.
    [104]SCHMIDT S M, MORAN K A, KENT A M T, et al. Uptake of calcium phosphate nanoshells by osteoblasts and their effect on growth and differentiation [J]. Journal of Biomedical Materials Tesearch Part A,87A(2):418-428.
    [105]SCHMIDT H T, GRAY B L, WINGERT P A, et al. Assembly of aqueous-cored calcium phosphate nanoparticles for drug delivery [J]. Chemistry of Materials,2004,16(24):4942-4947.
    [106]GUO Y P, LIN T S, ZHOU Y, et al. Fabrication of monodisperse mesoporous hydroxycarbonate apatite microspheres by emulsion method [J]. Mcroporous and Mesoporous Materials,2010,127(3): 245-249.
    [107]任卫,李世普,王友法.超细羟基磷灰石颗粒的反相微乳液合成[J].硅酸盐通报,2002,21(6):27-31.
    [108]任卫,李世普,王友法.微乳液制备纳米羟基磷灰石的机理[J].材料研究学报,2004,18(3):257-264.
    [109]PRADEESH T S, SUNNY M C, VARMA H K, et al. Preparation of micro structured hydroxyapatite microsphere using oil in water emulsions [J]. Bulletin of Materials Science,2005,28(5):383-390.
    [110]PARK J S, HONG S J, KIM H Y, et al. Evacuated calcium phosphate spherical microcarriers for bone regeneration [J]. Tissue Engineering Part A,2010,16(5):1681-1691.
    [111]JEVTIC M, RADULOVIC A, IGNJATOVIC N, et al. Controlled assembly of poly(D,L-lactide-co-glycolide)/ hydroxyapatite core-shell nanospheres under ultrasonic irradiation [J]. Acta Biomaterialia,5(1):208-218.
    [112]KANDORI K, NOGUCHI Y, FUKUSUMI M, et al. Preparation of spherical and balloonlike calcium phosphate particles form force hydrolysis of Ca(OH)2-Triphosphate solution and their adsorption selectivity of water [J]. The Journal of Physical Chemistry. C,2010,114(14):6440-6445.
    [113]XIE M, OLDERΦY M Φ, ANDREASSEN J P, et al. Alginate-controlled formation of nanoscale calcium carbonate and hydroxyapatite mineral phase within hydrogel networks [J]. Acta Biomaterialia, 2010,6(9):3665-3675.
    [114]NASSIF N, MARTINEAU F, SYZGANTSEVA O, et al. In vivo inspired conditions to synthesize biomimetic hydroxyaptite [J]. Chemistry of Materials,2010,22(12):3653-3663.
    [115]傅希贤,吕忠良,杨宏秀.新型纤维状羟基磷灰石的制备[J].硅酸盐通报,1996,4:26-28.
    [116]靳治良,李胜利,李武.晶须增强体复合材料的性能与应用[J].盐湖研究,2003,11(4):57-66.
    [117]翟学良,胡亚伟,刘伟华.合成陶瓷纤维材料的制备工艺及发展趋势[J].无机盐工业,2006,38(5):7-10.
    [118]楚增勇,工军,宋永才,等.连续陶瓷纤维制备技术的研究进展[J].高科技纤维与应用,2004,29(2):39-45.
    [119]RICHARDS E R, GOODBRAKE C J, SOWMAN H G. Reaction and microstruture development in mullite fibers [J]. Journal of American Ceramic society,1991,74 (10):2404-2409.
    [120]THEODORE F C. Inorganic fibers-a literature review [J]. Journal of American Ceramic society, 1991,74(12):2959-2978.
    [121]楚增勇,冯春祥,宋永才,等.先驱体转化法连续SiC纤维国内外研究与开发现状[J].无机材料学报,2002,17(2):193-201.
    [122]赵显,王吴.溶胶-凝胶法制备多晶氧化铝纤维的研究[J].玻璃纤维,2000(1):3-5.
    [123]HIDEKI A, MASATAKA O, SEISUKE K. Effects of HAP-solon cell growth [J]. Reports of te Insitute for medical and Dental Engineering,1992,26:15-21.
    [124]张士成,李世普,陈芳.磷灰石超微粉对癌细胞作用的初步研究[J].武汉工业大学学报,1996,18:5-8.
    [125]夏清华,陈道达,林华,等HASM对W-256细胞系DNA含量及细胞周期的影响[J].武汉工业大学学报,1999,2:20-21.
    [126]HIDEK A. MASATAKA O. Effects of adriacin-adsorbing HA solon Ca-9cell growth [J]. Insi. Med. Den. Engin.,1993,27:39-44.
    [127]IJNTEMA K. HEUVELAND W J, DIRIX C A. Hydroxyapatite microcarriers for biocontrolled release of protein drugs [J]. International Journal of Pharmaceutics,1994,112(3):215-224.
    [128]KAWASAKI T, NIIKURA M, KOBAYASHIY. Fundamental study of hydroxyapatite high-perform--ance liquid chromatography [J]. Journal of Chromatography A,1990,515:125-128.[129]沈卫,顾燕芳,刘昌胜,等.羟基磷灰石的表面特性[J].硅酸盐通报,1996,1:45-51.
    [130]ZHANG X J, ZHANG W X, YANG Z H, et al. Nanostructured hollow spheres of hydroxyapatite: preparation and potential application in drug delivery [J]. Frontiers of Chemical Science and Engineering, 2012,6(3):246-252.
    [131]CAI Y R, PAN H H, XU X R, et al. Ultrasonic controlled morphology transformation of hollow calcium phosphate nanospheres:a smart and biocompatible drug release system [J]. Chemistry of Materials,2007,19(13):3081-3083.
    [132]RIBEIRO C C, BARRIAS C C, BARBOSA M A. Calcium phosphate-alginate microspheres as enzyme delivery matrices [J]. Biomaterials,2004,25(18):4363-4373.
    [133]MA'MANI L, HEYDARI A, SHIROODI R K. Nanohydroxyapatite microspheres as a biocompa-tible and recoverable catalyst for synthesis of carbon-phosphorous bond formation [J]. Current Organic Chemistry,2009,13(7):758-762.
    [134]BOONSONGRIT Y, ABE H, SATO K, et al. Controlled release of bovine serum albumin from hydroxyapatite microspheres for protein delivery system [J]. Materials Science and Engineering:B,2008, 148(1-3):162-165.
    [135]WANG Y J, WANG X D, WEI K, et al. Fabrication, characterization and long-term in vitro release of hydrophilic drug using PHBV/HA composite microspheres [J]. Materials Letters,2007,61(4-5) 1071-1076.
    [136]王旭东,王迎军,魏坤,等.聚已内酯/纳米羟基磷灰石复合微球中的药物分布及体外释放[J].硅酸盐学报,2008,36(9):1225-1230.
    [137]WANG S N, WANG X Y, XU H, et al. Towards sustained delivery of small molecular drugs using hydroxyapatite microspheres as the vehicle [J]. Advanced Powder Technology,2010,21(3):268-272.
    [138]SIVAKUMAR M, RAO K P. Preparation, characterization, and in vitro release of gentamicin from coralline hydroxyapatite-alginate composite microspheres [J]. Journal of Biomedical materials research A, 2003,65(2):222-228.
    [139]SIVAKUMAR M, RAO K P. Preparation, characterization and in vitro release of gentamicin from coralline hydroxyapatite-gelatin composite microspheres [J]. Biomaterials,2002,23(15):3175-3181.
    [140]ZHU X D, ZHANG H J, FAN H S, et al. Effect of phase composition and microstructure of calcium phosphate ceramic particles o protein adsorption [J]. Acta Biomaterialia,2010,6(4):1536-1541.
    [141]ZHU X D, FAN H S, XIAO Y M. Effect of surface structure on protein adsorption to biphasic calcium-phosphate ceramics in vitro and in vivo [J]. Acta Biomaterialia,2009,5(4):1311-1318.
    [142]FERRAZ M P, MATEUS A Y, SOUSA J C, et al. Nanohydroxyapatite microspheres as delivery system for antibiotics:release kinetics, antimicrobialactivity, and interaction with osteoblasts [J]. Journal of Biomedical Materials Research A,2007,81(4):994-1004.
    [143]TOMADA K, ARIIZUMI H, NAKAJI T, et al. Hydroxyapatite particles as drug carriers for proteins [J]. Colloids and surface B:Biointerfaces,2010,76(1):226-235.
    [144]HO M L, FU Y C, WANG G J, et al. Controlled release carrier of BSA made by W/O/W emulsion method containing PLGA and hydroxyapatite [J]. Journal of Controlled Release,2008,128(2):142-148.
    [145]石海涛,张志荣,龚涛.新型载胰岛素口服给药系统的制备及其降血糖作用[J].华西药学杂志,2008,23(1):22-25.
    [146]PAUL W, NESAMONY J, SHARMA C P. Delivery of insulin from hydroxyapatite ceramic microspheres:preliminary in vivo studies [J]. Journal of Biomedical Materials Research,2002,61(4): 660-662.
    [147]SHI P, ZUO Y, LI X, et al. Gentamicin-impregnated chitosan/nanohydroxyapatite/ethyl cellulose microspheres granules for chronic osteomyelitis therapy [J]. Journal of Biomedical Research A,2010, 93(3):1020-1031.
    [148]EMOTO M, NAGANUMA Y, CHOIJAMTS B, et al. Novel chemoembolization using calcium-phosphate ceramic microsphere incorporating TNP-470, an anti-angiogenic agent [J]. Cancer Science, 2010,101(4):984-990.
    [149]LV Q, NAIR L, LAURENCIN C T. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors [J]. Journal of Biomedical Research A,2009,91(3):679-691.
    [150]NUKAVARAPU S P, KUMBAR S G, BROWN J L, et al. Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering [J]. Biomacromolecules,2008,9(7): 1818-1825.
    [151]METEUS A Y, BARRIAS C C, RIBEIRO C, et al. Comparative study of nanohydroxyapatite microspheres for medical applications [J]. Journal of Biomedical Materials Research A,2008,86(2): 483-493.
    [152]INANC B, ESER ELCIN A, KOC A, et al. Encapsulation and osteoinduction of human periodontal ligament fibroblasts in chitosan-hydroxyapatite microspheres [J]. Journal of Biomedical Materials Research A,2007,82(4):917-926.
    [153]OLIVEIRA S M, BARRIAS C C, ALMEIDA I F, et al. Injectability of a bone filler system based on hydroxyapatite microspheres and a vehicle with in situ gel-forming ability [J]. Journal of Biomedical Research A,2008,87(1):49-58.
    [154]SHEN H, HU X X, YANG F, et al. An injectable scaffold:rhBMP-2-loaded poly(lactide-co-gly-colide)/hydroxyapatite composite microspheres [J]. Acta Biomaterialia,2010,6(2):455-465.
    [155]TIGLI R S, AKMAN A C, GUMUSDERELIOGLU M, et al. In vitro release of dexamethasone or bFGF from chitosan/hydroxyapatite scaffolds [J]. Journal of Biomaterials Science, Ploymer Edition,2009, 20(13):1899-1914.
    [156]RIDENOUR B, KONTIS T C. Injectable calcium hydroxylapatite microspheres (Radiesse) [J]. Facial Plast Surgery,2009,25(2):100-105.
    [157]CUMMINGS L J, SNYDER M A, BRISACK K. Protein chromatography on hydroxyapatite columns [J]. Methods in Enzymology,2009,463:387-404.
    [158]王爱娟,吕宇鹏,孙瑞雪.羟基磷灰石在生物活性物质分离与提纯领域中应用的研究进展[J].材料导报,2006,20(6):111-114.
    [159]HAN X, DU M, MA Y F, et al. Evaluation of hydroxyapatite microspheres made from a borate glass to separate protein mixtures [J]. Journal of Materials Science,2008,43(16):5618-5625.
    [160]PAUL W, SHARMA C P. Modified hydroxyapatite microsphere asimmunoadsorbent for plasma perfusion:preliminary study [J]. Journal of Colloid and Interface Science,1995,174(1):224-229.
    [161]王永峰,靳安民,魏坤,等.抗感染纳米羟基磷灰石局部药物缓释微球的研制及体外释药实验[J].南方医科大学学报,2006,26(6):754-756.
    [162]LEPRETRE S, CHAI F, HORNEZ J C, et al. Prolonged local antibiotics delivery from hydroxyapatite functionalised with cyclodextrinpolymers [J]. Biomaterials,2009,30(30):6086-6093.
    [163]BALASUNDARAM G, SATO M, WEBSTER T J. Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD [J]. Biomaterials,2006,27(14):2798-2805.
    [164]LIU J K, YANG X H, TIAN X G. Preparation of silver/hydroxyapatite nanocomposite spheres [J]. Powder Technology,2008,184(1):21-24.
    [165]HOU C H, HOU S M, HSUEH Y S, et al. The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy [J]. Biomaterials,2009,30(23-24):3956-3960.
    [166]LIU J K, LUO C X, QUAN N J. Preparation and optical properties of silver chromate self-assembly necklace structures [J]. Journal of Nanoparticle Research,2008,10(3):531-535.
    [167]DOAT A, FANJUL M, PELLE F, et al. Europium-doped bioapatite:a new photostable biological probe, internalizable by human cells [J]. Biomaterials,2003,24(19):3365-3371.
    [168]SHIN U S, PARK J H, HONG S J, et al. Porous biomedical composite microspheres developed for cell delivering scaffold in bone regeneration [J]. Materials Letters,2010,64(20):2261-2264.
    [169]姚康德,尹玉姬.组织工程相关生物材料[M].北京:化学工业出版社,2003,1-10.
    [170]KLAWITTER J J. A basic investigation of bone growth into a porous ceramic material[M]. Doctoral Thesis, Clemson University. Clemson, SC,1970.
    [171]CHIROFF R T. Tissue ingrowth of replamineform implants [J]. Journal of Biomedical Materials Research,1995,9(4):29-459.
    [172]YAMASAKI H, SAKAI H. Osteogenic response to porous Hydroxyapatite ceramics under the skin of dogs. [J]. Biomaterials.1992,13(5):308-312.
    [173]URIST M R, LIETZE, MIZUTANI H, et al. A bovine low molecular weight bone morphogenetic protein (BMP) fraction [J]. Journal of Clinical Orthodontics.1982,162:219-222.
    [174]HENCH L L, WILSON J. Surface-active biomaterials [J]. Journal of Clinical Orthodontics,1984, 226 (4675):630-636.
    [175]JARCHO M. Calcium phosphate ceramics as hard tissue prosthetics [J]. Clinical Orthoaedics Relatated Research,1981,3(157):259-278.
    [176]YAMASAKI H. Heterotopic bone formation around porous hydroxyapatite ceramics in the subcutis of dogs [J]. Jpanese Journal of Oral Biology,1990:32(13):190-192.
    [177]RIPAMONTI U. The morphogenesis of bone in replicas of porous hydroxyapatite obtained from conversion of calcium carbonate exoskeletons of coral [J]. The Journal of Bone and Joint Surgery,1991, 73(5):692-703.
    [178]YANG Z J, YUAN H P, TONG W D, et al. Osteogenesis in extraskeletally implanted porous phosphate ceramics:variability among different kinds of animals [J]. Biomaterlals.1996,17(22): 2131-2137.
    [179]姚辉,杜昶,杨韶华,等.纳米羟晶/胶原仿生骨修复家兔颅颌骨缺损的实验研究[J].透析与人工器官,2000,11(2):5-8.
    [180]凌翔,陶学金,陈卫民.胶原/纳米磷酸三钙复合人工骨修复骨缺损的实验研究[J].临床口腔医学杂志,2003,19(2):74-76.
    [181]王艳,王学荣,刘博林.羟基磷灰石多孔陶瓷的研究[J].长春理工大学学报,2002,25(4):67-69.[182]戴怡.羟基磷灰石陶瓷在室温下的湿敏性能[J].大连轻工业学院院报,1998,17(3):26-29.
    [183]GONDA Y, IOKU K, SHIBATA Y, et al. Stimulatory effect of hydrothermally synthesized biodegradable hydroxyapatite granules on osteogenesis and direct association with osteoclasts [J]. Biomaterials 2009,30(26):4390-4400.
    [184]FUJII S, OKADA M, FURUZONO T. Hydroxyapatite nanoparticles as stimulus-responsive particulate emulsifiers and building block for porous materials [J]. Journal of Colloid and Interface Science,2007,315(1):287-296.
    [185]MARQUES DA SILVA H, MATEESCU M, PONCHE A, et al. Surface transformation of silicon-doped hydroxyapatite immersed in culture medium under dynamic and static conditions [J]. Colloids and Surfaces B:Biointerfaces,2010,75(1):349-355.
    [186]SWAIN S K, BHATTACHARYYA S, SARKAR D. Preparation of porous scaffold from hydroxyapatite powders [J]. Materials Science and Engineering C,2011,31(6):1240-1244.
    [187]WENG J, WANG M, CHEN J Y. Plasma-sprayed calcium phosphate particles with high bioactivity and their use in bioactive scaffolds [J]. Biomaterials,2002,23(13):2623-2629.
    [188]FICAI A, ANDRONESCU E, VOICU G, et al. The influence of collagen support and ionic species on the morphology of collagen/hydroxyapatite composite materials [J]. Materials Characterization,2010, 61(4):402-407.
    [189]CHU K T, OSHIDA Y, HANCOCK E B, et al. Hydroxyapatite/PMMA composites as bone cements [J]. Bio-medical Materials Engineering,2004,14(1):87-105.
    [190]SUNNY M C, RAMESH P, VARMA H K. Microstructured microspheres of hydroxyapatite bioceramic [J]. Journal of Materials Science:Materials in Medicine,2002,13(7):623-632.
    [191]HESARAKI S, ZAMANIAN A, KHORAMI M. Nano-structured apatite granules as drug delivery device for bone infection treatments [J]. Journal of the Australian Ceramics Society,2011,47(1):32-36.
    [192]ZHANG X, VECCHIO K S. Creation of dense hydroxyapatite (synthetic bone) by hydrothermal conversion of seashells [J]. Materials science and engineering C,2006,26(8):1445-1450.
    [193]BENHAYOUNE H, J ALLOT E, LAQUERRIERE P, et al, Frayssinet P. Intergration of dense HA rods into cortical bone [J]. Biomaterials,2000,21(3):235-242.
    [194]SEO D S, LEE J K. Microstructural disintegration in dense hydroxyapatite and hydroxyapatite-coated metal implants [J]. Metals and Materials International,2007,13(4):311-316.
    [195]施剑林,冯涛.透明陶瓷[M].上海科学普及出版社,2008:1-7.
    [196]OHGUSHI H, CAPLAN A I. Stem cell technology and bioceramics:from cell to gene engineering [J]. Journal of Biomedical Materials Research,1999,48(6):913-927.
    [197]MENDES S C,TIBBE J M, VEENHOF M, et al. Bone tissue-engineered implants using human bone marrow stromal cells:effect of culture conditions and donor age [J]. Tissue Engineering,2002,8(6): 911-920.
    [198]DE BRUIJN J D, VAN DEN BRINK I, MENDES S, et al. Bone induction by implants coated with cultured osteogenic bone marrow cells [J]. Advances in Dental Research 1999,13:74-81.
    [199]KOTOBUKI N, IOKU K, KAWAGOE D, et al. Observation of osteogenic differentiation cascade of living mesenchymal stem cells on transparent hydroxyapatite ceramics [J]. Biomaterials,2005,26(7): 779-785.
    [200]TAKIKAWA K, AKAO M. Fabrication of transparent hydroxyapatite and application to bone marrow derived cell/hydroxyapatite interaction observation in vivo [J]. Journal of Materials Science: Materials in Medicine,1996,7(7):439-455.
    [201]LU H X, HOSHIBA T, KAWAZOE N, et al. Cultured cell-derived extracellular matrix scaffolds for tissue engineering [J]. Biomaterials,2011,32(36):9658-9666. [202] TALUKDAR S, NGUYEN Q T, CHEN A C, et al. Effect fo initial cell seeding density on 3D-engineered silk fibroin scaffolds for articular cartilage tissue engineering [J]. Biomaterials,2011, 32(34):8927-8937.
    [203]MURPHY C M, HAUGH M, O'BRIEN F J. The effect of mean pore size on cell attachment, proliferation and migration in collagen- glycosaminoglycan scaffolds for bone tissue engineering [J]. Biomaterils,2010,31(3):461-466.
    [204]WANG J, SHAW L L. Morphology -enhanced low-temperature sintering of nanocrystalline hydroxyl-apatite [J]. Advanced Materials,2007,19(17):2364-2369.
    [205]MASPERO F A, RUFfiEUX K, MULLER B, et al. Resorbable defect analog PLGA scaffolds using CO2 as solvent:structural characterization [J]. Journal of Biomedical Materials Research,2002,62(1): 89-98.
    [206]TOYAMA T, DOKUSHIMA T, YASUE T, et al. Prepartion of hardened body in hydroxyapatite-carboxylic acid-chitosan system by using amorphous calcium phosphate [J]. Society of Inorganic Materials.1998,5(277):479-485.
    [207]QU X, WIRSEN A, ALBERTSON A C. Effect of lactic/glycolic acid side chains on the thermal degradation kinetics of chitosan derivatives [J]. Polymers,2000,41(13):4841-4847.
    [208]LIM L Y, KHOR E, LING C E. Effects of dry heat and saturated steam on the physical properties of chitosan [J]. Journal of Biomedical Materials Research,1999,48(12):111-116.
    [209]LU J X, FLAUTRE B, ANSELME K, et al. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo [J]. Journal of Materials Science:Materials in Medicine,1999,10(2): 111-120.
    [210]GUTIERRES M, LOPES M A, HUSSAIN N S, et al. Bone ingrowth in macroporous Bonelike for orthopaedic applications [J]. Acta Biomaterialia,2008,4(2):370-377.
    [211]CHU T M G, ORTON D G, HOLLISTER S J, et al. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures [J]. Biomaterials,2002,23(5):1283-1293.
    [212]孙瑞雪,史京京,郭燕川,等.明胶微球粒径影响因素的研究[J].明胶科学与技术,2008,28(3):119-124.
    [213]WADELL H. Volume, shape and roundness of quartz particles [J]. The Journal of Geology,1935, 43(3):250-280.
    [214]SILIN D, PATZEK T. Pore space morphology analysis using maximal inscribed spheres [J]. Physica A,2006,371 (2):336-360.
    [215]应建新,张彬,崔鑫,等.透明陶瓷透光性能的影响因素[J].强激光与粒子束,2011,23(3):581-585.
    [216]吉亚明,蒋丹宇,冯涛,等.透明陶瓷材料现状与发展[J].无机材料学报,2004,19(2):275-282.
    [217]LEVENBERG S, LANGER R. Advances in tissue engineering [J]. Current Topics in Developmental Biology,2004,61(4):113-134.
    [218]ISHIKAWA K, MIYAMOTO Y, KON M, et al. Non-decay type fast-setting calcium phosphate cement:composite with sodium alginate [J]. Biomaterias,1995,16(7):527-532.
    [219]HENCH L L. Bioceramics [J]. Journal of the American Ceramic Society,1998,81(7):1705-1728.
    [220]SHUM A W T, LI J S, MAK A F T. Fabrication and structural characterization of porous biodegradable poly(DL-lactic-co-glycolic acid) scaffolds with controlled range of pore sizes [J]. Polymer Degradation and Stability,2005,87(3):487-493.
    [221]LANDI E, CELOTTI G, LOGROSCINO G, et al. Carbonated hydroxyapatite as bone substitute [J]. Journal of the European Ceramic Society,2003,23(4):2931-2937.
    [222]CHEVALIER E, CHULIA D, POUGET C, et al. Fabrication of porous substrates:a review of processes using pore forming agents in the biomaterial field [J]. Journal of Pharmaceutical Sciences,2008, 97(3):1135-1154.
    [223]REZWAN K, CHEN Q Z, BLAKER J J, et al. Biodegradable and bioactive porous polymer/ inorganic composite scaffolds for bone tissue engineering [J]. Biomaterials,2006,27(18):3413-3431.
    [224]汤佩钊.复合材料及其应用技术[M].重庆大学出版社,1998.
    [225]刘涛.羟基磷灰石纤维自充填多孔生物陶瓷的制备与表征[D].西南大学硕士学位论文,2010.
    [226]HU Y, GRAINGER D W, WINN S R, et al. Fabrication of poly(alpha-hydroxy acid) foam scaffolds using multiple solvent systems [J]. Journal of Biomedical Materials Research,2002,59(3):563-572.
    [227]KIM H W, KNOWLES J C, KIM H E. Hydroxyapatite/poly(epsilon-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery [J]. Biomaterials,2004,25(7-8): 1279-1287.
    [228]叶大年,韩成,曾荣树.等大球任意堆积[J].科学通报,1986,12:920-924.
    [229]KOKUBO T, TAKADAMA H. How useful is SBF in predicting in vivo bone bioactivity [J]. Biomaterials,2006,27(15):2907-2915.
    [230]KIM H W, SHIN S Y, KIM H E, et al. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect [J]. Joutnal of Biomaterials Applications,2008,22(6):485-504.
    [231]OKAMOTO M, DOHI Y, OHGUSHI H, et al. Influence of the porosity of hydroxyapatite ceramics on in vitro and in vivo bone formation by cultured rat bone marrow stromal cells [J]. Journal of Materials Science:Materials in Medicine,2006,17(4):327-336.
    [232]YUAN H, KURASHINA K, DE BRUIJN J D, et al. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics [J]. Biomaterials,1999,20(19):1799-1806.
    [233]EL-GHANNAM A, DUCHEYNE P, SHAPIRO I M. Formation of surface reaction products on bioactive glass and their effects on the expression of osteoblastic phenotype and the deposition of mineralised extracellular matrix [J]. Biomaterials,1997,18(4):295-303.
    [234]OKUMURA M, OHGUSHI H, DOHI Y, et al. Osteoblastic phenotype expression on the surface of hydroxyapatite ceramics [J]. Journal of Biomedical Materials Research,1997,37(1):122-129.