痕量铜离子检测方法以及检测组蛋白甲基化试纸条的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜是生物体所必须的微量元素之一,其浓度高低直接影响人们的健康。在人体中铜离子主要以作为许多酶和蛋白(如超氧化物歧化酶、细胞色素氧化酶、多巴胺p-羟化酶、酪氨酸酶和铜蓝蛋白等)的催化辅助因子或结构组成部分来参与细胞中的新陈代谢过程,人体仅仅需要微量的铜就可以维持正常的生命活动。但是,铜缺乏或铜过量都会对健康产生不利的影响。铜缺乏一般伴随着其他营养元素的缺乏或者其生物拮抗物质的摄取过量,影响细胞内许多酶的正常功能,进而影响细胞的新陈代谢过程。铜过量通常是由于遗传性疾病或者由于环境重金属铜污染,误食了大量含铜的食物或吸入了含铜量高的气体所造成。人类的活动造成铜离子的大气污染和水体污染,最终都会回归到土壤中造成土壤污染,进而影响农作物的产量和质量。食物中的铜离子通过食物链的逐级放大过程,最终进入人体,对人类的健康产生危害。肝脏是储存铜离子的重要场所,也是铜排入胆汁的重要器官,铜过量会影响肝肾的正常代谢,造成胃肠道功能紊乱和溶血性贫血等;过多的铜离子若在脑、心脏等处沉淀,会造成神经退行性疾病和全身性的症状,包括威尔逊氏综合症和阿尔茨海默氏症。鉴于铜离子对人类健康,生态系统和食品安全方面会产生巨大的危害,在检测铜离子方面已投入了大量工作。美国环境保护局规定饮用水中铜离子的含量不能超过20μM。
     传统的用于检测重金属离子的方法主要有石墨烯原子吸收光谱法和电感耦合等离子原子发射光谱法。这两种方法对于重金属离子的检测准确可靠,但使用的仪器价格昂贵,需要经验丰富的技术人员来操作,因而限制了其在基层实验室的广泛应用。近年来,各种检测重金属离子的生物传感器不断出现,包括:荧光法,基于胶体金的比色法和动力学光散射法等。虽然与传统的检测方法相比,这些方法操作简便,检测灵敏度高,但是需要用到蛋白酶或者荧光标记的核酸,增加了检测的成本和反应体系的复杂性。因此,有必要构建一种简单、经济、快速的检测铜离子的生物传感器。
     真核生物基因组主要携带两种遗传学信息,一类是传统意义上的遗传信息,即DNA序列所携带的遗传信息,另一类指的是表观遗传学信息,不涉及DNA序列的改变,是可逆的并且可遗传的基因表达调控。组蛋白甲基化修饰是一种重要的表观遗传学机制,通常发生在组蛋白N末端赖氨酸和精氨酸残基上,具有广泛的生物学功能,与异染色质的形成、X染色体失活、转录调节、干细胞的维持和分化以及肿瘤的形成有关,这往往取决于组蛋白被甲基化的位置和甲基化的程度。近年来,伴随着表观遗传学的发展,一些检测组蛋白甲基化的技术随之产生,如染色质免疫共沉淀技术,或与PCR和生物芯片联合使用,以及western blot。这些检测方法准确可靠,但操作复杂,工作量大,因此,构建一种操作简便的生物传感器用于组蛋白甲基化的快速检测十分必要。
     本论文基于具有催化活性的脱氧核糖核酸酶构建了两种用于铜离子检测的生物传感器,包括以DNA自组装的非酶扩增荧光生物传感器以及基于点击化学和G四聚体的比色生物传感器;以单链DNA标记的胶体金为信号增强探针,构建了一种新型的信号增强的试纸条生物传感器,可用于组蛋白甲基化的快速检测。具体包括以下三方面的内容:
     (1)利用自组装的双链DNA串联体和SYBR Green Ⅰ染色法构建了非酶扩增的铜离子检测方法。反应机制基于铜离子能够特异性地识别并切断与铜离子依赖型DNA酶链杂交的底物链,释放出的靶核酸能够启动DNA自组装为长的双链DNA, SYBR Green Ⅰ染色后检测荧光强度。实验中,检测信号的放大不需要使用蛋白酶,实验操作简单方便。对铜离子的检测限为12.8pM,远低于美国环境保护局规定的饮用水中最大允许量20gM。
     (2)利用基于点击化学和具有辣根过氧化物酶活性的G四聚体的比色法构建了一种铜离子快速检测生物传感器。在反应体系中使用点击化学使修饰有叠氮基团和炔基基团的两条DNA序列形成G四聚体形成序列,之后加入高铁血红素和KCl,形成高铁血红素/G四聚体结构。由于高铁血红素/G四聚体具有HRP的活性,能催化其无色底物3,3’,5,5’-四甲基联苯胺(Tetramethylbenzidine, TMB)形成有颜色的底物,实验结果通过肉眼就能判别。定量分析时,将反应终溶液转移到酶标板中,用酶标仪读取溶液在450nm的光密度(Optical density, OD)值。对铜离子检测限为5.9nM,远低于美国环境保护局规定的饮用水中铜离子浓度的最大允许浓度20μM。检测体系简单迅速,特异性好,不受其他物质的干扰,结果肉眼可读,适合在基层实验室使用。
     (3)使用核酸标记的胶体金作为信号增强探针,构建了一种信号增强的试纸条生物传感器可用于组蛋白甲基化的快速、灵敏检测。传感器中用到了两种带有不同标记的胶体金颗粒:包括标记有单链DNA的金颗粒(信号增强探针)和同时标记有单链c-DNA和单克隆抗体的金颗粒(双标金颗粒),其中DNA的序列与c-DNA互补。实验时,首先通过双抗夹心法捕获蛋白,在检测线上形成三明治夹心复合物的结构,即抗体-蛋白-双标的金颗粒,则检测线因为胶体金颗粒的聚集而显红色。接着,再加入信号增强探针,这种金颗粒通过DNA和c-DNA的杂交而被固定在检测线区域,此时有更多的胶体金聚集,检测线的显色被加深。HeLa细胞中的组蛋白H3K9m3(tri-methylated lysine9of histone H3)被选来作为信号增强的试纸条检测的模型。实验结果表明,此方法在20ng的HeLa细胞组蛋白提取液中就能检测到H3K9me3,比传统的试纸条和western blot的灵敏度分别提高了10倍和15倍。并且这种信号增强的试纸条生物传感器具有普遍适用性,可以用来检测其他类型的组蛋白甲基化,如单甲基化、二甲基化和三甲基化的H3K4和H3K9,以及各种不同的物质,如核酸,蛋白,病毒,微生物和小分子等。
Copper ion (Cu2+) is one of the essential micronutrient elements for human life, and the concentration level of Cu2+directly affects human's health. As an essential micronutrient element, Cu2+is a necessary cofactor or structural component of numerous enzymes and proteins (such as superoxide dismutase, cytochrome oxidase, dopamine beta hydroxylase, tyrosinase, and ceruloplasmin) needed in metabolic processes, and only trace amount of Cu2+in the human body is able to maintain normal life activities. However, a lower or higher concentration of Cu2+can cause adverse health effects. For instance, in copper deficiency state, accompanied by the lack of other nutrients and excessive intake its biological antagonists, the activity of the enzymes and cell metabolism can be influenced. And a higher concentration of Cu2+retained in the body was usually caused by genetic diseases or the environment pollution, intaking too many foods containing copper or inhaled the gas containing high concentration of copper ion. Both of atmospheric and water pollution by Cu2+can eventually cause soil pollution, which further affects the yields and quality of crops. Copper ion accumulated in the crops and animals was taken into the body through the food chain expansion process step by step, resulting severely harm to human health. The liver is an important place to store copper ions and help Cu2+releasing into the bile, as a consequence, excessive Cu2+will affect the normal metabolism of liver and kidney, causing gastrointestinal disturbance and hemolytic anemia as well as loss of cognition in the elderly and individuals with Wilson's disease. Hence, considerable efforts have been devoted to the detection of copper ion due to the high concentration of copper ion has high toxicity on human health, ecosystem and food safe. The maximum level of Cu2+in drinking water permitted by the U.S. Environmental Protection Agency (EPA) is20μM.
     Classical approaches for the detection of Cu2+, such as graphite furnace atomic absorption spectrometry and inductive coupled plasma atomic emission spectroscopy, have been used as standard procedures. However, the requirement of costly instruments and highly trained personnel prevent their use in many laboratories. Some new methods and technologies, including fluorescence methods, colorimetric method based gold nanoparticles, and dynamic light scattering technique, et al., have been developed in recent years. Although these methods are effective, the use of DNA ligase and fluorophore labeled oligonucleotides is not only expensive but also increases the complexity of the assay. Hence, the development of an inexpensive and sensitive method for Cu2+detection is urgently needed.
     Eukaryotic genome carrys two kinds of genetic information, one is the nucleic acid sequence carrying genetic information in the conventional sense, the other is epigenetic information, which mainly refers to the reversible and heritable variation of gene function without DNA sequence changes. Histone methylation is an important epigenetic modification, and the commonly modified residues are lysine (K) and arginine (R) at the N-terminal tails of core histones. Previous studies have shown that histone methylation plays important roles in the formation of heterochromation, X-chromosome inactivation, transcriptional regulation, maintenance and differentiation of stem cells, and tumorigenesis, all of which depend on the degree and position of histone methylation. Some new techniques for histone methylation detection emerged in recent years with the development of epigenetics, such as western blot, ChIp (chromatin immunoprecipitation), or ChIp combines with PCR and microarray. These strategies are accurate and reliable except for the tedious operation and heavy workload. Hence, it is necessary to develop a much more simple method for the rapid detection of histione methylation.
     This paper describes two biosensors for Cu2+detection making full use of the catalytic activity of DNAzyme, including a fluorescence biosensor based on self-assembled DNA concatamers for signal amplification, and a colorimetric biosensor using Cu+-catalyzed click chemistry and hemin/G-quadruplex DNAzyme. An enhanced strip biosensor using DNA functionalized gold nanoparticles as an enhancer probe for rapid and sensitive detection of histone methylation was also constructed. Three research themes are included in this paper and listed as follows:
     (1) An enzyme-free and label-free fluorescence turn on biosensor for amplified Cu2+detection has been constructed based on self-assembled DNA concatamers and SYBR Green Ⅰ. The reaction mechanism is based on the cleavage of Cu2+-specific DNAzyme, the released target DNA triggering the formation of dsDNA concatamers and using SYBR Green I as a signal reporter. The detection limit for Cu2+(12.8pM) is six orders of magnitude lower than the United States EPA limit of Cu2+in drinkable water (20μM). The whole reaction process does not need any protein enzyme and fluorescent-labeled DNA, making the system more simple and cost-effective.
     (2) The accurate and rapid detection of Cu2+using Cu+-catalyzed click chemistry and hemin/G-quadruplex horseradish peroxidise (HRP)-mimicking DNAzyme by the naked eye without using typically bulky instruments was developed. The reaction mechanism is based on the formation of a G-quadruplex-forming sequence using Cu+-promoted click chemistry between azide-and alkyne-modified short G-rich sequences, followed by the self-assembly of hemin/G-quadruplex DNAzyme in the presence of hemin and K+in aqueous solution. This G-quadruplex DNAzyme can catalyze its colorless substrate TMB into a colored product. Hence, the whole process of color change of the solution can be monitored by the naked eye. For quantitative analysis, the resulting yellow solution was transferred into a96-well microtiter plate. The optical density (OD) value of the yellow solution at450nm in each well was recorded using a microplate reader. The LOD of our strategy (5.9nM) is much lower than the EPA limit of Cu2+in drinkable water (20μM). In comparison with previously reported Cu2+-specific DNAzyme/substrate based methods for Cu2+detection, the presence of Cu2+can be evaluated by the naked eye, and the whole reaction process does not need long manipulation time and complicated procedure, making the system more simple and convenient.
     (3) An enhanced strip biosensor using DNA functionalized gold nanoparticles (AuNP-DNA) as an enhancer probe for rapid and sensitive detection of histone methylation has been successfully constructed. Another dual labeled AuNPs used in this assay was functional ized with an antibody and another oligonucleotide (c-DNA) simultaneously. The sequence of the c-DNA is complementary to the DNA on the enhancer probe. The mechanism of the enhanced biosensor is based on the formation of an antibody/target/dual labelled AuNP sandwich structure on the test zone, and a red band can be observed firstly, then AuNPs-DNA solution was added onto the strip to hybridize with the c-DNA on the surface of dual labelled AuNPs. In this case, the red band on the test zone and control zone deepened significantly due to accumulation of more AuNPs. Tri-methylated lysine9of histone H3(H3K9me3) in HeLa cells was chosen as our target. With this biosensor, we can visually detect H3K9me3in20ng of histone extract from HeLa cells in15min without instrumentation, which is10-fold and15-fold lower detection limit than the conventional strip biosensor and western blot, respectively. In addition, the principle of the enhanced strip biosensor can be applied to detect other types of histone methylation, such as mono-, di-or tri-methylated H3K4and H3K9, as well as other analytes, such as nucleic acids, proteins, virus, microorganisms, and small molecules.
引文
Agalave SG, Maujan SR, Pore VS.2011. Click chemistry:1,2,3-triazoles as pharmacophores. Chem Asian J.6:2696-2718.
    Andersen ES, Dong M, Nielsen MM, et al.2009. Self-assembly of a nanoscale DNA box with a controllable lid. Nature,459:73-76.
    Babich H, Stotzky G.1980. Environmental factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms. Crit Rev Microbiol,8:99-145.
    Bannister AJ, Kouzarides T.2005. Reversing histone methylation. Nature,436:1103-1106.
    Berger SL.2002. Histone modifications in transcriptional regulation.Curr Opin Genet Dev, 12:142-148.
    Braig M, Lee S, Loddenkemper C, et al.2005. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature,436:660-665.
    Brewer GJ.2009. The Risks of Copper Toxicity Contributing to Cognitive Decline in the Aging Population and to Alzheimer's Disease. J Am Coll Nutr,28:238-242.
    Brewer GJ.2012. Copper excess, zinc deficiency, and cognition loss in Alzheimer's disease. Biofactors,38:107-113.
    Chan MS, Huan SD.2000. Direct determination of cadmium and copper in seawater using a transversely heated graphite furnace atomic absorption spectrometer with Zeeman-effect background corrector.Talanta,51:373-380.
    Chen JH, Zhou XM, Zeng LW.2013. Enzyme-free strip biosensor for amplified detection of Pb2+ based on a catalytic DNA circuit. Chem Commun (Camb),49,984-986.
    Chen JK, Liu H, Liu J, et al.2012. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat Genet,45:34-42.
    Chen X, Hong CY, Lin YH, et al.2012. Enzyme-free and label-free ultrasensitive electrochemical detection of human immunodeficiency virus DNA in biological samples based on long-range self-Assembled DNA nanostructures. Anal Chem,84:8277-8283.
    Chung CH, Kim JH, Jung J, et al.2013. Nuclease-resistant DNA aptamer on gold nanoparticles for the simultaneous detection of Pb2+and Hg2+in human serum. Biosens Bioelectron,41: 827-832.
    Elgin SC, Grewal SI.2003. Heterochromatin:silence is golden. CurrBiol,13:R895-R898.
    Erben CM, Goodman RP,Turberfield AJ.2007. A self-assembled DNA bipyramid. J Am Chem Soc,129:6992-6993.
    Fang ZY, Ge CC, Zhang WJ, et al.2011. Lateral flow nucleic acid biosensor for Cu2+ detection in aqueous solution with high sensitivity and selectivity. Biosens Bioelectron,27:192-196.
    Fang ZY, Huang J, Lie PC, et al.2010. Lateral flow nucleic acid biosensor for Cu2+ detection in aqueous solution with high sensitivity and selectivity. Chem Commun,46:9043-9045.
    Fan X, White RJ, Zuo XL, et al.2010. An Electrochemical Supersandwich Assay for Sensitive and Selective DNA Detection in Complex Matrices. J Am Chem Soc,132:14346-14348.
    Feser J, Tyler J.2011.Chromatin structure as a mediator of aging. FEBS Lett,585:2041-2048.
    Fischle W, Tseng BS, Dormann HL, et al.2005. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature,438:1116-1122.
    Forneris F, Binda C, Vanoni MA, et al.2005. Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS Lett,579:2203-2207.
    Fu GL, Chen WW, Yue XL, et al.2013. Highly sensitive colorimetric detection of Organophosph-ate pesticides using copper catalyzed click chemistry. Talanta,103:110-115.
    Ge CC, Chen JH, Wu W, et al.2013. An enzyme-free and label-free assay for copper (Ⅱ) ion detection based on self-assembled DNA concatamers and Sybr Green Ⅰ. Analyst, 138:4737-4740.
    Georgopoulos PG, Roy A, Yonone-Lioy MJ, et al.2001. Environmental copper:its dynamics and human exposure issues. J Toxicol Environ Health, Part B,4:341-394.
    Goodman RP, Schaap IA,Tardin CF, et al.2005.Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science,310:1661-1665.
    Hartung R.1973. Biological effects of heavy metal pollutants in water. Adv Exp Med Biol,40: 161-172.
    Hao YL, Guo QQ, Wu HY, et al.2013. Amplified colorimetric detection of mercuric ions through autonomous assembly of G-quadruplex DNAzyme nanowires. Biosens Bioelectron, 52:261-264.
    He HP, Lehming N.2003. Global effects of histone modifications. Briefing in functional genomics.2:234-243.
    He YQ, Zeng K, Zhang SQ, et al.2012. Visual detection of gene mutations based on isothermal strand-displacement polymerase reaction and lateral flow strip. Biosens Bioelectron, 31:310-315.
    He YQ, Zhang SQ, Zhang XB, et al.2011.Ultrasensitive nucleic acid biosensor based on enzyme-gold nanoparticle dual label and lateral flow strip biosensor. Biosens Bioelectron,26: 2018-2024.
    Helms B, Mynar JL, Hawker CJ, et al.2004. Dendronized Linear Polymers via "Click Chemistry". J Am Chem Soc,126:15020-15021.
    Huang JH, Zheng QB, Kim JK, et al.2013. A molecular beacon and graphene oxide-based fluorescent biosensor for Cu2+ detection. Biosens Bioelectron,43:379-383.
    Huang Y, Greene E, Stewart TM, et al.2007. Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes. PNAS,104: 8023-8028.
    Huisgen R.1984.1,3-Dipolar Cycloaddition Chemistry (Ed. Padwa A). NY:Wiley,1-176. Jeong YJ, Park K, Kim DE.2009. Isothermal DNA amplification in vitro:the helicase-dependent amplification system.Cell Mol Life Sci,66:3325-3336.
    Jo JY, Lee HY, Liu WJ, et al.2012. Reactivity-based detection of copper (Ⅱ) ion in water: oxidative cyclization of azoaromatics as fluorescence turn-on signaling mechanism. J Am Chem Soc,134:16000-16007.
    Kim J, Easley CJ.2011.Isothermal DNA amplification in bioanalysis:strategies and applications. Bioanalysis.3:227-239.
    Kodama H, Murata Y.1999. Molecular genetics and pathophysiology of Menkes disease. Pediatr Int.41:430-435.
    Kokura KJ, Sun LD, Bedford MT, et al.2010.Methyl-H3K9-binding protein MPP8 mediates E-cadherin gene silencing and promotes tumour cell motility and invasion. EMBO J,29:3673-3687.
    Kolb HC, Finn MG, Sharpless KB.2001. Click chemistry:diverse chemical function from a few good reactions. Angew Chem Int Ed,40:2004-2021.
    Kolb HC, Sharpless KB.2003. The growing impact of click chemistry on drug discovery. Drug Discov Today,8:1128-1137.
    Kong DM, Ma YE, Guo JH, et al.2009. Fluorescent sensor for monitoring structural changes of G-quadruplexes and detection of potassium ion. Anal Chem,81:2678-2684.
    Lachner M, O'Sullivan RJ, Jenuwein T.2003. An Epigenetic Road Map for Histone Lysine Methylation. J Cell Sci,116:2117-2124.
    Lee JH, Wang ZD, Liu JW, et al.2008. Highly sensitive and selective colorimetric sensors for uranyl (UO2(2+)):development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. J Am Chem Soc,130:14217-14226.
    Lewis WG, Green LG, Grynszpan F.2002.Click chemistry in situ:acerylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks.Angew Chem Int Ed,41:1053-1057.
    Li H, Huang XX, Kong DM, et al.2013. Ultrasensitive, high temperature and ionic strength variation-tolerant Cu2+ fluorescent sensor based on reconstructed Cu2+-dependent DNAzyme/substrate complex. Biosens Bioelectron,42:225-228.
    Li J, Lu Y.2000. A highly sensitive and selective catalytic DNA biosensor for lead ions. J Am Chem Soc,122:10466-10467.
    Li T, Dong SJ, Wang EK.2009. Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based DNAzymes.Anal Chem,81:2144-2149.
    Li ZH, Wang Y, Wang J, et al.2010. Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal Chem,82:7008-7014.
    Lin H, Walsh CT.2004. A chemoenzymatic approach to glycopeptide antibiotics. J Am Chem Soc,126:13998-14003.
    Lin H, Zou Y, Huang Y, et al.2011. DNAzyme crosslinked hydrogel:a new platform for visual detection of metal ions.Chem Commun,47:9312-9314.
    Link AJ, Tirrell DA.2003.Cell surface labeling of Escherichia coli via copper (I)-catalyzed [3+2] cycloaddition. J Am Chem Soc,125:11164-11165.
    Lin C, Ke Y, Chhabra R, Sharma J, et al.2011. Methods Mol Biol,749:1-11.
    Lin HX, Zou Y, Huang YS, et al.2011. DNAzyme crosslinked hydrogel:a new platform for visual detection of metal ions. Chem Commun,47:9312-9314.
    Liu JW, Lu Y.2007. A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity. J Am Chem Soc,129:9838-9839.
    Liu JW, Lu Y.2007. Colorimetric Cu2+detection with a ligation DNAzyme and nanoparticles. Chem Commun,4872-4874.
    Liu M, Zhao HM, Chen S, et al.2011. A "turn-on" fluorescent copper biosensor based on DNA cleavage-dependent graphene-quenched DNAzyme. Biosens Bioelectron,26:4111-4116.
    Liu CY, Jia QJ,Yang CH, et al.2011. Lateral Flow Immunochromatographic Assay for Sensitive Pesticide Detection by Using Fe3O4 Nanoparticle Aggregates as Color Reagents. Anal Chem, 83:6778-6784.
    Liu GD, Mao X, Phillips JA, et al.2009. Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal Chem,81:10013-10018.
    Liu GD, Lin YY, Wang J, et al.2007. Disposable Electrochemical Immunosensor Diagnosis Device Based on Nanoparticle Probe and Immunochromatographic Strip. Anal Chem,79: 7644-7653.
    Margeridon S, Carrouee-Durantel S, Chemin I, et al.2008.Rolling circle amplification, a powerful tool for genetic and functional studies of complete hepatitis B virus genomes from low-level infections and for directly probing covalently closed circular DNA. Antimicrob Agents Chemother,52:3068-3073.
    Mao X, Ma YQ, Zhang AG, et al.2009. Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal Chem,81:1660-1668.
    Martel N,Gomes SA,Chemin I, et al.2013.Improved rolling circle amplification (RCA) of hepatitis B virus (HBV) relaxed-circular serum DNA (RC-DNA). J Virol Methods,193:653-659.
    Martin C, Zhang Y.2005. The Diverse Functions of Histone Lysine Methylation. Nat Rev,6: 838-849.
    Mazumdar D, Liu JW, Lu G., et al.2010. Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle-DNAzyme conjugates. Chem Commun,46, 1416-1418.
    Mercer JF.1998. Menkes syndrome and animal models. Am J Clin Nutr,67:1022S-1028S.
    Miao XM, Ling LS, Cheng D, et al.2012. A highly sensitive sensor for Cu2+with unmodified gold nanoparticles and DNAzyme by using the dynamic light scattering technique. Analyst, 137:3064-3069.
    Miao XM, Ling LS, Cheng D, et al.2012. A highly sensitive sensor for Cu2+with unmodified gold nanoparticles and DNAzyme by using the dynamic light scattering technique. Analyst, 137:3064-3069.
    Michael AJ.1893. Ueber die Einwirkung von Diazobenzolimid auf cetylendicarbonsuremhyle-ster.Prakt Chem,48:94-95.
    Mitchell JC, Harris JR, Malo J, et al.2004. Self-assembly of chiral DNA nanotubes. J Am Chem Soc,126:16342-16343.
    Mondal S, Venkataraman V.2007. Novel fluorescence detection technique for non-contact temperature sensing in microchip PCR. J Biochem Biophys Methods,70:773-777.
    Morrison TB, Weis JJ, Wittwer CT.1998. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques,24:954-958.
    Moses JE, Moorhouse AD.2007. The growing applications of click chemistry. Chem Soc Rev. 36:1249-1262.
    Parolo C, Escosura-Munoniz ADL, Merkocci A.2013. Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosens Bioelectron,40:412-416.
    Pelossof G, Tel-Vered R, Elbaz J, et al.2010. Amplified biosensing using the horseradish peroxidase-mimicking DNAzyme as an electrocatalyst.Anal Chem,82:4396-4402.
    Peters AH, O'Carroll D, Scherthan H, et al.2001. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell,107:323-337.
    Peterson CL, Laniel MA.2004. Histones and histone modifications. Curr Biol,14:R546-R551.
    Pien S, Grossniklaus U.2010. Chromatin immunoprecipitation protocol for histone modifications and protein-DNA binding analyses in Arabidopsis. Methods Mol Biol, 631:209-20.
    Pizarro F, Olivares M, Uauy R, et al.1999. Acute gastrointestinal effects of graded levels of copper in drinking water. Environ Health Perspect,107:117-121.
    Pinheiro I, Margueron R, Shukeir N, et al.2012. Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell,150:948-60.
    Pushie MJ, Vogel HJ.2009.A potential mechanism for Cu2+reduction, beta-cleavage, and beta-sheet initiation within the N-terminal domain of the prion protein:insights from density functional theory and molecular dynamics calculations.J Toxicol Environ Health A.72:1040-1059.
    Qiu SY, Xie LD, Gao S, et al.2011. Determination of copper (Ⅱ) in the dairy product by an electrochemical sensor based on click chemistry. Anal Chim Acta,707:57-61.
    Qu WS, Liu YY, Liu DB, et al.2011. Copper-mediated amplification allows readout of immunoassays by the naked eye. Angew Chem Int Ed Engl,50:3442-3445.
    Rodriguez-Collazo P, Leuba SH, Zlatanova J.2009. Robust methods for purification of histones from cultured mammalian cells with the preservation of their native modifications. Nucleic Acids Res,37:e81.
    Roembke BT, Nakayama S, Sintim HO.2013. Nucleic acid detection using G-quadruplex amplification methodologies. Methods,64:185-198.
    Rostovtsev VV, Green LG, Fokin VV, et al.2002. A stepwise huisgen cycloaddition process: Copper(Ⅰ)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew Chem, 114:2708-2711.
    Sayed SY, Bayat A, Kondratenko M, et al.2013. Bilayer Molecular Electronics:All-Carbon electronic junctions containing molecular Bilayers Made with "Click" Chemistry. J Am Chem Soc,135:12972-12975.
    Saleh A, Alvarez-Venegas R, Avramova Z.2008. An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants. Nat Protoc,3: 1018-1025.
    Scheiber I, Dringen R, Mercer JF.2013.Copper:effects of deficiency and overload. Met Ions Life Sci,13:359-87.
    Scheiber IF, Mercer JF, Dringen R.2014. Metabolism and functions of copper in brain. Prog Neurobiol. pii:S0301-0082 (14) 00012-4.
    Schroeder HA, Nason AP, Tipton IH, et al.1966. Essential trace metals in man:copper. J Chronic Dis,19:1007-1034.
    Schuster-B(o|")ckler B, Lehner B.2012.Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature,488:504-507.
    Seeman, Nadrian C.2004. Nanotechnology and the double helix. Sci Am,290:64-75.
    Seeman, Nadrian C.2010. Nanomaterials based on DNA. Annu Rev Biochem,79:65-87.
    Sen D, Gilbert W.1988.Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature,334:364-366.
    Seo TS, Li Z, Ruparel H, et al.2003.Click chemistry to construct fluorescent oligonucleotides for DNA sequencing. J Org Chem,68:609-12.
    Sharpless KB, Manetsch R.2006. In situ click chemistry:a powerful means for lead discovery. Expert Opin Drug Discov,1:525-538.
    Shen QP, Li WH, Tang SY, et al.2013. A simple "clickable" biosensor for colorimetric detection of copper (Ⅱ) ions based on unmodified gold nanoparticles Biosens Bioelectron,41:663-668.
    Shen QP, Tang SY, Li WH, et al.2012. A novel DNA-templated click chemistry strategy for fluorescent detection of copper (Ⅱ) ions. Chem Commun,48:281-283.
    Shen QP, Zhou LF, Yuan YJ, et al.2014. Intramolecular G-quadruplex structure generated by DNA-templated click chemistry:"Turn-on" fluorescent probe for copper ions. Biosens Bioelectron,55:187-194.
    Shimron S, Wang F, Orbach R, et al.2012. Amplified detection of DNA through the enzyme-free autonomous assembly of hemin/G-quadruplex DNAzyme nanowires. Anal Chem,84: 1042-1048.
    Singh S, Chow VT, Chan KP, et al.2000. RT-PCR, nucleotide, amino acid and phylogenetic analyses of enterovirus type 71 strains from Asia. J Virol Methods,88:193-204.
    Singh S, Chow VT, Phoon MC, et al.2002. Direct detection of enterovirus 71 (EV71) in clinical specimens from a hand, foot, and mouth disease outbreak in Singapore by reverse transcription-PCR with universal enterovirus and EV71-specific primers. J Clin Microbiol, 40:2823-2827.
    Soufi A, Donahue G, Zaret KS.2012. Facilitators and impediments of the pluripotency reprogramming factors'initial engagement with the genome. Cell,151:994-1004.
    Strausak D, Mercer JF, Dieter HH, et al.2001. Copper in disorders with neurological symptoms: Alzheimer's, Menkes, and Wilson diseases. Brain Res Bull,55:175-185.
    Su J, Xu J, Chen Y, et al.2013. Sensitive detection of copper (Ⅱ) by a commercial glucometer using click chemistry. Biosens Bioelectron,45:219-222.
    Tang D, Sauceda JC, Lin Z, et al.2009. Magnetic nanogold microspheres-based lateral-flow immunodipstick for rapid detection of aflatoxin B2 in food. Biosens Bioelectron,25:514-518.
    Tang J, Hou L, Tang DP, et al.2012. Hemin/G-quadruplex-based DNAzyme concatamers as electrocatalysts and biolabels for amplified electrochemical immunosensing of IgGl. Chem Commun,48:8180-8182.
    Travascio P, Witting PK, Mauk AG, et al.2001. The peroxidase activity of a hemin DNA oligonucleotide complex:free radical damage to specific guanine bases of the DNA. J Am Chem Soc,123:1337-1348.
    Tombelli S, Minunni M, Mascini M.2005. Analytical applications of aptamers. Biosens Bioelectron,20:2424-2434.
    Tornoe CW, Christensen C, Meldal M.2002.Peptidotriazoles on solid phase:[1,2,3]-triazoles by regiospecific copper (i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem,67:3057-3064.
    U. S. EPA. Maximum contaminant level goals and national primary drinking water regulations for lead and copper; final rule. Fed Reg 1991,56,26460-26564.
    Vitzthum F, Geiger G, Bisswanger H, et al.1999. A Quantitative fluorescence-based microplate assay for the determination of double-stranded DNA using SYBR Green I and a standard ultraviolet transilluminator gel imaging system. Anal Biochem,276:59-64.
    Wang Q, Chan TR., Hilgraf R, et al.2002. Bioconjugation by copper (I)-catalyzed azide-alkyne [3+2] cycloaddition. J Am Chem Soc,125:3192-3193.
    Wang Q, Chan TR, Hilgraf R, et al.2003. Bioconjugation by copper (I)-catalyzed azide-alkyne [3+2] cycloaddition.J Am Chem Soc,125:3192-3193.
    Wang WD, Fu AF, You JS, et al.2010.Squaraine-based colorimetric and fluorescent sensors for Cu2+-specific detection and fluorescence imaging in living cells.Tetrahedron,66:3695-3701.
    Wang Y, Yang F, Yang XR.2010. Label-free colorimetric biosensing of copper (II) ions with unimolecular self-cleaving deoxyribozymes and unmodified gold nanoparticle probes. Nanotechnology,21:205502.
    Wigle TJ, Provencher LM, Norris JL, et al.2010. Accessing protein methyltransferase and demethylase enzymology using microfluidic capillary electrophoresis. Chem Biol, 17:695-704.
    Wu P, Feldman AK, Nugent AK, et al.2004. Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper (Ⅰ)-catalyzed ligation of azides and alkynes. Angew Chem Int Ed Engl,43:3928-3932.
    Xianyu YL, Zhu K, Chen WW, et al.2013. Enzymatic assay for Cu (Ⅱ) with horseradish peroxidase and its application in colorimetric logic gate. Anal Chem,85:7029-7032.
    Xiao Z, Lie PC, Fang ZY, et al.2012. A lateral flow biosensor for detection of single nucleotide polymorphism by circular strand displacement reaction. Chem Commun,48:8547-8549.
    Xu H, Mao X, Zeng QX, et al.2009. Aptamer-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for protein analysis. Anal Chem,81,669-675.
    Xu XY, Daniel WL, Wei W, et al.2010. Colorimetric Cu2+ detection using DNA-modified gold-nanoparticle aggregates as probes and click chemistry. Small,6:623-626.
    Yang J, Hoffmeister D, Thorson JS.2004. Natural product glycor and omization. Bioorg Med Chem,12:1577-1584.
    Yang XY, Gu YS, Bi S, et al.2009. Ultrasensitive enhanced chemiluminescence enzyme immunoassay for the determination of a-fetoprotein amplified by double-codified gold nanoparticles labels. Biosens Bioelectron,24:2707-2711.
    Yao ZY, Yang YB, Chen XL, et al.2013. Visual detection of copper (Ⅱ) ions based on an anionic polythiophene derivative using click chemistry. Anal Chem,85:5650-5653.
    Ye L, Fan ZP, Yu B, et al.2012. Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs. Cell Stem Cell,11:50-61.
    Yin BC, Ye BC, Tan WH, et al.2009. An allosteric dual-DNAzyme unimolecular probe for colorimetric detection of copper (Ⅱ). J Am Chem Soc,131:14624-14625.
    Yin BC, Zuo P, Huo H, et al.2010. DNAzyme self-assembled gold nanoparticles for determination of metal ions using fluorescence anisotropy assay. Anal Biochem,401:47-52.
    Yin P, Choi MT, Calvert CR, et al.2008. Programming biomolecular self-assembly pathways. Nature,451:318-322.
    Zeng W, de Greef JC, Chen YY, et al.2009. Specific loss of histone H3 lysine 9 trimethylation and HPl gamma/cohesin binding at D4Z4 repeats is associated with facioscapulohumeral dystrophy (FSHD). Plos Genet,5, e1000559.
    Zipper H, Brunner H, Bernhagen J, et al.2004. Investigations on DNA intercalation and surface binding by SYBR Green Ⅰ, its Structure Determination and Methodological Implications. Nucleic Acids Res,32:e103.
    Zhang DY, Seelig G.2011.Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem,3:103-113.
    Zhang Q, Cai Y, Li H, et al.2012. Sensitive dual DNAzymes-based sensors designed by grafting self-blocked G-quadruplex DNAzymes to the substrates of metal ion-triggered DNA/RNA-cleaving DNAzymes. Biosens Bioelectron,38:331-336.
    Zhang YW, Seeman NC.1994. Construction of a DNA-truncated octahedron. J Am Chem Soc, 116:1661-1669.
    Zhou Y, Wang SX, Zhang K, et al.2008. Visual detection of copper (II) by azide-and alkyne-functionalized gold nanoparticles using click chemistry. Angew Chem, Int Ed Engl,47: 7454-7456.
    Zhu K, Zhang Y, He S, et al.2012. Quantification of proteins by functionalized gold nanoparticles using click chemistry. Anal Chem,84:4267-4270.
    艾文龙,程楠,韩咏竹。2013。细胞内铜稳态的分子调控机制研究进展。安徽医药,17:724-726。
    崔德杰,张玉龙。2004。土壤重金属污染现状与修复技术研究进展。土壤通报,35:366-370。
    陈琳,石乃恩,钱妍,等。2010.点击化学与功能有机/聚合物材料。化学进展,22:406-416。
    陈燃,蒋雨平。2006。铜蓝蛋白的代谢扣低铜蓝蛋白血症的临床表现。中国临床神经科学,14:86-89。
    党西强。2012。肝豆状核变性的肾脏表现和治疗方法。临床肾脏病杂志,12:491-493。
    方宾,王伦。1995。微分电位溶出法连测血清中铜铅镉锌。理化检验:化学分册。31:271-273。
    高正,刘浩。2009。谷胶病患者血清铜、血浆铜蓝蛋白和尿铜含量的评价。国外医学:医学地理分册,12-15。
    洪文艳,杨瑞馥,唐博恒。2011。纳米颗粒在免疫层析试纸检测技术中的应用.医学综述,17:2017-2019。
    李方,郑怀礼。2004。卟啉配合物-巯基棉体系分光光度法测定中药中铅、镉、铜。光谱学与光谱分析,24:197-199。
    李娟,段明,张烈辉等。2007。点击化学及其应用.化学进展,19:1755-1759。
    李培峰,方允中。1993。过氧化氢对铜锌超氧化物歧化酶活性及某些理化性质的影响。9:411-416。
    刘伟兵。2005。血、尿中金属毒物的电感耦合等离子发射光谱检测方法。刑事技术。13-16。
    罗璇,林丹,孙玉婷。2009。点击化学简介。化学教育,30:3-5。
    连祥霖。1993。锌对汞、铜致甲状腺毒性的拮抗作用。福建医学院报,27:150-151。
    毛德寿。1984。化学元素的生物拮抗作用。生命的化学,8-9。
    马福荣,贾乐,杨凤苓。2008。富集微量元素钼的研究及在微生物中的应用。生物技术通报,54-56。
    邱素艳,高森,林振宇等。2011。点击化学最新进展。化学进展,23:638-648。
    史廷明,黄方经。1989。微量元素锌、铜与心血管疾病。国外医学。心血管疾病分册,303-306。
    王敖金,徐建兴。2003。细胞色素c氧化酶薄膜中还原型双铜簇的MLCT吸收带的辨认。科学通报,48:243-245。
    王俊蜂,廖祥儒,付伟。2002。生物的核酶及其功能。生物学通报。(07):17-20。
    吴茂江,涂长信。2005。铜与人体健康。微量元素与健康研究,22:64-65。
    汪世平,余路新,车宏莉。2009。检测日本血吸虫病胶体碳试纸条的研制与初步应用。中南大学学报:医学版,34:1063-1069。
    吴训贤。1989。铜缺乏及其营养干扰。国外医学:医学地理分册,102-105。
    杨坡,王选年,李敬玺。2006。氨基酸螯合铜在动物生产中的应用。动物医学进展。27:46-50。
    袁勤生,邓碧玉,杨曜中。1993。超氧化物歧化酶活性中心中铜离子的氧化还原研究。生物化学杂志,7:275-278。
    颜世铭,1995。铜与机体防御机制。环境与开发,10:4-7。
    余育胜,王槐堂,郑曦.。2008。抗凝剂EDTA-K2对胶体硒免疫层析试验的影响。中国艾滋病性病,14:60-61。
    张策,庄惠生,柿井。2010。二价铜离子与抗坏血酸共存下的杀菌效果及其机理。环保科技,2:31-45。
    赵辉,彭明,曾会才。2006。核酶的特征及技术研究进展。热带作物学报,(02):112-118。
    张立德,牟季美。1998。纳米结构自组装和分子自组装体系。物理,28:22-26。
    赵庆令,李清彩,高玉花。2009。电感耦合等离子体发射光谱法测定钼矿石中钻铬铜钼镍铅锡钨钇锌。岩矿测试。28:488-490。
    张悟铭,钟时明。1989。流动注射—邻菲罗啉协同催化化学发光法测定痕量的铜。分析化学,17:922-924。