用户名: 密码: 验证码:
隧道施工含水构造激发极化定量超前地质预报理论及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国已经成为世界上隧道(洞)修建数量最多、规模最大、发展速度最快的国家,与此同时,复杂的地质条件和频发的地质灾害成为地下工程施工期面临的巨大挑战。其中,突涌水灾害给隧道(洞)施工带来了巨大的经济损失、重大的人员伤亡与恶劣的社会影响,对地表及隧址区水资源和生态环境造成了不可修复的破坏。突涌水灾害源(含水地质构造)的超前探测理论与技术已经成为隧道等地下工程建设亟待解决的关键科学难题。针对以上难题,提出多同性源阵列激发极化超前探测新方法,并对孔中阵列激发极化观测模式进行探讨,以含水构造的三维反演成像与水量预测的相关理论、方法为目标内容,并引入约束联合反演思想,以基于约束联合反演的综合超前探测方法为结合点,形成多同性源阵列激发极化法隧道含水构造超前探测综合定量识别方法,并在物理模型试验与现场工程中得到应用,取得一系列的研究成果:
     (1)针对传统激发极化探测方法存在旁侧干扰严重,且无法适用于TBM (Tunnel Boring Machine全断面隧道掘进机)施工隧道的问题,提出了激发极化超前探测的多同性源阵列型新观测模式,揭示了多同性源电极供电的后向屏蔽与前向聚焦作用机制,并对孔中阵列激发极化观测方式进行了探讨,优选出了最佳阵列电极观测方式,揭示了激发极化法对典型含水地质构造的响应特征,提高了抗旁侧干扰能力与超前探测能力,从多同性源观测模式与孔中阵列观测模式的技术特点来看,其可同时适用于钻爆法与TBM施工环境。
     (2)针对线性反演方法对初始模型依赖性大、非线性方法搜索效率低的问题,基于观测数据加权函数与模型深度加权函数,提出了基于加权函数的最小二乘反演方法;同时,将电阻率光滑约束与轨迹光滑约束引入到蚁群反演中,提高了蚁群算法的搜索效率,建立了线性反演方法与非线性反演方法相结合的混合反演方法,解决了由于隧道掌子面狭小探测空间而导致反演深度分辨率差的难题,实现了隧道含水构造的三维反演成像。
     (3)针对多解性这一地球物理探测固有难题,采用已知地质体形态信息作为先验约束的思想,研究已知先验信息约束联合反演模型构制方法与约束反演方法,提出了空间形态约束反演与空间结构约束反演方法,将地震波法、电磁法以及地质分析方法确定地质体形态作为已知先验信息约束,并施加到激发极化约束反演方程中,形成了以激发极化约束联合反演为载体的隧道综合超前探测方法,实现了对多个含水构造边界识别、三维形态刻画,为降低隧道超前地质探测中的多解性,实现多元地球物理信息融合与联合反演找到一条可行有效的途径。
     (4)研制了多路大电流恒流供电与多通道同步采集的激发极化仪器—GEI综合电法仪,实现了6路大电流恒流输出与8通道数据同步采集;研发了满足多地球物理场超前探测模拟的相似材料,开发了兼容多种地球物理探测方法的大型综合超前探测试验装置,尺寸长17m×宽8.4m×高6.7m,可模拟溶洞、暗河、断层等多种含水地质构造探测,满足地震波法、电磁法、电法等多种地球物理方法探测的要求。
     (5)针对含水构造水量定量探测难题,基于电化学与传质动力学基本理论,建立激发极化电场-浓度场-离子流场耦合关系方程,研究岩石孔隙模型中离子浓度的不同时刻的运移规律,阐明了激发极化二电流半衰时之差探测水量的微观机理;通过开展典型含水构造超前探测物理模型试验,揭示了激发极化衰减特性与含水体水量的相关关系,建立了激发极化隧道含水构造超前探测水量估算模型与方法。
     (6)综合隧道激发极化法三维反演成像方法与水量估算方法,形成了激发极化法隧道含水构造超前探测综合定量识别方法,研究成果应用于宜巴高速马家坡隧道、石门垭隧道等工程实践中,验证了激发极化隧道含水构造超前探测综合定量识别方法与技术的有效性与实用性。
Nowadays China has already developed into a country which has the greatest number and largest scale of tunnels, as well as, the fastest growing pace, in the meanwhile, its complicated geological condition and frequent geological disasters have become a great challenge for underground construction period as well. Water inrush brings enormous loss to economy, vital injury to personnel, adverse impact to the society, and irreparable damage to surface and tunnel zone water source and the environment. Advanced forecast theory and technology of water inrush and mud burst disaster source (geological water-bearing structure) have become the key urgent scientific problems, which need to be solved for tunnel construction. To solve the above problems, Advanced forecast theory and technology of water inrush and mud burst disaster source (geological water-bearing structure) have become a key scientific problem which urgently needs to be resolved. To solve the problems above, new multi-isotropic source array and hole-array induced polarization advanced forecast method, which with the core content of relevant theory and method of3D imaging and water forecast for water-bearing structure, has been proposed. Constrained joint inversion ideology has been involved in the theory, which combines with comprehensive advanced forecast method based on constrained joint inversion. Multi-isotropic source array induced polarization advanced forecast comprehensive quantitative recognition method has formed which is for water-bearing structure during construction, and has been applied in physical model test and field engineering. A range of innovative research results have been achieved:
     (1) According to the problem that traditional induced polarization forecast method may seriously interference the flank and is not available for TBM tunnel construction, new multi-isotropic source array induced polarization advanced forecast method is put forward. Multi-isotropic source mechanism that shielding interference behind and focusing on the front of the tunnel face is revealed. And hole-array induced polarization is also investigated. The response characteristics of typical geological water-bearing structure has been developed, and optimum way of array electrode observation has been revealed. Anti interference and advanced forecast ability are increases, which is suitable for drilling and blasting method and TBM method tunnel.
     (2) To solve the problem that the linear inversion method is sensitive to initial model and low search efficiency of non-linear method, the least squares inversion method has been put forward based on observational data weighted function and model depth weighted function. At the same time, introducing resistivity smooth constraint and track smooth constraint to the ant colony inversion has improved the latter's search efficiency, established the method which combines linear and non-linear method, the tough problem that poor depth resolution for narrow tunnel face forecast space inversion, hence, has been worked out.3D inversion imaging of water-bearing structure in tunnel has been realized.
     (3) To solve the inherent geophysical detection problem of multiplicity of solution, spatial structure constrained inversion method has been suggested, by using the ideology of taking known information as priori constraint. Studying constrained joint inversion model construct method with known priori information, spatial shape and structure constraint inversion method are put forward. By using the deterministic result generated from seismic wave method, electromagnetic method and geological analysis method as known priori constraint information, and adding its result into induced polarization constrained inversion equation, the tunnel comprehensive advanced forecast method on the carrier of induced polarization constrained joint inversion is established. Multiple water-bearing structure boundary identification and3D shape characterization be realized. It provides a practical method to simplify multiple geophysical data information fusion and joint inversion.
     (4) Induced polarization instrument-GEI comprehensive electric instrument has been successfully developed. Multi-channel high constant current technology and multi-channel synchronous acquisition technology have been realized. Therefore, six-channel high constant current output and eight-channel synchronous data acquisition are realized. Multiple geophysical fields' similar material is developed. Large-scale comprehensive advanced forecast test device, compatible with a variety of geophysical detection methods, has been developed. Dimensions is17m (length)×8.4m (width)×6.7m (height). This platform can simulate caves, underground rivers and faults etc. multiple geological water-bearing structure detection, and multiple geophysical detection requests can be satisfied, like seismic method, electromagnetic method and electric method.
     (5) To solve the tough problem of water-bearing structure quantitative detection of water, induced polarization electric field, concentration field, ion flow field coupling equation is established based on the electrochemical and mass transfer kinetics theories. Migration law of ion concentration in pore model is studied, it is revealed that microscopic mechanism of induced polarization water detection based on half-life time difference of the two current. Through carrying out typical water-bearing structure advanced detection physical model test, the relationship between induced polarization attenuation characteristics and water volume of water-bearing structure is revealed. The model and method of water-bearing structure quantitative forecast of water are established based on induced polarization method.
     (6) Comprehensive induced polarization3D inversion imaging method and water forecast method,3D position and water forecast tunnel technology system is established. Research achievements have been used in Yiba highway Majiapo tunnel, Shimenya tunnel engineering prediction. The feasibility and applicability of the identification method and technology, which is comprehensive advanced forecast for water-bearing structure in tunnel based on induced polarization method, is validated.
引文
[1]Q.H.Qian. New Development of Rock Engineering and Technology in China[C]. Harmonising Rock Engineering and the Environment-Proceedings of 12th ISRM International Congress on Rock Mechanics, Beijing, Taylor & Francis Group,2011:57-61.
    [2]LA.Hudson. The Next 50 Years of the ISRM and Anticipated Future Progress in Rock Mechanics[C]. Harmonising Rock Engineering and the Environment-Proceedings of 12th ISRM International Congress on Rock Mechanics, Beijing, Taylor & Francis Group, 2011:47-51.
    [3]钱七虎.地下工程建设安全面临的挑战与对策[J].岩石力学与工程学报,2012,31(10):1945-1956.
    [4]李术才,李树忱,张庆松等.岩溶裂隙水与不良地质情况超前预报研究[J].岩石力学与工程学报.2007,26(02):217-225.
    [5]李术才,薛翊国,张庆松,等.高风险岩溶地区隧道施工地质灾害综合预报预警关键技术研究[J].岩石力学与工程学报.2008,27(07):1297-1307.
    [6]Shucai Li, Shuchen Li, Qingsong Zhang, et al. Predicting geological hazards during tunnel construction [J]. Journal of Rock Mechanics and Geotechnical Engineering,2010,2(3): 232-242.
    [7]钱七虎,李朝甫,傅德明.隧道掘进机在中国地下工程中应用现状及前景展望[J].地下空间,2002,(01):1-11+93.
    [8]张镜剑,傅冰骏.隧道掘进机在我国应用的进展[J].岩石力学与工程学报,2007,(02):226-238.
    [9]苏华友,张继春,史丽华.TBM通过不良地质地段的施工技术[J].岩石力学与工程学报.2005,24(09):1635-1638.
    [10]尚彦军,杨志法,曾庆利,等.TBM施工遇险工程地质问题分析和失误的反思[J].岩石力学与工程学报.2007,26(12):2404-2411.
    [11]Jung-Woo Cho, Seokwon Jeon, Ho-Young Jeong, Soo-Ho Chang. Evaluation of cutting efficiency during TBM disc cutter excavation within a Korean granitic rock using linear-cutting-machine testing and photogrammetric measurement [J]. Tunnelling and Underground Space Technology,2013(35):37-54.
    [12]李术才,刘斌,李树忱,等.基于激发极化法的隧道含水地质构造超前探测研究[J].岩石力学与工程学报,2011,30(7):1297-1309.
    [13]刘斌.基于电阻率法与激电法的隧道含水地质构造超前探测与突水灾害实时监测研究[博士学位论文][D].济南:山东大学,2010.
    [14]荆志东.特长隧道地质超前预报方法研究[J].铁道勘察.2005(3):46-47.
    [15]赵永贵.中国工程地球物理研究的进展与未来[J].地球物理学进展,2002,17(2):301-304.
    [16]薛翊国,李术才,苏茂鑫,等.青岛胶州湾海底隧道含水断层综合超前预报实践[J].岩石力学与工程学报,2009,28(10):2081-2087.
    [17]王华,吴光,冯涛,等.渝怀线圆梁山隧道超前地质钻探预报技术应用研究[J].铁道建筑,2007,2:36-38.
    [18]刘志刚,刘秀峰.TSP(隧道地震勘探)在隧道隧洞超前预报中的应用与发展[J].岩石力学与工程学报,2003,22(8):1399-1402.
    [19]Alimoradi A, Moradzadeh A, Naderi R, et al. Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks [J]. Tunnelling and Underground Space Technology.2008,23(6):711-717.
    [20]曾昭璜.隧道地震反射法超前预报[J].地球物理学报,1994,37(2):218-230.
    [21]Richard Otto, Edward Button, Hetfried Bretterebner, et al. The Application of TRT-Ture Reflection Tomogaphy-at the Unterwald Tunnel [J]. Geophysics,2002,20(2):51-56.
    [22]Zhao Yonggui, Jiang Hui, Zhao Xiaopeng. Tunnel seismic tomography method for geological prediction and its application [J].Applied Geophysics,2006, (02):69-74+130.
    [23]赵永贵.国内外隧道超前预报技术评析与推介[J].地球物理学进展,2007,22(4):1344-1352.
    [24]钟世航,孙宏志,王荣,等.陆地声纳法在隧道施工时预报断层、溶洞的效果[J].隧道建设,2007,(S2):21-25.
    [25]钟世航,孙宏志,李术才,等.隧道及地下工程施工中岩溶裂隙水及断层、溶洞等隐患的探查、预报[J].岩石力学与工程学报,2012,31(supp1):3298-3327.
    [26]Lee I, Hung Truong Q, Kim D, et al. Discontinuity detection ahead of a tunnel face utilizing ultrasonic reflection:Laboratory scale application [J]. Tunnelling and Underground Space Technology.2009,24(2):155-163.
    [27]Sattel, G., Frey, P., and Amberg, R., Prediction ahead of the tunnel face by seismic methods—Pilot project in Centovalli tunnel, Locarno, Switzerland [J]. First Break,1992,10, 19-25.
    [28]张霄,李术才,张庆松,等.大型地下含水体对地震波特殊反射规律的现场正演试验研究[J].地球物理学报,2011,54(5):1367-1374.
    [29]刘斌,李术才,李树忱,等.复信号分析技术在地质雷达预报岩溶裂隙水中的应用[J].岩土力学,2009,30(7):2191-2196.
    [30]吴俊,毛海和,应松,等.地质雷达在公路隧道短期地质超前预报中的应用[J].岩土力学,2003,24 supp:154-157.
    [31]凌同华,张胜,李升冉.地质雷达隧道超前地质预报检测信号的HHT分析法[J].岩石力学与工程学报,2012,31(7):1422-1428.
    [32]曾昭发,刘四新,王者江,等.探地雷达方法原理与应用[M].北京:科学出版社,2006.
    [33]Caroline Dorn, Niklas Linde, Joseph Doetsch, Tanguy Le Borgne, Olivier Bour. Fracture imaging within a granitic rock aquifer using multiple-offset single-hole and cross-hole GPR reflection data [J]. Journal of Applied Geophysics,2012(78):123-132.
    [34]Evert Slob, Motoyuki Sato, and Gary Olhoeft. Surface and borehole ground-penetrating-radar developments [J].GEOPHYSICS,2010,75(5):103-120.
    [35]Li X, Xue G, Song J, et al. Application of the Adaptive Shrinkage Genetic Algorithm in the Feasible Region to TEM Conductive Thin Layer Inversion [J]. Applied Geophysics.2005, 2(04):204-210.
    [36]Sun Huaifeng, Li Xiu, Li Shucai, et al. Multi-component and multi-array TEM detection in karst tunnels[J]. Journal of Geophysics and Engineering.2012,9(4):359-373.
    [37]M.E. Best, P. Duncan, F.J. Jacobs, et al, Numerical modeling of the electromagnetic response of three-dimensional conductors in a layered earth. GEOPHYSICS,2008.50(4):665-676.
    [38]李貅,薛国强,刘银爱,等.瞬变电磁合成孔径成像方法研究[J].地球物理学报,2012,55(1):333-340.
    [39]苏茂鑫,李术才,李貅,等.隧道掌子面前方低阻夹层的瞬变电磁探测研究[J].岩石力学与工程学.2010,46(s1):2645-2650.
    [40]于景邮,刘树才,王扬州.巷道内金属体瞬变电磁响应特征及处理技术[J].煤炭学报,2008,33(12):1403-1407.
    [41]王鹰,陈强,魏有仪,等.红外线探测技术在圆梁山隧道突水预报中的应用[J].岩石力学 与工程学报,2003,22(5):855-857.
    [42]黄忆龙.红外线探水法在隧道超前探水预报中的应用[J].煤炭技术,2007,26(4):126-127.
    [43]何发亮,郭如军,李苍松,等.岩体温度法隧道施工掌子面前方涌水预报[M].成都:西南交通大学出版社,2009.
    [44]Guido Kneib, Andreas Kassel, Klaus Lorenz. Automatic seismic prediction ahead of the tunnel boring machine [J]. First Break,2000,18(7):295-302.
    [45]Petronio, L. and Poletto, F. "Seismic-while-drilling by using tunnel-boring-machine noise," Geophysics,67,2002,1798-1809.
    [46]Petronio, L., Poletto, F., and Schleifer, A. "Interface prediction ahead of the excavation front by the tunnel-seismic-while-drilling (TSWD) method," Geophysics,72(4),2007, G39-G44.
    [47]Borm, G., Giese, R., Otto, P., Amberg, F. and Dickmann, Th. Integrated Seismic Imaging System for Geological Prediction During Tunnel Construction [C]. In Proc. Intern. Symposium Series S33 ISRM-2003 Technology roadmap for rock mechanics,South African Institute of Mining and Metallurgy,137-142.
    [48]Kaus, A. and Boening, W. BEAM-Geoelectrical Ahead Monitoring for TBM-Drives [J]. Geomechanics and Tunneling,1(5),2008,442-450.
    [49]高振宅.Beam地质超前预报系统在锦屏引水隧洞TBM施工中的应用[J].铁道建筑技术报,2009,1(2):65-57.
    [50]朱劲,李天斌,李永林,等.Beam超前地质预报技术在铜锣山隧道中的应用[J].工程地质报,2007,15(2):258-262.
    [51]Schlumberger, C., Etude sur la prospection electrique du sous-sol. Gauthier-Villars er Cie., Paris,1920.
    [52]张赛珍,等译.地球物理勘探专辑第7辑-电法勘探(激发极化法)[M].北京:中国工业出版社,1965.
    [53]何继善.双频激电法[M].北京:高等教育出版社,2005.
    [54]傅良魁.激发极化法[M].北京:地质出版社,1982.
    [55]程久龙,王玉,和,于师建,等.巷道掘进中电阻率法超前探测原理与应用[J].煤田地质与勘探,2000,28(4):60-62.
    [56]张平松,刘盛东,曹煜.坑道掘进立体电法超前预报技术研究[J].中国煤炭地质,2009,21(2):50-53.
    [57]黄俊革,阮百尧,王家林.坑道直流电阻率法超前探测的快速反演[J].地球物理学报,2007,50(2):619-624.
    [58]黄俊革,王家林,阮百尧.坑道直流电阻率法超前探测研究[J].地球物理学报,2006,49(5):1529-1538.
    [59]刘斌,李术才,李树忱,等.隧道含水构造直流电阻率法超前探测研究[J].岩土力学,2009,30(10):3093-3100.
    [60]聂利超,李术才,刘斌,等.隧道激发极化法超前探测快速反演研究[J].岩土工程学报,2012,34(2):222-229.
    [61]聂利超,李术才,李树忱,等.隧道含水构造频域激发极化法超前探测研究[J].岩土力学.2012,33(4):1151-1160.
    [62]强建科,阮百尧,周俊杰,等.煤矿巷道直流三极法超前探测的可行性[J].地球物理学进展,2011,26(1):320-326.
    [63]阮百尧,邓小康,刘海飞,等.坑道直流电阻率超前聚焦探测新方法研究[J].地球物理学报,2009,52(1):289-296
    [64]阮百尧,邓小康,刘海飞,等.坑道直流电阻率超前聚焦探测的影响因素及最佳观测方式[J].地球物理学进展,2010,25(4):1380-1386.
    [65]张力,阮百尧,吕玉增,等.坑道全空间直流聚焦超前探测模拟研究[J].地球物理学报,2011,04:1130-1132+1134-1139.
    [66]强建科,阮百尧,周俊杰.三维坑道直流聚焦法超前探测的电极组合研究[J].地球物理学报,2010,53(3):695-699.
    [67]李振宇,潘玉玲,张兵,许顺芳,袁照令,李大明,顾涛.利用核磁共振方法研究水文地质问题及应用实例[J].水文地质工程地质.2003(04),50-54.
    [68]林君,段清明,王应吉.核磁共振找水仪原理与应用[M].北京:科学出版社,2011.
    [69]易晓峰,李鹏飞,林君,等.基于多匝环形线圈的核磁共振信号响应计算与试验研究[J].地球物理学报,2013,56(7),2484-2493.
    [70]Greben J M, Meyer R, Kimmie Z. The underground application of magnetic resonance sounding [J]. Journal of applied geophysics,2011,75(2):220-226.
    [71]林婷婷,万玲,曲永星,等.隧道超前探测准全空间磁共振理论及应用[J].中国有色金属学报,2013,23(9):2413-2421.
    [72]Vacquier, V., Holmes, C., Kintzinger, P., and Lavergne, M. Prospecting for ground water by induced electrical polarization[J]. GEOPHYSICS,1957,22(3),660-687.
    [73]K. Titov, A. Kemna, A. Tarasov, and H. Vereecken. Induced polarization of unsaturated sands determined through time domain measurements[J]. VADOSE ZONE Journal,2004, 3:1160-1168.
    [74]Andreas Hordt, Roland Blaschek, Andreas Kemna, and Norbert Zisser. Hydraulic conductivity estimation from induced polarization data at the field scale-the Krauthausen case history[J]. Journal of Applied Geophysics,2007,62:33-46.
    [75]A. Ghorbani, Ph. Cosenza, A. Revil, et al. Non-invasive monitoring of water content and textural changes in clay-rocks using spectral induced polarization:A laboratory investigation[J]. Applied Clay Science,2009,43:493-502.
    [76]Tong, M., Li, L., Wang, W., and Jiang, Y. Determining capillary-pressure curve, pore-size distribution, and permeability from induced polarization of shaley sand [J], GEOPHYSICS, 2006,71(3), N33-N40.
    [77]童茂松,王伟男,范清华,等.利用激发极化弛豫时间谱确定渗透率的实验研究[J].吉林大学学报(地球科学版),2004,34(4):625-629.
    [78]谢明魁.二次时差法探测地下水[J].物化探计算技术,1987,9(4):331-337.
    [79]谢明魁,刘永炳.地下水探测仪二次时差法[J].铁道工程学报,1993,2:58-60.
    [80]Petrick, W.R., Sill, W.R., and Ward, S.H., Three dimensional resistivity inversion using alpha centers [J]. Geophysics,1981,46(8):1148-1163.
    [81]Shima, H., Two-dimensional automatic resistivity inversion technique using alpha centers [J]. Geophysics,1990,55(6):682-694.
    [82]Shima, H.,2-D and 3-D resistivity image reconstruction using crosshole data [J]. Geophysics, 1992,57(10):1270-1281.
    [83]Loke, M.H. and Barker, R.D., Improvement to the Zohdy Method for the Inversion of Resistivity Sounding and Pseudosection Data[J]. Computer & Gepsciences,1995, 21(2):321-332.
    [84]王兴泰,李晓芹.电阻率图像重建的佐迪(Zohdy)反演及其应用效果[J].物探与化探,1996,20(3):228-233.
    [85]Li, Y, Oldenburger, D.W., Approximate inverse mappings in DC resistivity problem[J]. Geophysical Journal International,1992,109,343-362.
    [86]Li, Y., Oldenburger, D.W., Inversion of 3-D DC resistivity data using an approximate inverse mapping[J]. Geophysical Journal International,1994,116,527-537.
    [87]Park, S. K., and Van, G.., Inversions of pole-pole data for 3-D resistivity structure beneath arrays of electrodes Geophysics[J].1991,56(7):951-960.
    [88]Sasaki Y.3-D resistivity inversion using the finite-element method [J]. Geophysics,1994,59 (11):1839-1848.
    [89]Oldenburg, D.W., Li, Y., Inversion of induced polarization data Geophysics [J].1994, 59(9):1327-1341.
    [90]Li, Y, Oldenburg, D. W.,3-D inversion of induced polarization data Geophysics [J].2000, 65(6):1931-1945.
    [91]Weller, A., Frangos, W., Seichter, M., Three-dimensional inversion of induced polarization data from simulated waste Journal of Applied Geophysics [J].2000,44:67-83.
    [92]Zhang J., Mackie R.L. Madden T.R., Three-dimensional resistivity forward modeling and inversion using conjugate gradients [J]. Geophysics,1995,60(5):1313-1325.
    [93]吴小平.利用共轭梯度方法的电阻率三维正、反演研究[博士学位论文][D].合肥:中国科学技术大学,1998.
    [94]吴小平,徐果明.电阻率三维反演中偏导数矩阵的求取与分析[J].石油地球物理勘探,1999,34(4):363-372.
    [95]吴小平,汪彤彤.电阻率三维复杂结构的快速反演[J].煤田地质与勘探,2001,29(2):48-52.
    [96]底青云,王妙月.积分法三维电阻率成像[J].地球物理学报,2001,44(6):843-852.
    [97]阮百尧.视电阻率对模型电阻率的偏导数矩阵计算方法[J].地质与勘探,2001,37(6):39-41.
    [98]黄俊革.三维电阻率/极化率有限元正演模拟与反演成像[博士学位论文][D].长沙:中南大学,2003.
    [99]刘斌,李术才,李树忱,等.基于不等式约束的最小二乘法三维电阻率反演及其算法优化[J].地球物理学报,2012,55(1):260-268.
    [100]刘斌,李术才,聂利超,等.隧道含水构造直流电阻率法超前探测三维反演成像[J].岩土工程学报,2012,34(10):1866-1876.
    [101]黄俊革,阮百尧,鲍光淑.基于有限单元法的三维地电断面电阻率反演[J].中南大学学报(自然科学版),2004,35(2):295-299.
    [102]宛新林,席道瑛,高尔根,等.用改进的光滑约束最小二乘正交分解法实现电阻率三维反 演[J].地球物理学报,2005,48(1):439-444.
    [103]刘斌,李术才,聂利超,等.基于自适应加权光滑约束与PCG算法的三维电阻率探测反演成像[J].岩土工程学报,2012,34(9):1646-1653.
    [104]Adam Pidlisecky, Eldad Haber, and Rosemary Knight.RESINVM3D:A 3D resistivity inversion package [J]. GEOPHYSICS,2007,72(2):H1-H10.
    [105]吴小平,徐果明.利用共轭度法的电阻率三维反演研究[J].地球物理学报,2000,43(3):420-426.
    [106]Hee Joon Kim, Yoonho Song, and Ki Ha Lee. Inequality constraint in least-squares inversion of geophysical data. Earth Planets Space,1999,51,255-259.
    [107]Li, Y., and D. W. Oldenburg., Fast inversion of large-scale magnetic data using wavelet transforms and logarithmic barrier method:Geophysical Journal International,2003,152, 251-265.
    [108]Raghu K. Chunduru, Mrinal K. Sen, Paul L. Stoffa.2-D resistivity inversion using spline parameterization and simulated annealing[J],GeoPhysics,1996,61,(1):151-161.
    [109]卢元林,王兴泰,王若,等.电阻率成像反演中的模拟退火方法[J].地球物理学报,1999,42(s1):225-233.
    [110]Ho-Chan Kim, Chang-Jin Boo, and Yoon-Joon Lee. Image reconstruction using simulated annealing algorithm in EIT[J]. International Journal of Control,Automation, and Systems, 2005,3(2):211-216.
    [111]F. A. Monteiro Santos, S. A. Sultan, Patricia Represas and A. L. EI Sorady. Joint inversion of gravity and geoelectrical data for groundwater and structural investigation:application to the northwestern part of Sinai, Egypt[J]. Geophysical Journal International,2006,165(3): 705-718.
    [112]张卫国,匡伶俐.高密度电阻率法二维层析成像研究与应用[J].煤田地质与勘探,2008,36(2):55-57.
    [113]Gad El-Qady, Keisuke Ushijima. Inversion of DC resistivity data using neural networks[J]. Geophysical Prospecting,2001,49:417-430.
    [114]徐海浪,吴小平.电阻率二维神经网络反演[J].地球物理学报,2006,49(2):584-589.
    [115]Ahmad Neyamadpour, Samsudin Taib, W. A. T. Wan Abdullah. Using artificial neural networks to invert 2D DC resistivity imaging data for high resistivity contrast regions:A MATLAB application[J]. Computers & Geosciences,2009,35(11):2268-2274.
    [116]U. K. Singh, R. K. Tiwari, and S. B. Singh.Inversion of 2-D DC resistivity data using rapid optimization and minimal complexity neural network[J].Nonlinear Processes in Geophysics,2010,17:65-76.
    [117]Ahmad Neyamadpour, W. A. T. Wan Abdullah, Samsudin Taib. Inversion of quasi-3D DC resistivity imaging data using artificial neural networks[J]. Journal of Earth System Science,2010,119(1):27-40.
    [118]王兴泰,李晓芹,孙仁国.电测深曲线的遗传算法反演[J].地球物理学报,1996,39(2):279-285.
    [119]R. Olmi, M. Bini, and S. Prior. A Genetic Algorithm Approach to Image Reconstruction in Electrical Impedance Tomography[J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,2000,4(1):83-88.
    [120]Christoph Schwarzbach, Ralph-Uwe Borner and Klaus Spitzer. Two-dimensional inversion of direct current resistivity data using a parallel, multi-objective genetic algorithm[J]. Geophysical Journal International,2005,162(3):685-695.
    [121]闫永利,陈本池,赵永贵,等.电阻率层析成像非线性反演[J].地球物理学报,2009,52(3):758-764.
    [122]B. Liu, S.C. Li a, L.C. Nie, et al.3D resistivity inversion using an improved Genetic Algorithm based on control method of mutation direction[J]. Journal of Applied Geophysics, 2012,87:1-8.
    [123]Colorni A, Dorigo M, Maniezzo V. Dist ributed optimization by ant colonies[A]. Proc of the First European Conference on artificial Life[C]. Paris, France:Elsevier Publishing,1991. 134-142.
    [124]Colorni A, Dorigo M, Maniezzo V. An investigation of some properties of an ant aigorithm[A]. Proc of the parallel problem Solving from Nature Conference (PPSN'92) [C]. Brussels, Blegium:Elsevier Publishing,1992.509-520.
    [125]陈双全,王尚旭,季敏,等.地震波阻抗反演的蚁群算法实现[J].石油物探,2005,44(6):551-553.
    [126]刘双,刘天佑,冯杰,等.蚁群算法在磁测资料反演解释中的应用[J].物探与化探,2013,37(1):150-154.
    [127]Cassio Rodrigo Conti, Mauro Roisenberg, Guenther Schwedersky Neto, et al. Fast Seismic Inversion Methods Using Ant Colony Optimization Algorithm[J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,2013,10(5):1119-1123.
    [128]张凌云,刘鸿福.ABP法在高密度电阻率法反演中的应用[J].地球物理学报,2011,54(1):227-233.
    [129]刘明军,李恒堂,姜在炳.3A-BP神经网络模型在彬长矿区测井岩性识别中的应用[J].煤田地质与勘探,2011,39(4):8-12.
    [130]刘斌,李术才,聂利超,等.隧道含水构造直流电阻率法超前探测三维反演成像[J].岩土工程学报,2012,34(10):1866-1876.
    [131]王梦恕.对岩溶地区隧道施工水文地质超前预报的意见[J].铁道勘查,2004,(1):7-9.
    [132]曲海锋,刘志刚,朱合华.隧道信息化施工中综合超前地质预报技术[J].岩石力学与工程学报.2006,25(06):1246-1251.
    [133]王锦山,王力,曹志刚,等.厦门海底隧道综合超前地质预报实践[J].岩石力学与工程学报.2007,26(11):2309-2317.
    [134]李天斌,孟陆波,朱劲,等.隧道超前地质预报综合分析方法[J].岩石力学与工程学报.2009,28(12):2429-2436.
    [135]Marion D. Jegen, Richard W. Hobbs, Pascal Tarits, et al. Joint inversion of marine magnetotelluric and gravity data incorporating seismic constraints Preliminary results of sub-basalt imaging off the Faroe Shelf[J]. Earth and Planetary Science Letters,2009,282(1): 47-55.
    [136]Maysam Abedi, Seyed Ali Torabi, Gholam-Hossain Norouzi, et al. ELECTRE III:A knowledge-driven method for integration of geophysical data with geological and geochemical data in mineral prospectivity mapping [J]. Journal of Applied Geophysics,2012, 87:9-18.
    [137]Luis A. Gallardo and Max A. Meju. Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data [J]. GEOPHYSICAL RESEARCH LETTERS,2003,30(13):1-1-1-4.
    [138]J P Kaipio, V Kolehmainen, M Vauhkonen, et al. Inverse problems with structural prior information [J]. Inverse Problems,1999,15(3):713-729.
    [139]Yaoguo Li, Douglas W. Oldenburg. Incorporating geological dip information into geophysical inversions [J].GEOPHYSICS,2000,65(1):148-157.
    [140]J. H. Saunders, J. V. Herwanger, C. C. Pain, et al. Constrained resistivity inversion using seismic data [J]. Geophysical Journal International,2005,160 (3):785-796.
    [141]Joseph Doetsch, Niklas Linde, Mirco Pessognelli,et al. Constraining 3-D electrical resistance tomography with GPR reflection data for improved aquifer characterization[J]. Journal of Applied Geophysics,2012,78:68-76.
    [142]Abderrezak Bouchedda, Michel Chouteau, Andrew Binley, et al.2-D joint structural inversion of cross-hole electrical resistance and ground penetrating radar data[J]. Journal of Applied Geophysics,2012,78:52-67.
    [143]刘斌,聂利超,李术才,等.三维电阻率空间结构约束反演成像方法[J].岩石力学与工程学报,2012,31(11):2258-2268.
    [144]王家映.地球物理反演理论[M].北京:高等教育出版社,2002.
    [145]杨文采.地球物理反演的理论与方法[M].北京:地质出版社,1997.
    [146]John A. Scales, Martin L. Smith and Sven Treitel. Introductory Geophysical Inverse Theory [M]. Golden. White River Junction:Samizdat Press,2001.
    [147]Yaoguo Li and Douglas W. Oldenburg.3-D inversion of magnetic data [J]. Geophysics, 1996 61(2):394-408.
    [148]Yaoguo Li and Douglas W. Oldenburg.3-D inversion of gravity data [J]. Geophysics,1998 63(1):109-119.
    [149]傅良魁.电法勘探教程[M].北京:地质出版社,1983.
    [150]张平松,刘盛东,曹煜.坑道掘进立体电法超前预报技术研究[J].中国煤矿地质,2009,21(2):50-53.
    [151]岳建华,李志聃.煤矿井下直流层测深方法与原理[J].煤炭学报,1994,19(4):422-429.
    [152]D. W. Oldenburg, P. R. McGillivray and R. G Ellis. Generalized subspace methods for large-scale inverse problems[J]. Geophys.j.Int.,1993,114:12-20.
    [153]Michael Commer, Gregory A. Newman, Kenneth H. Williams, et al.3D induced-polarization data inversion for complex resistivity [J]. Geophysics,2011,76(3): F157-F171.
    [154]R. G. Ellis and D. W. Oldenburg. The pole-pole 3-D DC-resistivity inverse problem:a conjugate-gradient approach[J]. Geophys. J. Int.,1994,119:187-194.
    [155]段海滨.蚁群算法原理与应用[M].北京:科学出版社,2005.
    [156]Yang Jin-hui, Shi Xiao-hu, Maurizio Marchese, et al. An ant colony optimization method for generalized TSP problem [J]. Progress in Nature Science,2008,18(11):1417-1422.
    [157]李丽香,彭海朋,杨义先,等.基于混沌蚂蚁群算法的Lorenz混沌系统的参数估计[J].物理学报,2007,56(1):51-55.
    [158]HUANG Lan, ZHOU Chun-guang, WANG Kang-ping. Hybrid ant colony algorithm for traveling salesman problem[J]. Progress in Nature Science,2003,13(4):295-299.
    [159]Ronald F. Probstein.物理-化学流体动力学导论[M].戴干策等译.上海:华东化工学院出版社,1992.
    [160]JLA.沙皮罗.岩石的物理-化学性质及其在石油矿场地球物理中的应用.姜恩承等译[M].北京:石油工业出版社,1987.
    [161]关继腾,于华,王谦,等.储层岩石时间域激发极化效应的数学模拟[J].计算物理,2012,29(3):354-360.
    [162]王谦,关继腾,房文静.泥质砂岩激发极化弛豫时间谱微观机理[J].煤田地质与勘探,2010,38(3):61-65.
    [163]范业括.储层岩石电化学特性的毛管模型理论及应用研究[硕士学位论文][D].东营:中国石油大学(华东),2005.
    [164]关继腾,王谦,范业括,等.利用毛管模型研究泥质砂岩电化学测井响应机理[J].地球物理学报,2010,53(1):214-223.
    [165]WANG Hui, XU Ren-Kou, WANG Ning, et al. Soil Acidification of Alfisols as Influenced by Tea Cultivation in Eastern China [J]. PEDOSPHERE,2010,20(6):799-806.
    [166]李金铭,等.激发极化法找水基础理论研究[M].北京:地质出版社,1994.
    [167]郭鹤桐,覃奇贤.电化学教程[M].天津:天津大学出版社,2000.
    [168]傅良魁,刘若谷.时间域非线性激电效应的实验研究[J].桂林冶金地质学院学报,1990,10(2):159-172.
    [169]刘志新,刘树才,刘仰光.矿井富水体的瞬变电磁场物理模型实验研究[J].岩石力学与工程学报,2009,28(2):259-266.
    [170]姜志海,焦险峰.矿井瞬变电磁超前探测物理实验[J].煤炭学报,2011,36(11):1852-1857.
    [171]赵鸿儒,王铁男,唐文榜.中国地球物理模型试验的发展[J].地球物理学报, 1994,37(S1):269-276.
    [172]孙进忠,郭铁栓,唐文榜,等.我国超声地震模型试验的理论研究与实践[J].地球物理学报,1997,40(S1):266-274.
    [173]魏建新,牟永光,狄邦让.三维地震物理模型的研究[J].石油地球物理勘探,2002,37(6):556-561.
    [174]黄润秋,刘卫华.基于正交设计的滚石运动特征现场试验研究[J].岩石力学与工程学报,2009,28(5):882-891.
    [175]刘晶波,赵冬冬,王文晖.土-结构动力离心试验模型材料研究与相似关系设计[J].岩石力学与工程学报,2012,31(S1):3181-3187.
    [176]韩涛,杨维好,杨志江,等.多孔介质固液耦合相似材料的研制[J].岩土力学,2011,32(5):1411-1417.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700