异丙醇—丙酮—氢气化学热泵放热反应器传递及反应性能多尺度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国能源利用效率较低,与发达国家相比还有很大的进步空间,余热回收利用尤其是低温余热回收利用已成为提高能源利用效率、解决能源危机的重要手段。低温余热品位低难以直接利用,大部分被排放造成巨大的能源浪费。最好的利用低温余热的方式是将其温度提升,使之可以被直接利用。如果这一方法得以实现,不但可以大幅度提高能源利用效率,而且可以扩大能源利用的范围,如太阳能、地热能等低温自然能源,有效缓解能源危机。
     化学热泵因其高效率、无污染、低能耗、温度提升幅度高等优点而成为低温热品位提升的首选装置。异丙醇-丙酮-氢气化学热泵(IAH-CHP)则是众多化学热泵中应用潜力较大的一种。它利用一对可逆的化学反应,异丙醇低温(80℃)脱氢发生吸热反应生成丙酮和氢气;丙酮高温(200℃)加氢发生放热反应生成异丙醇,从而将低温热温度提升,使之可以在工业上直接应用。
     本文以锅炉低温烟气余热深度利用为研究背景,采用实验和数值模拟相结合的方法在分子尺度、多孔催化剂尺度、反应器尺度和系统尺度对IAH化学热泵丙酮高温加氢放热反应器传递及反应性能进行了多尺度研究。
     首先在分子尺度上对丙酮高温加氢放热反应进行了动力学实验研究。实验使用非晶态合金雷尼镍催化剂,通过改变空速、操作压力、氢气流量、反应温度等实验条件,对丙酮转化率、异丙醇选择性及反应产物进行了研究。实验确定了丙酮加氢的反应网络,分别对三种不同反应进行了机理研究,在实验数据和合理假设的基础上拟合出对应的Langmuir-Hinshelwood动力学方程,并分析了各操作条件对反应的具体影响。
     其次在多孔催化剂尺度上对化学反应与传热传质在多孔催化剂内的耦合和协同作用进行了数值研究,重点分析了催化剂颗粒内组分扩散对组分分布、温度分布、反应速率、丙酮转化率及异丙醇选择性的影响。模拟结果表明,催化剂微孔直径是扩散系数的决定因素,在催化剂颗粒边缘存在一个很薄的过渡区域,扩散系数及反应速率在此区域梯度十分明显;由于反应发生在催化剂颗粒内部,使得内部温度比外部流体温度稍高;丙酮转化率和异丙醇选择性都随催化剂颗粒直径的增加而增加,随微孔直径的增加而减小;异丙醇产量随催化剂颗粒直径增加而增加,随微孔直径增加先增加后减小。根据模拟结果,本文给出了催化剂颗粒直径和微孔直径的推荐值。
     然后在反应器尺度上对丙酮高温加氢放热反应器传递和反应性能使用Fluent多孔介质非热平衡模型进行了数值研究,分析了催化剂颗粒直径、催化剂导热系数、反应器直径和空速等参数对气固两相传热及丙酮加氢反应的影响。模拟结果表明在本研究中气固两相温差较小,不会对反应产生较大影响;催化剂导热系数和反应器直径对反应器温度场分布具有十分显著的影响,催化剂导热系数的增加能显著增强反应器传热能力,降低反应器温度及径向温差,反应器直径增加则会显著增加反应器温度;空速增加虽然会降低异丙醇选择性和丙酮转化率,但是也会增加异丙醇产量,因此有助于提高系统效率。在反应器性能数值研究的基础上对反应参数进行了优化,综合考虑能量品位、反应热、丙酮转化率与反应温度的关系,确定了最佳反应温度;结合数值模拟结果对比氢气丙酮摩尔比增加产生的丙酮转化率收益及压力损失,确定了最佳氢气丙酮摩尔比。为解决随机填充固定床反应器压力损失大和传热能力差的不足,本文提出一种结构化填充方法,并使用Fluent进行3D模拟,模拟结果表明此结构化填充方法不但可有效降低系统压力损失,而且传热能力更优秀。
     最后在系统尺度上提出了一种新型高效的多级放热反应器串联IAH化学热泵系统。与传统单级放热反应器IAH化学热泵相比,多级放热反应器串联IAH化学热泵的放热量得到了极大的提升,系统焓效率和火用效率也有较大幅度的增加;在放热量相同的情况下,多级放热反应器串联IAH化学热泵的物料流量,催化剂填装量,以及再沸器、增压器和加热器的热负荷都得到了极大幅度的降低,系统焓效率和火用效率都有一定的增加。由于多级串联放热反应器各级放热温度不同,可将各级反应器释放的热量分别用作不同途径,以减少能量混合带来的火用损失。
The energy efficiency in China is much lower than developed countries and many other countries, so there is a lot to do to make the improvement. Waste heat recovery, especially the low-temperature waste heat recovery, is increasingly becoming an important way to enhance energy efficiency and to solve the energy crisis. The low quality of low-temperature waste heat makes it difficult to be used directly, so most is discharged into the air, and hence a large amount of energy is wasted. The best way to take advantage of low-temperature heat is to upgrade its temperature, so the upgraded heat can be used directly. If this measure is realized, not only the enery efficiency can be improved hugely, but also the energy utilization scope can be expand enormously, such as low-temperature natural energy, including solar energy and geothermal energy.
     Chemical heat pump (CHP) is the best choice to upgrade low-temperature heat for the reason of high efficiency, no pollution, low energy consumption, large extent of temperature promotion, and so on. Among many CHPs, Isopropanol-Acetone-Hydrogen (IAH) system is one of the most prospective CHPs. IAH-CHP takes advantage of a pair of reversible chemical reactions, the endothermic isopropanol dehydrogenation reacting at about80℃and the exothermic acetone hydrogenation reacting at about200℃, to upgrade the low quality heat and make it possible to be used directly in industry.
     This dissertation studies the high-temperature exothermic reaction of acetone hydrogenation in IAH-CHP on multi-scales of molecular scale, porous catalyst scale, reactor scale and system scale by adopting both experiment and numerical simulation on the background of deep utilization of low-temperature boiler exhaust gas.
     Firstly, on the molecular scale, the amorphous alloy Raney Ni is used as catalyst for the kinetic experiment of high-temperature acetone hydrogenation, through which the three reaction mechanisms and corresponding products are confirmed, and the Langmuir-Hinshelwood kinetic equation of every reaction are promoted based on the experiment data and reasonable assumptions. The influences of the experimental conditions including space velocity, operating pressure, reaction temperature,and hydrogen flow rate are conducted and analyzed.
     Secondly, on the porous catalyst scale, in order to study the synergistic effect of chemical reaction and heat and mass transfer in porous media, a microscale simulation on porous catalyst particles is carried out. The simulation focuses on the influence of species diffusion on species distribution, temperature field, reaction rate, acetone conversion and isopropanol selectivity. The simulation results show that the micropore diameter is the determinant of diffusion coefficient, and there is a very thin transient zone around the catalyst particle, and both the species diffusion coefficient and the reaction rate gradients in this zone are very sharp. The reactions are taking place inside the catalyst particles, so the temperature is a little higher than the external flow. When the catalyst particle diameter increases, the acetone conversion and the isopropanol selectivity and yield increase. When the micropore diameter increases, the the acetone conversion and isopropanol selectivity decrease, and the isopropanol yield increases firstly and then decreases. According to the simulation results, the recommended values of catalyst particle and micropore are suggested in this dissertation.
     Then on the reactor scale the transfer and reaction performance of reactor is simulated to study the influence of catalyst particle diameter, catalyst thermal conductivity, reactor diameter and space velocity on the gas-solid temperature difference and the reaction by using the non-heat-balance porous media model. According to the simulation results, the gas-solid temperature difference is too little to affect the reaction. A larger catalyst thermal conductivity can enhance the heat transfer capability of the reactor remarkably and reduce its temperature obviously, and a larger reactor diameter will increase the reactor temperature. A larger space velocity will decrease both the acetone conversion and isopropanol selectivity, but can increase the isopropanol yield, so a larger space velocity is beneficial to the system efficiency. Based on the simulation, the best reaction temperature and hydrogen-acetone mole ratio are optimized via theoretical design calculation by analyzing their influences on reaction energy quality, reaction heat amount, acetone conversion and pressure drop. In order to solve the problems of large pressure loss and low heat transfer capability in randomly packed bed reactor, this thesis proposes a structured packed bed reactor and makes3D simulation on the reactor, and the simulation results indicate that this structured packed method can reduce the pressure loss effectively and has a better heat transfer capability.
     At last on the system scale a new high efficient IAH-CHP with multi-in-series exothermic reactors is proposed and studied. Contrasting with traditional IAH-CHP with one single exothermic reactor, this new system gets huge promotion in reaction heat released, and the system performance and exergy efficiency are also improved. At the same amount of heat released, the new system has a sharp decrease in material flow rate and catalyst packing amount, as well as the heat load of reboiler, compressor and heater, so the system performance and exergy efficiency have a certain improvement. Another advantage of the IAH-CHP with multi-in-series exothermic reactors is the heat released from different reactors can be used in different ways to reduce exergy loss produced by energy mixing.
引文
[1]Ajah Augustine N., Patil Anish C., Herder Paulien M., Grievink Johan. Integrated conceptual design of a robust and reliable waste-heat district heating system [J]. Applied Thermal Engineering,2007.27(7):p.1158-1164.
    [2]Ando Yuji, Tanaka Tadayoshi, Doi Takuya, Takashima Takumi. A study on a thermally regenerative fuel cell utilizing low-temperature thermal energy[J]. Energy Conversion and Management,2001.42(15-17):p.1807-1816.
    [3]王宁惠.能量利用的新途径——化学热泵[J].天津理工学院学报,1994.10(3):p.27-34.
    [4]中国科学院学部.我国工业节能现状调研和对策[J].中国科学院院刊,2010.25(3):p.307-308.
    [5]孙小兵.中国降低能耗强度的思路探讨[J].资源与产业,2014.16(1):p.99-103.
    [6]Bp世界能源统计年鉴.2012.
    [7]International Monetary Fund. World economic outlook databases.2013.
    [8]林芃,王如竹,马强.低品位热能的远距离输送技术[J].制冷学报,2009.30(5):p.1-7.
    [9]李海燕,刘静.低品位余热利用技术的研究现状、困境和新策略[J].科技导报,2010.28(17):p.112-119.
    [10]Guo Jiangfeng,Huai Xiulan. The application of entransy theory in optimization design of Isopropanol-Acetone-Hydrogen chemical heat pump[J]. Energy,2012.43(1):p. 355-360.
    [11]孟嘉.工业烟气余热回收利用方案优化研究[D].2008,
    [12]顾起鹤,杨东华.化学热泵中的可逆催化反应[J].能源研究与信息,1992.8(3):p.35-48.
    [13]Bloomquist R. Gordon. Geothermal space heating[J]. Geothermics,2003.32(4-6):p. 513-526.
    [14]Wongsuwan W., Kumar S., Neveu P., Meunier F. A review of chemical heat pump technology and applications[J]. Applied Thermal Engineering,2001.21(15):p. 1489-1519.
    [15]S. Spoelstra W. G. Haije, J. W. Dijkstra. Techno-economic feasibility of high-temperature high-lift chemical heat pumps for upgrading industrial waste heat[J]. Applied Thermal Engineering,2002.22:p.1619-1630.
    [16]Kitikiatsophon Waraporn,Piumsomboon Pornpote. Dynamic simulation and control of an isopropanol-acetone-hydrogen chemical heat pump[J]. ScienceAsia,2004.30:p. 135-147.
    [17]Chung Yonsoo, Kim Beom-Jae, Yeo Yeong-Koo, Song Hyung Keun. Optimal design of a chemical heat pump using the 2-propanol/acetone/hydrogen system[J]. Energy, 1997.22(5):p.525-536.
    [18]Fatma Karaca Olcay Kincay, Esen Bolat. Economic analysis and comparison of chemical heat pump systems[J]. Applied tThermal Engineering,2002.22:p. 1789-1799.
    [19]Raldow Wiktor M.,Wentworth Wayne E. Chemical heat pumps-A basic thermodynamic analysis[J]. Solar Energy,1979.23(1):p.75-79.
    [20]Oguraa Hironao. Energy recycling system using chemical heat pump container[J]. Energy Procedia,2012.14(0):p.2048-2053.
    [21]Ranade Saidas M., Lee Maw-Chwain,William Prengle Jr H. Chemical storage of solar energy kinetics of heterogeneous SO3 and H2O reaction-Reaction analysis and reactor design[J]. Solar Energy,1990.44(6):p.321-332.
    [22]袁银梅.一种新型节能装置_化学热泵[J].节能技术,2008.26(147):p.26-28.
    [23]Spinner B. Ammonia-based thermochemical transformers[J]. Heat Recovery Systems and CHP,1993.13(4):p.301-307.
    [24]Meunier F. Solid sorption heat powered cycles for cooling and heat pumping applications[J]. Applied Thermal Engineering,1998.18(9-10):p.715-729.
    [25]Meunier F. Solid sorption:An alternative to CFCs[J]. Heat Recovery Systems and CHP,1993.13(4):p.289-295.
    [26]Groll M. Reaction beds for dry sorption machines [J]. Heat Recovery Systems and CHP,1993.13(4):p.341-346.
    [27]Kato Yukitaka, Harada Naozumi, Yoshizawa Yoshio. Kinetic feasibility of a chemical heat pump for heat utilization of high-temperature processes [J]. Applied Thermal Engineering,1999.19(3):p.239-254.
    [28]Kawasaki Haruo, Watanabe Takayuki,Kanzawa Atsushi. Proposal of a chemical heat pump with paraldehyde depolymerization for cooling system[J]. Applied Thermal Engineering,1999.19(2):p.133-143.
    [29]Kato Yukitaka, Yamashita Norimichi, Kobayashi Kei, Yoshizawa Yoshio. Kinetic study of the hydration of magnesium oxide for a chemical heat pump[J]. Applied Thermal Engineering,1996.16(11):p.853-862.
    [30]郑丹星.化学热泵及其开发现状[J].化工进展,1988(1):p.16-22.
    [31]Mooksuwan W.,Kumar S. Study on 2-propanol/acetone/hydrogen chemical heat pump: endothermic dehydrogenation of 2-propanol[J]. International Journal of Energy Research,2000.24(12):p.1109-1122.
    [32]Kato Y., Sasaki Y.,Yoshizawa Y. Magnesium oxide/water chemical heat pump to enhance energy utilization of a cogeneration system[J]. Energy,2005.30(11-12):p. 2144-2155.
    [33]Ando Y, Takashima T,Tanaka T. Study on solar chemical heat pump system-basic experiment on falling film reaction of 2-propanol dehydrogenation. in Energy Conversion Engineering Conference,1997. IECEC-97., Proceedings of the 32nd Intersociety.1997. IEEE.
    [34]Ajah A., Mesbah A., Grievink J., Herder P., Falcao P., Wennekes S. On the robustness, effectiveness and reliability of chemical and mechanical heat pumps for low-temperature heat source district heating:A comparative simulation-based analysis and evaluation[J]. Energy,2008.33(6):p.908-929.
    [35]李善森,时铭玉.新型能量回收和储存系统—化学热泵的研究与开发[J].江苏化工,1989(3):p.36-39.
    [36]徐邦裕,陆亚俊,马最良.热泵[M]1988:中国建筑工业出版社.
    [37]Saito Yasukazu, Kameyama Hideo,Yoshida Kunio. Catalyst assisted chemical heat pump with reaction couple of acetone hydrogenation/2-propanol dehydrogenation for upgrading low-level thermal energy:proposal and evaluation[J]. International Journal of Energy Reseach,1987.11:p.549-558.
    [38]Gardie Patricia,Goetz Vincent. Thermal energy storage system by solid absorption for electric automobile geating and air conditioning[J]. Training,1995.2014:p.09-25.
    [39]Poyelle Florence, Guilleminot Jean-Jacques,Meunier Francis. Experimental tests and predictive model of an adsorptive air conditioning unit[J]. Industrial & Engineering Chemistry Research,1999.38(1):p.298-309.
    [40]Goetz Vincent, Elie Frederic, Spinner Bernard. The structure and performance of single effect solid-gas chemical heat pumps[J]. Heat Recovery Systems and CHP,1993. 13(1):p.79-96.
    [41]Neveu P.,Castaing J. Solid-gas chemical heat pumps:Field of application and performance of the internal heat of reaction recovery process [J]. Heat Recovery Systems and CHP,1993.13(3):p.233-251.
    [42]Lebrun M,Neveu P. Conception, simulation, dimensioning and testing of an experimental chemical heat pump[J]. ASHRAE Trans,1992.98(1):p.3483-3495.
    [43]Maizza V.,Maizza A. Working fluids in non-steady flows for waste energy recovery systems[J]. Applied Thermal Engineering,1996.16(7):p.579-590.
    [44]Gandia L. M.,Montes M. Effect of the design variables on the energy performance and size parameters of a heat transformer based on the system acetone/H2/2-propanol[J]. International Journal of Energy Research,1992.16(9):p.851-864.
    [45]傅献彩,沈文霞,姚天扬,侯文华.物理化学(上册)[M].Vol.1.2005:高等教育出版社.499.
    [46]Stoddart C. T. H.,Kemball C. The catalytic hydrogenation of acetone on evaporated metallic films[J]. Journal of Colloid Science,1956.11(4-5):p.532-542.
    [47]Kim Tae Gyung, Yeo Yeong Koo,Song Hyung Keun. Chemical heat pump based on dehydrogenation and hydrogenation of i-propanol and acetone[J]. International Journal of Energy Research,1992.16(9):p.897-916.
    [48]Gaspillo Pag-Asa D., Abella Leonila C.,Goto Shigeo. Dehydrogenation of 2-Propanol in Reactive Distillation Column for Chemical Heat Pump[J]. Journal of Chemical Engineering of Japan,1998.31(3):p.440-444.
    [49]Klinsoda Itikorn,Piumsomboon Pornpote. Isopropanol-acetone-hydrogen chemical heat pump:A demonstration unit[J]. Energy Conversion and Management,2007.48(4): p.1200-1207.
    [50]Goto Shigeo, Hori Kenta, Abella Leonila C., Gaspillo Pag-Asa D. Periodic operation of reactive distillation for dehydrogenation of 2 propanel[J]. ASEAN Journal of Chemical Engineering,2004.4(1):p.1-7.
    [51]Meng N., Shinoda S.,Saito Y. Improvements on thermal efficiency of chemical heat pump involving the reaction couple of 2-propanol dehydrogenation and acetone hydrogenation[J]. International Journal of Hydrogen Energy,1997.22(4):p.361-367.
    [52]Gastauer Paul, Pr, Eacute, Vost Michel. Dehydrogenation of isopropanol at low temperatures in the vapor phase as a reaction for a chemical heat pump[J]. Journal of Chemical Engineering of Japan,1993.26(5):p.580-583.
    [53]Chung Yonsoo, Jeong Hae-Kwon, Song Hyung Keun, Par Won Hee. Modelling and simulation of the chemical reaction heat pump system adopting the reactive distillation process[J]. Computers chem. Engng.,1997.21:p.1007-1012.
    [54]赵国胜,杨伯伦.基于化学热泵系统的叔丁醇脱水反应精馏过程[J].化工学报,2004.55(3):p.384-389.
    [55]Beugre D., Calvo S., Crine M., Toye D., Marchot P. Gas flow simulations in a structured packing by lattice Boltzmann method[J]. Chemical Engineering Science, 2011.66(17):p.3742-3752.
    [56]Gao Xi, Zhu Ya-Ping,Luo Zheng-Hong. CFD modeling of gas flow in porous medium and catalytic coupling reaction from carbon monoxide to diethyl oxalate in fixed-bed reactors[J]. Chemical Engineering Science,2011.66(23):p.6028-6038.
    [57]Uriz I., Arzamendi G., Lopez E., Llorca J., Gandia L. M. Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels[J]. Chemical Engineering Journal,2011.167(2-3):p.603-609.
    [58]Arzamendi G., Dieguez P. M., Montes M., Centeno M. A., Odriozola J. A., Gandia L. M. Integration of methanol steam reforming and combustion in a microchannel reactor for H2 production:A CFD simulation study[J]. Catalysis Today,2009.143(1-2):p. 25-31.
    [59]Gandia L. M., Diaz A.,Montes M. Selectivity in the high-temperature hydrogenation of acetone with silica-supported nickel and cobalt catalysts [J]. Journal of Catalysis, 1995.157(2):p.461-471.
    [60]Yurieva T. M. Mechanisms for activation of hydrogen and hydrogenation of acetone to isopropanol and of carbon oxides to methanol over copper-containing oxide catalysts[J]. Catalysis Today,1999.51(3-4):p.457-467.
    [61]Fuente A. M., Pulgar G., Gonzalez F., Pesquera C, Blanco C. Activated carbon supported Pt catalysts:effect of support texture and metal precursor on activity of acetone hydrogenation[J]. Applied Catalysis A:General,2001.208(1-2):p.35-46.
    [62]Rioux R. M.,Vannice M. A. Hydrogenation/dehydrogenation reactions:isopropanol dehydrogenation over copper catalysts[J]. Journal of Catalysis,2003.216(1-2):p. 362-376.
    [63]Cheng Shueh-Hen, Chang Hsuan, Chen Yih-Hang, Chen Hsi-Jen, Chao Yung-Kang, Liao Yu-Hsiang. Computational fluid dynamics-based multiobjective optimization for catalyst design[J]. Industrial & Engineering Chemistry Research,2010.49(21):p. 11079-11086.
    [64]Pardillos-Guindet J., Metais S., Vidal S., Court J., Fouilloux P. Electrode potential of a dispersed Raney nickel electrode during acetone hydrogenation:Influence of the promoters[J]. Applied Catalysis A:General,1995.132(1):p.61-75.
    [65]Mears David E.,Benson John E. Liquid phase dehydrogenation of isopropanol: Heterogeneous catalysis experiment[J]. Journal of Chemical Education,1966.43(6):p. 325.
    [66]Doi Takuya,Tanaka Tadayoshi. Fundamental study on solar chemical heat pump system:basic experiment on dehydrogenation of 2 propanol[J]. ASME Solar Engineering,1992:p.285-290.
    [67]Mooksuwan Walaiporn. Analysis of a hydrogenation/dehydrogenation system to upgrade heat[J]. Master of Engineering Thesis, Asian Institute of Technology, Thailand,1999.
    [68]Taskin M. Ertan, Troupel Alexandre, Dixon Anthony G., Nijemeisland Michiel, Stitt E. Hugh. Flow, transport, and reaction interactions for cylindrical particles with strongly endothermic reactions[J]. Industrial & Engineering Chemistry Research,2010.49(19): p.9026-9037.
    [69]Dixon Anthony G., Boudreau Justin, Rocheleau Anne, Troupel Alexandra, Taskin M. Ertan, Nijemeisland Michiel, Stitt E. Hugh. Flow, transport, and reaction interactions in shaped cylindrical particles for steam methane reforming[J]. Industrial & Engineering Chemistry Research,2012.51(49):p.15839-15854.
    [70]Behnam Mohsen, Dixon Anthony G., Wright Paul M., Nijemeisland Michiel, Stitt E. Hugh. Comparison of CFD simulations to experiment under methane steam reforming reacting conditions[J]. Chemical Engineering Journal,2012.207-208(0):p.690-700.
    [71]Kato Yukitaka, Nakagawa Nobuyoshi,Kameyama Hideo. Study of chemical heat pump with reaction couple of acetone hydrogenation/2-propanol dehydrogenation. Kinetics of the hydrogenation of acetone.:Kinetics of the Hydrogenation of Acetone[J]. KAGAKU KOGAKU RONBUNSHU,1987.13(5):p.714-717.
    [72]邹盛欧.化学热泵的开发与应用[J].石油化工,1996.25(4):p.294-299.
    [73]邹盛欧.节能设备化学热泵技术[J].化工装备技术,1995.16(2):p.28-34.
    [74]王耀斌,杨容斌,顾树珍,马德垺.镍催化剂上丙酮加氢制异丙醇的研究[J].上海工程技术大学学报,1994.8(1):p.42-48.
    [75]林贵平,袁修干.化学热泵系统研究[J].航空动力学报,1995.10(1):p.56-58.
    [76]王宁惠.关于化学热泵能量效率的评价-异丙醇/氢气/丙酮体系[J].天津理工学院学报,1994.10(4):p.38-45.
    [77]贺岩峰,燕淑春.化学热泵的开发与利用[J].中国能源,1995.5:p.42-43.
    [78]Hochard F., Jobic H., Massardier J., Renouprez A. J. Gas phase hydrogenation of acetonitrile on Raney nickel catalysts:reactive hydrogen[J]. Journal of Molecular Catalysis A:Chemical,1995.95(2):p.165-172.
    [79]Rositani F., Galvagno S., Poltarzewski Z., Staiti P., Antonucci P. L. Kinetics of acetone hydrogenation over Pt/Al2O3 catalysts[J]. Journal of Chemical Technology and Biotechnology. Chemical Technology,1985.35(5):p.234-240.
    [80]Sen Bishwajit,Vannice M. Albert. Metal-support effects on acetone hydrogenation over platinum catalysts[J]. Journal of Catalysis,1988.113(1):p.52-71.
    [81]Simonikova J., Hillaire L., Panek J., Kochloefl K. Kinetik der hydrierung von aceton an metallischen catalysatoren[J]. Zeitschrift fur Physikalische Chemie,1973.83(5_6): p.287-304.
    [82]Simonikova J., Ralkova A.,Kochloefl K. The effect of the structure of aliphatic ketones in their hydrogenation over metal catalysts[J]. Journal of Catalysis,1973. 29(3):p.412-420.
    [83]Gandia Luis M.,Montes Mario. Effect of the reduction temperature on the selectivity of the high temperature reaction of acetone and hydrogen over alumina and titania supported nickel and cobalt catalysts[J]. Journal of Molecular Catalysis,1994.94(3):p. 347-367.
    [84]Hou Kaihu,Hughes Ronald. The kinetics of methane steam reforming over a Ni/a-Al2O catalyst[J]. Chemical Engineering Journal,2001.82(1-3):p.311-328.
    [85]蒋英.水保护型LTH_100型雷尼镍催化剂的称量[J].沪天化科技,1995(3):p.201-203.
    [86]Dixon Anthony G., Ertan Taskin M., Hugh Stitt E., Nijemeisland Michiel.3D CFD simulations of steam reforming with resolved intraparticle reaction and gradients [J]. Chemical Engineering Science,2007.62(18-20):p.4963-4966.
    [87]Logtenberg S. A., Nijemeisland M.,Dixon A. G. Computational fluid dynamics simulations of fluid flow and heat transfer at the wall-particle contact points in a fixed-bed reactor[J]. Chemical Engineering Science,1999.54(13-14):p.2433-2439.
    [88]Logtenberg Simon A.,Dixon Anthony G. Computational fluid dynamics studies of fixed bed heat transfer[J]. Chemical Engineering and Processing:Process Intensification,1998.37(1):p.7-21.
    [89]Dixon Anthony G., Taskin M. Ertan, Nijemeisland Michiel, Stitt E. Hugh. CFD method to couple three-dimensional transport and reaction inside catalyst particles to the fixed bed flow field[J]. Industrial & Engineering Chemistry Research,2010. 49(19):p.9012-9025.
    [90]Lerou Jan J.,Ng Ka M. Chemical reaction engineering:a multiscale approach to a multiobjective task[J]. Chemical Engineering Science,1996.51(10):p.1595-1614.
    [91]Dixon Anthony G., Nijemeisland Michiel,Stitt E. Hugh. Packed tubular reactor modeling and catalyst design using computational fluid dynamics[J]. Advances in Chemical Engineering, B. Marin Guy, Editor 2006, Academic Press, p.307-389.
    [92]Guardo A., Coussirat M., Recasens F., Larrayoz M. A., Escaler X. CFD study on particle-to-fluid heat transfer in fixed bed reactors:Convective heat transfer at low and high pressure[J]. Chemical Engineering Science,2006.61(13):p.4341-4353.
    [93]Calis H. P. A., Nijenhuis J., Paikert B. C., Dautzenberg F. M., Van Den Bleek C. M. CFD modelling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing[J]. Chemical Engineering Science,2001. 56(4):p.1713-1720.
    [94]Mbaye M., Aidoun Z., Valkov V., Legault A. Analysis of chemical heat pumps (CHPs): basic concepts and numerical model description[J]. Applied Thermal Engineering, 1998.18(3-4):p.131-146.
    [95]郭锴,唐小恒,周绪美.化学反应工程[M]2000,北京:化学工业出版社.
    [96]Michiel Nijemeisland.Influences of catalyst particle geometry on fixed bed reactor near-wall heat transfer using CFD [D].2003.
    [97]Dixon Anthony G, Nijemeisland Michiel,Stitt Hugh. CFD simulation of reaction and heat transfer near the wall of a fixed bed[J]. International Journal of Chemical and Reactor Engineering,2003.1:p.1069.
    [98]Duan Yan Jun, Xu Min,Huai Xiu Lan. High temperature catalytic hydrogenation of acetone over raney ni for chemical heat pump[J]. Journal of Thermal Science,2013.
    [99]Freund Hannsjorg, Zeiser Thomas, Huber Florian, Klemm Elias, Brenner Gunther, Durst Franz, Emig Gerhard. Numerical simulations of single phase reacting flows in randomly packed fixed-bed reactors and experimental validation[J]. Chemical Engineering Science,2003.58(3-6):p.903-910.
    [100]Chen Wei-Hsin, Lin Mu-Rong, Jiang Tsung Leo, Chen Ming-Hong. Modeling and simulation of hydrogen generation from high-temperature and low-temperature water gas shift reactions[J]. International Journal of Hydrogen Energy,2008.33(22):p. 6644-6656.
    [101]Chen Wei-Hsin,Jheng Jian-Guo. Characterization of water gas shift reaction in association with carbon dioxide sequestration[J]. Journal of Power Sources,2007. 172(1):p.368-375.
    [102]Nijemeisland Michiel,Dixon Anthony G. CFD study of fluid flow and wall heat transfer in a fixed bed of spheres[J]. AICHE Journal,2004.50(5):p.906-921.
    [103]Nijemeisland Michiel,Dixon Anthony G. Comparison of CFD simulations to experiment for convective heat transfer in a gas-solid fixed bed[J]. Chemical Engineering Journal,2001.82(1-3):p.231-246.
    [104]张小辉,张家元,张建智,苏浩,周孑民.铁矿石烧结过程传热传质数值模拟[J].中南大学学报(自然科学版),2013.44(2):p.805-810.
    [105]刘斌,冯妍卉,姜泽毅,张欣欣.烧结床层的热质分析[J].化工学报,2012.63(5):p.1344-1353.
    [106]Hwang Kye Soon, Jun Jae Ho,Lee Won Kook. Fixed-bed adsorption for bulk component system. Non-equilibrium, non-isothermal and non-adiabatic model[J]. Chemical Engineering Science,1995.50(5):p.813-825.
    [107]龙回龙,许明杰,于东华,丁扬,王克峰.基于FLUENT水气变换反应在多孔介质内的两温度模型[J].计算机与应用化学,2012.29(8):p.981-985.
    [108]Tae Gyung Kim Yeong Koo Yeo, Hyung Keun Song. Chemical heat pump based on dehydrogenation and hydrogenation of i-propanol and acetone [J]. International Journal of Energy Reseach,1992.16:p.897-916.
    [109]Piumsomboon Waraporn Kitikiatsophon, Pornpote. Dynamic simulation and control of an isopropanol-acetone-hydrogen chemical heat pump[J]. ScienceAsia,2004.30:p. 135-147.
    [110]Yukitaka Kato Nobuyoshi Nakagawa, Hideo Kameyama. Study of chemical heat pump with reaction couple of acetone hydrogenation/2-propanol dehydrogenation-kinetics of the hydrogenation of acetone, in World cogress III of Chemical Engineerl986.
    [111]L. M. Gandia A. Diaz, M.Montes. Selectivity in the High-temperature hydrogenation of acetone with silica-supported nickel and cobalt Catalysts [J]. Journal of Catalysis, 1995.157:p.461-471.
    [112]Fluent 6.3 User's Guide.
    [113]Nijhuis T. A., Beers A. E. W., Vergunst T., Hoek I., Kapteijn F., Moulijn J. A. Preparation of monolithic catalysts[J]. Catalysis Reviews-Science and Engineering, 2001.43(4):p.345-380.
    [114]Williams Jimmie L. Monolith structures, materials, properties and uses[J]. Catalysis Today,2001.69(1-4):p.3-9.
    [115]梅红.金属基整体式催化剂与反应器的传递及反应特性[D].2007,
    [116]Ramanathan Karthik, Balakotaiah Vemuri,West David H. Light-off criterion and transient analysis of catalytic monoliths[J]. Chemical Engineering Science,2003. 58(8):p.1381-1405.
    [117]Taskin M. Ertan, Dixon Anthony G., Nijemeisland Michiel, Stitt E. Hugh. CFD study of the influence of catalyst particle design on steam reforming reaction heat effects in narrow packed tubes[J]. Industrial & Engineering Chemistry Research,2008.47(16): p.5966-5975.
    [118]Magnico P. Hydrodynamic and transport properties of packed beds in small tube-to-sphere diameter ratio:pore scale simulation using an Eulerian and a Lagrangian approach[J]. Chemical Engineering Science,2003.58(22):p.5005-5024.
    [119]Nijemeisland Michiel, Dixon Anthony G.,Hugh Stitt E. Catalyst design by CFD for heat transfer and reaction in steam reforming[J]. Chemical Engineering Science,2004. 59(22-23):p.5185-5191.
    [120]Xin Fang, Xu Min, Huai Xiulan, Li Xunfeng. Study on isopropanol-acetone-hydrogen chemical heat pump:Liquid phase dehydrogenation of isopropanol using a reactive distillation column[J]. Applied Thermal Engineering,2013.58(1-2):p. 369-373.
    [121]Xu Min, Xin Fang, Li Xunfeng, Huai Xiulan, Guo Jiangfeng, Liu Hui. Equilibrium model and performances of an isopropanol-acetone-hydrogen chemical heat pump with a reactive distillation column[J]. Industrial & Engineering Chemistry Research, 2013.52(11):p.4040-4048.