用户名: 密码: 验证码:
小麦抗逆相关转录因子bZIP和NAC基因的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
bZIP和NAC是植物中两个重要的转录因子家族,它们参与调控植物的生长发育及逆境胁迫应答等过程。抗逆相关的bZIP和NAC转录因子的功能在拟南芥和水稻中研究较为深入,而在异源六倍体小麦中的研究相对较少。我们在小麦中对这两个家族的基因进行了研究,期望发掘一些与抗逆相关的小麦bZIP和NAC转录因子基因,为小麦的分子育种提供候选基因。我们从本实验室构建的小麦全长cDNA文库中,筛选了22个TabZIP和28个TaNAC基因。通过半定量RT-PCR方法,对这些基因的组织特异性及响应非生物胁迫的表达模式进行了研究,筛选了一些与非生物胁迫相关的TabZIP和TaNAC基因。并在拟南芥中进行了过表达研究,具体结果如下:
     1、组织特异性表达分析结果表明,9个TabZIP和18个TaNAC基因在幼穗、叶、茎和根中都表达,13个TabZIP和10个TaNAC基因在不同组织中呈现不同水平的表达。低温胁迫条件下,10个TabZIP和13个TaNAC基因表达量上调;13个TabZIP和15个TaNAC基因受盐胁迫诱导表达;在PEG诱导的渗透胁迫下,10个TabZIP基因表达量上调;15个TabZIP基因表达受ABA上调。
     2、TabZIP1属于bZIP转录因子A家族的基因,定位于小麦第六同源群的6A、6B和6D上。该基因编码一个定位在细胞核中的蛋白,在酵母中具有转录激活活性。TabZIP1受盐、PEG、低温和外源ABA诱导表达,对过表达TabZIP1的转基因拟南芥进行抗逆性鉴定表明:TabZIP1提高了转基因拟南芥对盐、干旱和冻害的抗性。酵母单杂交结果表明该基因与ABRE顺式元件相互作用。并且过表达TabZIP1的转基因拟南芥增加了对ABA的敏感性,进一步表明TabZIP1参与调控ABA信号途径。
     3、TabZIP14属于bZIP转录因子C家族的基因,编码一个定位在细胞核中的蛋白,在酵母中具有转录激活活性。TabZIP14基因受盐、PEG、低温和外源ABA诱导表达,对过表达TabZIP14的转基因拟南芥进行抗逆性鉴定表明:TabZIP14提高了转基因拟南芥对盐和冻害的抗性。
     4、TaNAC47属于NAC转录因子SNAC家族的基因,编码一个定位在细胞核中的蛋白,在酵母中具有转录激活活性。TaNAC47基因受多种逆境胁迫的诱导表达,对过表达TaNAC47的转基因拟南芥进行抗逆性鉴定表明:TaNAC47提高了转基因拟南芥对盐、干旱和冻害的抗性。
     5、TaNAC62属于NAC转录因子NTLs家族的基因,定位于小麦第三同源群的3A、3B和3D上。该基因编码一个定位在细胞核中的蛋白,在酵母中具有转录激活活性。TaNAC62基因受多种逆境胁迫的诱导表达,对过表达TaNAC62的转基因拟南芥进行抗逆性鉴定表明:TaNAC62提高了转基因拟南芥对盐、干旱和冻害的抗性。
The basic region/leucine zipper (bZIP) and NAC that are pivotal regulators involved ingrowth, development of plants and abiotic stress are important transcription factors in plants. InArabidopsis and rice, many bZIP genes have been reported with roles in response to abioticstresses. However, there are few reports on the stress-related bZIP genes in allohexaploid wheat.In this study, we conducted research concerning the function of wheat transcription factor bZIPand NAC involved in abiotic stress tolerances, which wound provide candidate genes for wheatmolecular breeding in the future. The22TabZIP and28TaNAC genes were screened from wheatfull-length cDNA libraries in our laboratory. The expression patterns of the tissue-specific andabiotic stress response of these genes were studied by semi-QRT-PCR. Some stress-related TabZIPand TaNAC genes were obtained. The functions of these stress-related TabZIP and TaNAC geneswere carried out through ectopic overexpression in Arabidopsis. The main results are as follows:
     1. Tissue specific anlysis indicated9TabZIP and18TaNAC were expressed in young spikes,leaves, stems and roots. The13TabZIP and10TaNAC genes were expressed differently indifferent tissues. The expression levels of10TabZIP and13TaNAC genes were up-regulatedunder low temperature stress. The expression of13TabZIP and15TaNAC genes increased undersalt stress treatment. For polyethylene glycol (PEG)-induced osmotic stress, the transcriptionexpression of10TabZIP genes enhanced. The expression of15TabZIP genes were induced byexogenous abscisic acid (ABA) treatment.
     2. TabZIP1gene belonged to the A family of bZIP transcription factor, which was mapped tothe wheat chromosomes6A,6B and6D. TabZIP1protein was localized to the nucleus and hadtranscriptional activity in yeast. TabZIP1gene transcripts were strongly induced by salt, PEG, lowtemperature and exogenous ABA treatments. Over-expression of TabZIP1in Arabidopsis led toenhanced tolerances to salt, drought and freezing stresses. The TabZIP1was capable of bindingABRE sequence by yeast one-hybrid assay and the overexpression of TabZIP1in Arabidopsis ledto greater sensitivity to exogenous ABA in seedling growth. The results indicated TabZIP1participated in ABA signaling pathway.
     3. TabZIP14gene belonged to the C family of bZIP transcription factor. TabZIP14proteinwas localized to the nucleus and had transcriptional activity in yeast. TabZIP14gene transcriptswere strongly induced by salt, PEG, low temperature and ABA treatments. Over-expression ofTabZIP14in Arabidopsis led to enhanced tolerances to salt and freezing stresses.
     4. TaNAC47gene belonged to SNAC family of NAC transcription factor. TaNAC47proteinwas localized to the nucleus and had transcriptional activity in yeast. TaNAC47gene transcriptswere strongly induced by salt, PEG, low temperature and ABA treatments. Over-expression of TaNAC47in Arabidopsis led to enhanced tolerances to salt, drought and freezing stresses.
     5. TaNAC62gene belonged to NTLs family of NAC transcription factor, which was mappedto the wheat chromosomes3A,3B and3D. TaNAC62protein was localized to the nucleus andhad transcriptional activity in yeast. TaNAC62gene transcripts were strongly induced by salt,PEG, low temperature and ABA treatments. Over-expression of TaNAC62in Arabidopsis led toenhanced tolerances to salt, drought and freezing stresses.
引文
1. Abe H., Urao T., Ito T., Seki M., Shinozaki K. and Yamaguchi S. K., Arabidopsis AtMYC2(bHLH) and AtMYB2(MYB) function as transcriptional activators in abscisic acid signaling.Plant Cell,2003,15:63-78.
    2. Abe M., Kobayashi Y., Yamamoto S., Daimon Y., Yamaguchi A., Ikeda Y., Ichinoki H.,Notaguchi M., Goto K. and Araki T., FD, a bZIP protein mediating signals from the floralpathway integrator FT at the shoot apex. Science,2005,309:1052-1056.
    3. Agarwal P., Kapoor S. and Tyagi A. K., Transcription factors regulating the progression ofmonocot and dicot seed development. BioEssays,2011,33:189-202.
    4. Aida M., Ishida T., Fukaki H., Fujisawa H. and Tasaka M., Genes involved in organseparation in Arabidopsis: ananalysis of the cup-shaped cotyledon mutant. Plant Cell,1997,9:841-857.
    5. Ashraf M. and Foolad M. R., Roles of glycine betaine and proline in improving plant abioticstress resistance. Environ Exp Bot,2007,59:206-216.
    6. Aubert Y., Vile D., Pervent M., Aldon D., Ranty B., Simonneau T., Vavasseur A. and GalaudJ. P., RD20, a stress-inducible caleosin, participates in stomatal control, transpiration anddrought tolerance in Arabidopsis thaliana. Plant Cell Physiol,2010,51:1975-1987.
    7. Badawi M., Reddy Y. V., Agharbaoui Z., Tominaga Y., Danyluk J., Sarhan F. and Houde M.,Structure and functional analysis of wheat ICE (inducer of CBF expression) genes. Plant CellPhysiol,2008,49:1237-1249.
    8. Bates L. S., Waldren R. P. and Teare I. D., Rapid determination of free proline for waterstress studies. Plant and Soil,1973,39:205-207.
    9. Bertorello A. M. and Zhu J. K., SIK1/SOS2networks: decoding sodium signals viacalcium-responsive protein kinase pathways. Pflugers Arch Eur J Physiol,2009,458:613-619.
    10. Bohnert H. J., Nelson D. E. and Jensen R. G., Adaptations to environmental stresses. PlantCell,1995,7:1099-1111.
    11. Bowler C., Montagu M. V. and Inze D., Superoxide dismutase and stress tolerance, Ann RevPlant Physiol Plant Mol Biol,1992,43:83-116.
    12. Cao W., Liu J., He X., Mu R., Zhou H., Chen S. and Zhang J., Modulation of ethyleneresponses affects plant salt stress responses. Plant Physiol,2007,143:707-719.
    13. Chen S., Li J.,Wang S., Huttermann A. and Altman A., Salt, nutrient uptake and transport,and ABA of populus euphratica; a hybrid in response to increasing soil NaCl. Trees,2001,15:186-194.
    14. Chen W. and Zhu T., Networks of transcription factors with roles in environmental stressresponse. Trends Plant Sci,2004,9:591-596.
    15. Cheng W. H., Endo A., Zhou L. and Penney J., A unique short chaindehydrogenase/reductase in Arabidops is glucose signaling and abscisic acid biosynthesis andfunctions. Plant Cell,2002,14:2723-2743.
    16. Chinnusamy V., Jagendorf A. and Zhu J. K., Understanding and improving salt tolerance inplants. Crop Sci,2005,45:437-448.
    17. Chinnusamy V., Ohta M., Kanrar S., Lee B. H., Hong X., Agarwal M. and Zhu J. K., ICE1: aregulator of cold-induced transcriptome and freezing tolerance in Arabidops is. Genes Dev,2003,17:1043-1054.
    18. Chinnusamy V., Zhu J. H., and Zhu J. K., Cold stress regulation of gene expression in plants.Trends Plant Sci,2007,12:444-451.
    19. Corrêa G. L., Ria o D. M., Schrago C. G., Dos R. V., Mueller B. and Vincentz M., The roleof bZIP transcription factors in green plant evolution: adaptive features emerging from fourfounder genes. PLoS One,2008,3: e2944.
    20. Cui Y. and Wang Q., Physiological responses of maize to elemental sulphur and cadmiumstress. Plant Soil Environ,2006,52:523-529.
    21. Dai X., Xu Y., Ma Q., Xu W., Wang T. and Xue Y., Overexpression of a R1R2R3MYBgene, OsMYB3R-2increases tolerance to freezing, drought, and salt stress in transgenicArabidopsis. Plant Physiol,2007,143:1739-1751.
    22. Delessert C., Kazan K. and Wilson I. W., The transcription factor ATAF2represses theexpression of pathogenesis-related genes in Arabidopsis. Plant Physiol,2005,43:745-757.
    23. Ellenberger T. E., Brandl C. J., Struhl K. and Harrison S. C., The GCN4basic region leucinezipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of theprotein-DNA complex. Cell,1992,71:1223-1237.
    24. Feder M. E. And Hofmann G. E., Heat shock proteins, molecular chaperones, and the stressresponse: evolutionary and ecological physiology. Ann Rev Physiol,1999,61:243-282.
    25. Finkelstein R. R. and Lynch T. J., The Arabidopsis abscisic acid response gene ABI5encodes a basic leucine zipper transcription factor. Plant Cell,2000,12:599-609.
    26. Fonseca J. P., Menossi M., Thibaud N. F. and Town C. D., Functional analysis of a TGAfactor-binding site located in the promoter region controlling salicylic acid-induced NIMIN-1expression in Arabidopsis. Genet Mol Res,2010,9:167-175.
    27. Foster R., Izawa T. and Chua N. H., Plant bZIP proteins gather at ACGT elements. FASEB J,1994,8:192-200.
    28. Fowler S. and Thomashow M. F., Arabidopsis transcriptome profiling indicates that multipleregulatory pathways are activated during cold acclimation in addition to the CBF coldresponse pathway. Plant Cell,2002,14:1675-1690.
    29. Fujita Y., Fujita M., Satoh R., Maruyama K., Parvez M. M., Seki M., Hiratsu K., Ohme T.M., Shinozaki K. and Yamaguchi S. K., AREB1is a transcription activator of novelABRE-dependent ABA s ignaling that enhances drought stress tolerance in Arabidopsis. PlantCell,2005,17:3470-3488.
    30. Fukazawa J., Nakata M., Ito T., Yamaguchi S. and Takahashi Y., The transcription factorRSG regulates negative feedback of NtGA20ox1encoding GA20-oxidase. Plant J,2010,62:1035-1045.
    31. Gangappa S. N., Crocco C. D., Johansson H., Datta S., Hettiarachchi C., Holm M. and BottoJ. F., The Arabidopsis B-BOX protein BBX25interacts with HY5, negatively regulatingBBX22expression to suppress seedling photomorphogenesis. Plant Cell,2013,25:1243-1257.
    32. Gao F., Xiong A., Peng R., Jin X. F., Xu J., Zhu B., Chen J. and Yao Q., OsNAC52, a riceNAC transcription factor, potentially responds to ABA and confers drought tolerance intransgenic plants. Plant Cell Tiss Organ Cult,2010,100:255-262.
    33. Gao J. J., Zhang Z., Peng R. H., Xiong A. S. And Xu J., Forced expression of Mdmyb10, amyb transcription factor gene from apple, enhances tolerance to osmotic stress in transgenicArabidopsis. Mol Biol Rep,2011,38:205-211.
    34. Gao S. Q., Chen M., Xu Z. S., Zhao C. P., Li L. C., Xu H. J., Tang Y. M., Zhao X. and Ma Y.Z., The soybean GmbZIP1transcription factor enhances multiple abiotic stress tolerances intransgenic plants. Plant Mol Biol,2011,75:537-553.
    35. Gao S. Q., Tang Y. M., Yang Y., Liu S., Chen J. R., Ma J. X., Tian L. P., Zhang F. T. andZhao C. P., Cloning and functional analysis of ErABF1gene from Elytrigria repens. JTriticeae Crops,2011,31:194-201.
    36. Griffith M., Antikainen M., Hon W. C., Pihakaski M. K., Yu X. M., Chun J. U. and Yang D.S., Antifreeze proteins in winter rye. Physiol Plant,1997,100:327-332.
    37. Gulzar S., Khan M. A. and Ungar I. A., Salt tolerance of a coastal salt marsh grass. CommunSoil Sci Plant Anal,2003,34:2595-2605.
    38. Guo Y., Halfter U., Ishitani M. and Zhu J. K., Molecular characterization of functionaldomains in the protein kinase SOS2that is required for plant salt tolerance. Plant Cell,2001,13:1383-1400.
    39. Guo Y. F. and Gan S. S., AtNAP, a NAC family transcription factor, has an important role inleaf senescence. Plant J,2006,46:601-612.
    40. Halfter U., Ishitani M. and Zhu J. K., The Arabidopsis SOS2protein kinase physicallyinteracts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA,2000,97:3735-3740.
    41. Hartung W., Sauter A. and Hose E., Abscisic acid in the xylem: where does it come from,where does it go to? J Exp Bot,2002,53:27-37.
    42. He X. J., Mu R. L., Cao W. H., Zhang Z. G., Zhang J. S. and Chen S. Y., AtNAC2, atranscription factor downstream of ethylene and auxin signaling pathways, is involved in saltstress response and lateral root development. Plant J,2005,44:903-916.
    43. Hilda P., Graciela R., Sergio A., Otto M., Ingrid R., Hugo P. C., Edith T., Estela M. D. andGuillermina A., Salt tolerant tomato plants show increased levels of jasmonic acid. PlantGrowth Regul,2003,41:149-158.
    44. Hodges D. M., DeLong J. M., Forney C. F. and Prange R. K., Improving the thiobarbituricacid reactive substances assay for estimating lipid peroxidation in plant t issues containinganthocyanin and other interfering compounds. Planta,1999,207:604-611.
    45. Hoekstra F. A., Golovina E. A. and Buitink J., Mechanisms of plant desiccation tolerance,Trends Plant Sci,2001,6:431-438.
    46. Hsieh T. H., Li C. W., Su R. C., Cheng C. P., Sanjaya., Tsai Y. C. and Chan M. T., A tomatobZIP transcription factor, SlAREB, is involved in water deficit and salt stress response.Planta,2010,231:1459-1473.
    47. Hu C. A., Delauney A. J. and Verma D. P., A bifunctional enzyme (delta1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. ProcNatl Acad Sci USA,1992,89:9354-9358.
    48. Hu H. H., Dai M. Q., Yao J. L., Xiao B., Li X. H., Zhang Q. F. and Xiong L. Z.,Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances droughtresistance and salt tolerance in rice. Proc Natl Acad Sci USA,2006,13:12987-12992.
    49. Hu H. H. and Xiong L. Z., Genetic engineering and breeding of drought resistant crops. AnnuRev Plant Biol,2014,65:21-27.
    50. Hurst H. C., Transcription factors1: bZIP proteins. Protein Profile,1994,1:123-168.
    51. Ishitani M., Liu J., Halfter U., Kim C. S., Shi W. and Zhu J. K., SOS3function in plant salttolerance requires N-myristoylation and calcium-binding. Plant Cell,2000,12:1667-1677.
    52. Iwata Y. and Koizumi N., An Arabidopsis transcription factor, AtbZIP60, regulates theendoplasmic reticulum stress response in a manner unique to plants. Proc Natl Acad Sci USA2005,102:5280-5285.
    53. Izawa T., Foster R. and Chua N. H., Plant bZIP protein DNA binding specificity. J Mol Biol,1993,230:1131-1144.
    54. Jensen M. K., Kjaersgaard T., Nielsen M. M., Galberg P., Petersen K., Shea C. and SkriverK., The Arabidopsis thaliana NAC transcription factor family: structure-functionrelationships and determinants of ANAC019stress signalling. Biochem J,2010,426:183-196.
    55. Jeong J. S., Kim Y. S., Baek K. H., Jung H., Ha S. H., Choi Y. D., Kim M., Reuzeau C. andKim J. K., Root specific expression of OsNAC10improves drought tolerance and grain yieldin rice under field drought conditions, Plant Physiol,2010,153:185-197.
    56. Jia J. Z., Zhao S. C., Kong X. Y., Li Y. R., Zhao G. Y., He W. M., Appels R., Pfeifer M., TaoY., Zhang X. Y., Jing R. L., Zhang C., Ma Y. Z., Gao L. F., Gao C., Spannagl M., Mayer K. F.,Li D., Pan S. K., Zheng F. Y., Hu Q., Xia X. C., Li J. W., Liang Q. S., Chen J., Wicker T.,Gou C., Kuang H. H., He G. Y., Luo Y. D., Keller B., Xia Q. J., Lu P., Wang J. Y., Zou H. F.,Zhang R. Z., Xu J. Y., Gao J. L., Middleton C., Quan Z. W., Liu G. M., Wang J., Yang H. M.,Liu X., He Z. H., Mao L. and Wang J., Aegilops tauschii draft genome sequence reveals agene repertoire for wheat adaptation. Nature,2013,496:91-95.
    57. Jin J., Zhang H., Kong L., Gao G. and Luo J., PlantTFDB3.0: a portal for the functional andevolutionary study of plant transcription factors. Nucleic Acids Res,2014,42(D1):D1182-D1187.
    58. Johnson R. R., Wagner R. L., Verhey S. D. and Walker M. K., The abscisic acid-responsivekinase PKABA1interacts with a seed-specific abscisic acid response element binding factor,TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol,2002,130:837-846.
    59. Kang J. Y., Choi H. I., Im M. Y. and Kim S. Y., Arabidopsis basic leucine zipper proteins thatmediate stress-responsive abscisic acid signaling. Plant Cell,2002,14:343-357.
    60. Kang S. G., Price J., Lin P. C., Hong J. C. and Jang J. C., The arabidopsis bZIP1transcription factor is involved in sugar signaling, protein networking, and DNA binding.Mol Plant,2010,3:361-373.
    61. Kaplan F., Kopka J., Haskell D. W., Zhao W., Schiller K. C., Gatzke N., Sung D. Y. and GuyC. L., Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol.2004,136:4159-4168.
    62. Kerepes i I. and Galiba G., Osmotic and salt stress induced alteration in soluble carbohydratecontent in wheat seedlings. Crop Sci,2000,40:482-487.
    63. Khan M. A., Ungar I. A. and Showalter A. M., Effects of salinity on growth, ion content, andosmotic relations in Halopyrum mocoronatum (L.) Stapf. J Plant Nutr,1999,22:191-204.
    64. Khan M. A., Experimental assessment of salinity tolerance of Ceriops tagal seedlings andsaplings from the Indus delta, Pakistan. Aquat Bot,2001,70:259-268.
    65. Kim H. S., Park B. O., Yoo J. H., Jung M. S., Lee S. M., Han H. J., Kim K. E., Kim S. H.,Lim C. O., Yun D. J., Lee S. Y. and Chung W. S., Identification of a calmodulin-binding NACprotein (CBNAC) as a transcriptional repressor in Arabidopsis. J Biol Chem,2007,282:36292-36302.
    66. Kim J. S., Mizoi J., Yoshida T., Fujita Y., Nakajima J., Ohori T., Todaka D., Nakashima K.,Hirayama T., Shinozaki K. and Yamaguchi-Shinozaki K., An ABRE promoter sequence isinvolved in osmotic stress-responsive expression of the DREB2A gene, which encodes atranscription factor regulating drought-inducible genes in Arabidopsis. Plant Cell Phys iol,2011,52:2136-2146.
    67. Kim S., Kang J., Cho D., Park J. and Kim S., ABF2, an ABRE-binding bZIP factor, is anessential component of glucose signaling and its overexpression affects multiple stresstolerance. Plant J,2004,40:75-87.
    68. Kim S. G., Kim S. Y. and Park C. M., A membrane-associated NAC transcription factorregulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta,2007,226:647-654.
    69. Kim Y. S., Kim S. G., Park J. E., Park H. Y., Lim M. H. and Chua N. H., A membrane-boundNAC transcription factor regulates cell divis ion in Arabidopsis. Plant Cell,2006,18:3132-3144.
    70. Kjaersgaard T., Jensen M. K., Christiansen M. W., Gregersen P., Kragelund B. B. and SkriverK., Senescence-associated barley NAC (NAM, ATAF1,2, CUC) transcription factor interactswith radical-induced cell death1through a disordered regulatory domain. J Biol Chem,2011,286:35418-35429.
    71. Kobayashi F., Maeta E., Terashima A., Kawaura K., Ogihara Y. and Takum S., Developmentof abiotic stress tolerance via bZIP-type transcription factor LIP19in common wheat. J ExpBot,2008a,59:891-905.
    72. Kobayashi F., Maeta E., Terashima A. and Takumi S., Positive role of a wheat HvABI5ortholog in abiotic stress response of seedlings. Physiol Plant,2008b,134:74-86.
    73. Kondo S., Saito A., Asada R., Kanemoto S. and Imaizumi K., Physiological unfolded proteinresponse regulated by OASIS family members, transmembrane bZIP transcription factors.Iubmb Life,2011,63:233-239.
    74. Kovacs D., Kalmar E., Torok Z. and Tompa P., Chaperone activity of ERD10and ERD14,two disordered stress-related plant proteins. Plant Physiol,2008,147:381-390.
    75. Landschulz W. H., Johnson P. F. and Mcknight S. L., The leucine zipper: a hypotheticalstructure common to a new class of DNA binding proteins. Science,1988,240:1759-1764.
    76. Lee B. H., Henderson D. A. and Zhu J. K., The Arabidopsis cold-responsive transcriptomeand its regulation by ICE1. Plant Cell,2005,17:3155-3175.
    77. Lee S. S., Yang S. H., Berberich T., Miyazaki A. and Kusano T., Characterization of AtbZIP2,AtbZIP11and AtbZIP53from the group S basic region-leucine zipper family in Arabidopsisthaliana. Plant Biotech,2006,23:249-258.
    78. Leon P. and Sheen J., Sugar and hormone connections. Trends Plant Sci,2003,8:110-116.
    79. Li X. Y., Liu X., Yao Y., Li Y. H., Liu S., He C. Y., Li J. M., Lin Y. Y. and Li L.,Overexpression of Arachis hypogaea AREB1gene enhances drought tolerance by modulatingROS scavenging and maintaining endogenous ABA content. Int J Mol Sci,2013,14:12827-12842.
    80. Lin R. M., Zhao W. S., Meng X. B., Wang M. and Peng Y. L., Rice gene OsNAC19encodes anovel NAC-domain transcription factor and responds to infection by Magnaporthe grisea.Plant Sci,2007,172:120-130.
    81. Liu C. T., Mao B. G., Ou S. J., Wang W., Liu L. C., Wu Y. B., Chu C. C. and Wang X. P.,OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. PlantMol Biol,2014,84:19-36.
    82. Liu C. T., Wu Y. B. and Wang X. P., bZIP transcription factor OsbZIP52/RISBZ5: a potentialnegative regulator of cold and drought stress response in rice. Planta,2012,235:1157-1169.
    83. Liu J. X., Srivastava R. and Howell S. H., Stress-induced expression of an activated form ofAtbZIP17provides protection from salt stress in Arabidopsis. Plant Cell Environ,2008,31:1735-1743.
    84. Lu G. J., Gao C. X., Zheng X. N. and Han B., Identification of OsbZIP72as a positiveregulator of ABA response and drought tolerance in rice. Planta,2009,229:605-615.
    85. Lu P. L., Chen N. Z., An R., Su Z., Qi B. S., Ren F., Chen J. and Wang X. C., A noveldrought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates theexpression of stress-responsive genes in Arabidopsis. Plant Mol Biol,2007,63:289-305.
    86. Mahajan S., Pandey G. K. and Tuteja N., Calcium-and salt-stress signaling in plants:shedding light on SOS pathway. Arch Biochem Biophys,2008,471:146-158.
    87. Mansour M. F., Nitrogen containing compounds and adaptation of plants to salinity stress.Biol Plant,2000,43:491-500.
    88. Mao X. G., Zhang H. Y., Qian X. Y., Li A., Zhao G. Y. and Jing R. L., TaNAC2, a NAC-typewheat transcription factor conferring enhanced multiple abiotic stress tolerances inArabidopsis. J Exp Bot,2012,63:2933-2946.
    89. Mao X. G., Chen S. S., Li A., Zhai C. C. and Jing R. L. Novel NAC transcription factorTaNAC67confers enhanced multi-abiotic stress tolerances in Arabidopsis. Plos One,2014,9:1-15.
    90. Meng C. M., Cai C. P., Zhang T. Z. and Guo W. Z., Characterization of six novel NAC genesand their responses to abiotic stresses in Gossypium hirsutum L. Plant Sci,2009,176:352-359.
    91. Meng Q. C., Zhang C. H., Gai J. Y. and Yu D. Y., Molecular cloning, sequencecharacterization and tissue-specific expression of six NAC-like genes in soybean [Glycinemax (L.) Merr]. J Plant Physiol,2007,164:1002-1012.
    92. Nakaminami K., Hill K., Perry S. E., Sentoku N., Long J. A. and Karlson D. T., Arabidopsiscold shock domain proteins: relationships to floral and silique development. J Exp Bot,2009,60:1047-1062.
    93. Nakashima K., Shinwari Z. K., Sakuma Y., Seki M., Miura S., Shinozaki K. and YamaguchiS. K., Organization and expression of two Arabidops is DREB2genes encoding DRE-bindingproteins involved in dehydration-and high salinity-responsive gene expression. Plant MolBiol,2000,42:657-665.
    94. Nakashima K., Takasaki H., Mizoi J., Shinozaki K. and Yamaguchi S. K., NAC transcriptionfactors in plant abiotic stress responses. Biochimica Biophysica Acta,2012,1819:97-103
    95. Nakashima K., Tran L. S., Nguyen D. V., Fujita M., Maruyama K., Todaka D., Ito Y., HayashiN., Shinozaki K. and Yamaguchi S. K.. Functional analysis of a NAC-type transcriptionfactor OsNAC6involved in abiotic and biotic stress-responsive gene expression in rice. PlantJ,2007,51:617-630.
    96. Nakashima K. and Yamaguchi S. K., ABA signaling in stress response and seed development.Plant Cell Rep,2013,32:959-970.
    97. Nijhawan A., Jain M., Tyagi A. K. and Khurana J. P., Genomic survey and gene expressionanalys is of the basic leucine zipper transcription factor family in rice. Plant Physiol,2008,146:333-350.
    98. Niu C. F., Wei W., Zhou Q. Y., Tian A. G., Hao Y. J., Zhang W. K., Ma B., Lin Q., Zhang Z.B., Zhang J. S. and Chen S. Y., Wheat WRKY genes TaWRKY2and TaWRKY19regulateabiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ,2012,35:1156-1170.
    99. Ouellet F. and Charron J. B., Cold acclimation and freezing tolerance in plants. Encycl LifeSci.2013, doi:10.1002/9780470015902.a0020093.
    100. Parida A. K., Das A. B. and Mittra B., Effects of NaCl stress on the structure, pigmentcomplex compsition and photosynthetic activity of mangrove bruguiera parviflorachloroplasts. Photosynthetica,2003,41:191-200.
    101. Prasad V. B., Gupta N., Nandi A. and Chattopadhyay S., HY1genetically interacts withGBF1and regulates the activity of the Z-box containing promoters in light signalingpathways in Arabidopsis thaliana. Mech Dev,2012,129:298-307.
    102. Puranik S., Bahadur R. P., Srivastava P. S. and Prasad M., Molecular cloning andcharacterization of a membrane associated NAC family gene, SiNAC from foxtail millet[Setaria italica (L.) P. Beauv.]. Mol Biotech,2011,49:138-150.
    103. Qiu Q. S., Guo Y., Quintero F. J., Pardo J. M., Schumaker K. S. and Zhu J. K., Regulation ofvacuolar Na+/H+exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS)pathway. J Biol Chem,2004,279:207-215.
    104. Redillas M. C., Jeong J. S., Kim Y. S., Jung H., Bang S. W., Choi Y. D., Ha S. H., Reuzeau C.and Kim J. K., The overexpression of OsNAC9alters the root architecture of rice plantsenhancing drought resistance and grain yield under field conditions. Plant Biotechnol J,2012,10:792-805.
    105. Renaut J., Hausman J. F., Bassett C., Artlip T., Cauchie H. M., Witters E. and Wisniewski M.,Quantitative proteomic analys is of short photoperiod and low-temperature responses in barktissues of peach (Prunus persica L. Batsch). Tree Genet Genomes,2008,4:589-600.
    106. Riechmann J. L. and Ratcliffe O. J., A genomic perspective on plant transcription factors.Curr Opin Plant Biol,2000,3:423-434.
    107. Rodriguez U. L. and O’Connell M. A., Aroot-specific bZIP transcription factor is responsiveto water deficit stress in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris). JExp Bot,2006,57:1391-1398.
    108. Rosa M., Prado C., Podazza G., Interdonato R., González J. A., Hilal M. and Prado F. E.,Soluble sugars-metabolism, sensing and abiotic stress: a complex network in the life of plants.Plant Signal Behav,2009,5:388-393.
    109. Saada A. S., Li X., Li H. P., Huang T., Gao C. S., Guo M. W., Cheng W., Zhao G. Y. and LiaoY. C., A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to droughtand salt stresses. Plant Sci,2013,204:33-40.
    110. Sakuma Y., Liu Q., Dubouzet J. G., Abe H., Shinozaki K. and Yamaguchi S. K.,DNA-binding specificity of the ERF/AP2domain of Arabidopsis DREBs, transcriptionfactors involved in dehydration-and cold-inducible gene expression. Biochem Biophys ResCommun,2002,290:998-1009.
    111. Sakuma Y., Maruyama K., Osakabe Y., Qin F., Seki M., Shinozaki K. and Yamaguchi S. K.,Functional analysis of an Arabidopsis transcription factor, DREB2A, involved indrought-responsive gene expression. Plant Cell,2006,18:1292-1309.
    112. Sanchez M. J., Fujii H., Angulo I., Martinez R. M., Zhu J. K. and Albert A., The structure ofthe C-terminal domain of the protein kinase AtSOS2bound to the calcium sensor AtSOS3.Mol Cell,2007,26:427-435.
    113. Satoh R., Nakashima K., Seki M., Shinozaki K. and Yamaguchi S. K., ACTCAT, a novelcis-acting element for proline and hypoosmolarity-responsive expression of the ProDH geneencoding proline dehydrogenase in Arabidopsis. Plant Physiol,2002,130:709-719.
    114. Seo P. J., Lee A. K., Xiang F. and Park C. M., Molecular and functional profiling ofArabidopsis pathogenesis-related genes: ins ights into their roles in salt response of seedgermination. Plant Cell Physiol,2008,49:334-344.
    115. Shen H., Cao K. and Wang X. A., Conserved proline residue in the leucine zipper region ofAtbZIP34and AtbZIP61in Arabidopsis thaliana interferes with the formation of homodimer.Biochem Biophys Res Commun,2007,362:425-430.
    116. Shi H. Z., Ishitani M., Kim C. S. and Zhu J. K., The Arabidopsis thaliana salt tolerance geneSOS1encodes a putative Na+/H+antiporter. Proc Natl Acad Sci USA,2000,97:6896-6901.
    117. Shimizu H., Sato K., Berberich T., Miyazaki A., Ozaki R., Imai R. and Kusano T., LIP19, abasic region leucine zipper protein, is a Fos-like molecular switch in the cold signaling of riceplants. Plant Cell Physiol,2005,46:1623-1634.
    118. Shinozaki K. and Yamaguchi S. K., Gene networks involved in drought stress response andtolerance. J Exp Bot,2007,58:221-227.
    119. Silveira A. B., Gauer L., Tomaz J. P., Cardoso P. R., Carmello G. S. and Vincentz M., TheArabidopsis AtbZIP9protein fused to the VP16transcriptional activation domain alters leafand vascular development. Plant Sci,2007,172:1148-1156.
    120. Souer E., Houwelingen A., Kloos D., Mol J. and Koes R., The no apical meristem gene ofpetunia is required for pattern formation in embryos and flowers and is expressed at meristemand primordial boundaries. Cell,1996,85:159-170.
    121. Sperotto R. A., Ricachenevsky F. K., Duarte G. L., Boff T., Lopes K. L., and Sperb E. R.,Identification of up-regulated genes inflag leaves during rice grain filling andcharacterization of OsNAC5, a new ABA-dependent transcription factor. Planta,2009,230:985-1002.
    122. Srinivas V. and Balasubramanian D., Proline is a protein compatible hydrotrope. Langmuir,1995,11:2830-2833.
    123. Sun X. L., Li Y., Cai H., Bai X., Ji W., Ding X. D. and Zhu Y. M., The Arabidops is AtbZIP1transcription factor is a positive regulator of plant tolerance to salt, osmotic and droughtstresses. J Plant Res,2012,125:429-438.
    124. Taji T., Ohsumi C., Iuchi S., Seki M., Kasuga M., Kobayashi M., Yamaguchi-Shinozaki K.and Shinozaki K., Important roles of drought and cold-inducible genes for galactinol synthasein stress tolerance in Arabidopsis thaliana. Plant J,2002,29:417-426.
    125. Takahashi H., Kawakatsu T., Wakasa Y., Hayashi S. and Takaiwa F. A., Rice transmembranebZIP transcription factor, OsbZIP39, regulates the endoplasmic reticulum stress response.Plant cell Physiol,2012,53:144-153.
    126. Takasaki H., Maruyama K., Kidokoro S., Ito Y., Fujita Y., Shinozaki K., Yamaguchi S. K. andNakashima K., The abiotic stress responsive NAC-type transcription factor OsNAC5regulates stress inducible genes and stress tolerance in rice. Mol Genet Genomics,2010,284:173-183.
    127. Takemura T., Hanagata N., Dubinsky Z. and Karube I., Molecular characterization andresponse to salt stress of mRNAs encoding cytosolic Cu/Zn superoxide dismutase andcatalase from Bruguiera gymnorrhiza. Trees,2002,16:94-99.
    128. Tang N., Zhang H., Li X. H., Xiao J. H. and Xiong L. Z., Constitutive activation oftranscription factor OsbZIP46improves drought tolerance in rice. Plant Physiol,2012,158:1755-1768.
    129. Tang Y. M., Liua M. Y., Gao S. H., Zhang Z., Zhao X., Zhao C. P., Zhang F. T. and Chen X. P.,Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2aconfers drought tolerance in tobacco. Physiol Plant,2012,144:210-224.
    130. Testerink C. and Munnik T., Phosphatidic acid: a multifunctional stress signaling lipid inplants. Trends Plant Sci,2005,10:368-375.
    131. Thalor S. K., Berberich T., Lee S. S., Yang S. H., Zhu X., Imai R., Takahashi Y. and KusanoT., Deregulation of sucrose-controlled translation of a bZIP-Type transcription factor resultsin sucrose accumulation in leaves. Plos One,2012,7: e33111.
    132. Timonthy L. B., Mikael B., Fabian A. B., Martin F., Charles E. G., Luca C., Ren J. Y., Li W.W. and Noble W. S., MEME suite: tools for motif discovery and searching. Nucl Acids Res,2009,37:202-208.
    133. Tran S. P., Nakashima K., Sakuma Y., Simpson S. D., Fujita Y. and Maruyama K., Isolationand functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind toa drought-responsive cis-element in the early responsive to dehydration stress promoter. PlantCell,2004,16:2481-2498.
    134. Udvardi M. K., Kakar K., Wandrey M., Montanari O., Murray J., Andriankaja A., Zhang J.,Benedito V., Hofer M. I., Chueng F. and Town C. D. Legume transcription factors: globalregulators of plant development and response to the environment. Plant Physiol,2007,144:538-549.
    135. Uno Y., Furihata T., Abe H., Yoshida R., Shinozaki K. and Yamaguchi S. K., Arabidops isbasic leucine zipper transcription factors involved in an abscisic acid-dependent signaltransduction pathway under drought and high salinity conditions. Proc Natl Acad Sci USA,2000,97:11632-11637.
    136. Valliyodan B. and Nguyen H. T., Understanding regulatory networks and engineering forenhanced drought tolerance in plants. Plant Biol,2006,9:189-195.
    137. Vannini C., Locatelli F., Bracale M. and Magnani E., Overexpression of the rice Osmyb4gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J,2004,37:115-127.
    138. Vernon D. M., Taraczynski M. C., Jensen R. G. and Bohnert H. J., Cyclitol production intransgenic tobacco. Plant J,1993,4:199-205.
    139. Wang Y. and Nil N., Changes in chlorophyll, ribulose biphosphate carboxylase oxygenase,glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leavesduring salt stress. J Hortic Sci Biotechnol,2000,75:623-627.
    140. Weltmeier F., Rahmani F., Ehlert A., Dietrich K., Schütze K., Wang X., Chaban C., Hanson J.,Teige M., Harter K., Vicente C. J., Smeekens S. and Dr ge L. W., Expression patterns withinthe Arabidopsis C/S1bZIP transcription factor network: availability of heterodimerizationpartners controls gene expression during stress response and development. Plant Mol Biol,2009,69:107-119.
    141. Wilkinson S. and Davies W. J., ABA-based chemical signalling: the coordination ofresponses to stress in plants. Plant Cell Environ,2002,25:195-210.
    142. Xia N., Zhang G., Liu X. Y., Deng L., Cai C. L., Zhang Y., Wang X. J., Zhao J., Huang L. L.and Kang Z. S., Characterization of a novel wheat NAC transcription factor gene involved indefense response against stripe rust pathogen infection and abiotic stresses. Mol Biol Rep,2010a,37:3703-3712.
    143. Xia N., Zhang G., Sun Y. F., Zhu L., Xu L. S., Chen X. M., Liu B., Yu Y. T., Wang X. J.,Huang L. L and Kang Z. S., TaNAC8, a novel NAC transcription factor gene in wheat,responds to stripe rust pathogen infection and abiotic stresses. Physiol Mol Plant Pathol,2010b,74:394-402.
    144. Xiang Y., Tang N., Du H., Ye H. and Xiong L., Characterization of OsbZIP23as a key playerof the basic leucine zipper transcription factor family for conferring abscisic acid sensitivityand salinity and drought tolerance in rice. Plant Physiol,2008,148:1938-1952.
    145. Xiong L., Ishitani M., Lee H. and Zhu J. K., The Arabidopsis LOS5/ABA3locus encodes amolybdenum cofactor sulfurase and modulates cold stress-and osmotic stress-responsivegene expression. Plant Cell,2001,13:2063-2083.
    146. Xiong L., Lee H., Ishitani M. and Zhu J. K., Regulation of osmotic stress responsive geneexpression by LOS6/ABA1locus in Arabidopsis. J Biol Chem,2002,277:8588-8596.
    147. Xiong L. and Zhu J. K., Abiotic stress signal transduction in plants: molecular and geneticperspectives. Physiol Plant,2001,112:152-166.
    148. Xue G. P., Way H. M., Richardson T., Drenth J., Joyce P. A. and Mcintyre C. L.,Overexpression of TaNAC69leads to enhanced transcript levels of stress up-regulated genesand dehydration tolerance in bread wheat. Mol Plant,2011,4:697-712.
    149. Yamaguchi M., Ohtani M., Mitsuda N., Kubo M., Ohme T. M., Fukuda H. and Demura T.,VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylemvessel formation in Arabidopsis. Plant Cell,2010,22:1249-1263.
    150. Yamaguchi S. K. and Shinozaki K., A novel cis-acting element in an Arabidops is gene isinvolved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell,1994,6:251-264.
    151. Yamaguchi S. K. and Shinozaki K., Organization of cis-acting regulatory elements inosmotic-and cold-stress responsive promoters. Trends Plant Sci,2005,10:88-94.
    152. Yamaguchi S. K. and Shinozaki K., Transcriptional regulatory networks in cellular responsesand tolerance to dehydration and cold stresses. Annu Rev Plant Biol,2006,57:781-803.
    153. Yamamoto M. P., Onodera Y., Touno S. M. and Takaiwa F., Synergism between RPBF Dofand RISBZ1bZIP activators in the regulation of rice seed expression genes. Plant Physiol,2006,141:1694-1707.
    154. Yan S. P., Zhang Q. Y., Tang Z. C., Su W. A. and Sun W. N., Comparative proteomic analys isprovides new insights into chilling stress responses in rice. Mol Cell Proteomics,2006,5:484-496.
    155. Yang O., Popova1O. V., Süthoff U., Lüking I., Dietz K. J. and Golldack D., The Arabidopsisbasic leucine zipper transcription factor AtbZIP24regulates complex transcriptional networksinvolved in abiotic stress resistance. Gene,2009,436:45-55.
    156. Yoshida T., Fujita Y., Sayama H., Kidokoro S., Maruyama K., Mizoi J., Shinozaki K. andYamaguchi S. K., AREB1, AREB2, and ABF3are master transcription factors thatcooperatively regulate ABRE-dependent ABA signaling involved in drought stress toleranceand require ABA for full activation. Plant J,2010,61:672-685.
    157. Yoshiba Y., Nanjo T., Miura S., Yamaguchi S. K. and Shinozaki K., Stress-responsive anddevelopmental regulation of D1-pyrroline-5-carboxylate synthetase1(P5CS1) geneexpression in Arabidopsis thaliana. Biochem Biophys Res Commun,1999,261:766-772.
    158. Zhang L. C., Zhao G. Y., Xia C., Jia J. Z., Liu X. and Kong X. Y., A wheat R2R3-MYB gene,TaMYB30-B, improves drought stress tolerance in transgenic Arabidops is. J Exp Bot,2012,63:5873-5885.
    159. Zhang Y., Xia N., Zhang G., Guo J., Huang L. L. and Kang Z. S., Cloning and expressionanalys is of a bZIP transcription factor gene in wheat induced by stripe rust pathogen. ActaAgronomica Sinica,2010,36:1221-1225.
    160. Zhang Y., Zhang G., Xia N., Wang X. J., Huang L. L. and Kang Z. S., Cloning andcharacterization of a bZIP transcription factor gene in wheat and its expression in response tostripe rust pathogen infection and abiotic stresses. Physiol Mol Plant Pathol,2009,73:88-94.
    161. Zheng X. G., Chen B., Lu G. J. and Han B., Overexpression of a NAC transcription factorenhances rice drought and salt tolerance. Biochem Biophys Res Commun,2009,379:985-989.
    162. Zhong R., Lee C. and Ye Z. H., Global analysis of direct targets of secondary wall NACmaster switches in Arabidopsis, Mol Plant,2010,3:1087-1093.
    163. Zhu J. K., Shi H., Lee B. and Damsz B., An Arabidopsis homeodomain transcription factorgene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl AcadSci USA,2004,101:9873-9878.
    164. Zhu J. K., Salt and drought stress signal transduction in plants. Annu Rev Plant Biol,2002,53:247-273.
    165. Zhu J. K., Verslues P. E., Zheng X. and Lee B., HOS10encodes an R2R3-type MYBtranscription factor essential for cold acclimation in plants. Proc Natl Acad Sci USA,2005,102:9966-9971.
    166. Zou M., Guan Y., Ren H., Zhang F. and Chen F., A bZIP transcription factor, OsABI5, isinvolved in rice fertility and stress tolerance. Plant Mol Biol,2008,66:675-683.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700