用户名: 密码: 验证码:
基于光能利用率模型和定量遥感的玉米生长监测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
及时准确的作物生长信息是作物生产管理和早期估产的重要依据,对保障国家粮食安全至关重要。作物生长遥感监测通过非接触、远距离探测的方式可快速获取大面积作物生长信息。定量遥感通过辐射传输模型和数学方法从遥感波谱信息中提取多种作物参数及环境参数,有助于定量化监测作物生长状况,是作物生长监测方法发展的重要方向。作物光能利用率模型是一种使用气象、遥感数据快速估算作物生产力、生物量的模型;模型中的光能利用率、光合有效辐射吸收比可通过定量遥感方法、产品参与估算,在发挥定量遥感作用方面有独特优势。因此本论文以生物量为监测指标,展开基于光能利用率模型和定量遥感的玉米生长监测方法研究。
     本研究在玉米主产区之一的华北平原设立研究区,通过玉米生长的地面遥感试验和区域遥感调查获取数据。针对一般作物光能利用率模型缺乏考虑叶片叶绿素含量、光合有效辐射强度影响生物量累积的问题,研究了叶片叶绿素含量参数化光能利用和光合有效辐射吸收比的方法、光合有效辐射强度参数化光能利用的方法,建立了叶绿素含量参数化光能利用的模型(LUEChl模型)、叶绿素含量参数化光合有效辐射吸收比的光能利用率模型(FAPARChl模型)、叶绿素含量同时参数化光能利用率和光合有效辐射吸收比的光能利用率模型(LUEChl+FAPARChl模型)、叶绿素含量和光合有效辐射强度参数化光能利用率的模型(LUEPAR模型);鉴于叶绿素含量在作物生长定量监测中的关键作用,进行了光谱指数法和冠层反射率模型反演法估算叶片叶绿素含量的研究;最后在作物光能利用率模型和叶绿素含量遥感方法的研究基础上,研究应用HJ-1多光谱遥感数据估算玉米生物量、监测玉米生长的方法,在区域上实现基于叶绿素含量参数化光能利用率模型和定量遥感的玉米生长监测方法。通过各项研究得到以下主要发现和结论。
     1.对比不使用叶绿素含量信息的MODIS GPP模型(RMSE=390.9g/m2,RE=21.5%),叶片叶绿素含量参数化的光能利用率模型,即LUEChl模型(RMSE=91.7g/m2,RE=5.1%)、FAPARChl模型(RMSE=173.8g/m2,RE=9.4%)、LUEChl+FAPARChl模型(RMSE=52.9g/m2,RE=2.6%)和LUEPAR模型(RMSE=75.2g/m2,RE=4.1%)显著降低了生物量估算误差;其中,LUEChl+FAPARChl模型首次在玉米生物量估算中使用叶绿素含量同时参数化光能利用率和光合有效辐射吸收比,生物量估算误差最低,为应用叶绿素含量遥感产品定量监测作物生长提供了可靠的模型。对比LUEChl模型和LUEPAR模型估算的净初级生产力,LUEPAR模型可降低光合有效辐射强度引起的误差,能更准确地估算不同天空散射比条件下的净初级生产力,在作物生长监测中有很好的应用潜力。
     2.叶片叶绿素含量光谱指数估算方法研究表明MTCI、Datt及SRCI指数算法简便且在玉米各生长期与叶片叶绿素含量的相关性稳定,适用于多个时期的叶片叶绿素含量遥感估算。冠层反射率模型反演法研究表明:先通过红光、近红外波段反演叶面积指数,然后使用叶面积指数和绿光或红边反射率反演叶片叶绿素含量的方法可有效可行;且使用红边反射率反演的效果与绿光反射率的相当。
     3.首次建立了综合多光谱定量遥感和叶绿素含量参数化光能利用率、光合有效辐射吸收比的光能利用率模型的玉米生长监测方法,并使用HJ-1多光谱数据在区域上实现该方法。该方法先使用多时相的HJ-1多光谱数据建立归一化植被指数曲线,根据玉米归一化植被指数曲线特征识别夏玉米并提取其空间分布;然后通过ACRM模型和HJ-1多光谱地表反射率先后反演得到玉米叶面积指数和叶片叶绿素含量;最后基于定量反演结果和LUEChl+FAPARChl模型估算生物量,实现玉米生长定量监测。
     综上,本研究通过建立叶片叶绿素含量参数化的光能利用率模型、研究叶片叶绿素含量遥感光谱指数估算方法和冠层反射率模型反演法,为应用多光谱定量遥感产品监测作物生长提供了相关理论依据和适用的光能利用率模型;通过HJ-1多光谱数据,实现了综合多光谱定量遥感和叶绿素含量参数化的光能利用率模型的区域的玉米生长监测方法,为使用高时空分辨率多光谱遥感数据定量监测作物生长提供很好的参考案例。
Timely and accurate monitoring of crop growth is very important for the decision-making onnational food security such as food pricing, grain reserve and food trade. The crop growth monitoringmethod based on remote sensing vegetation indices through the way of non-contact and long distancedetection can timely get large area crop growth information, is the main method in current cropmonitoring, and plays an important role in the decision making process of the national food security.The monitoring method based on quantitative remote sensing extracts crops and environmentalparameters from spectral information by using radiation transfer model and mathematical method, thenconducts a comprehensive monitoring of crop growth status. It is one of the important directions of cropgrowth monitoring method research, and how to apply more quantitative remote sensing methods andproducts in crop growth monitoring is the main content of this study. Crop light use efficiency modelhas its unique advantages in application of quantitative remote sensing. By improving the algorithm forlight use efficiency (LUE) or fraction of absorbed photosynthetically active radiation (FAPAR) in theLUE model, more data products of quantitative remote sensing can be used in crop growth monitoring,which is an efficient methodology to integrate quantitative remote sensing and LUE model into cropgrowth monitoring. This study defines biomass as the monitor index. The main objective of this study isto improve the method of crop growth monitoring by combining the LUE model and quantitativeremote sensing techniques.
     A series of the crop growth monitoring field experiments and regional remote sensing experimentswere conducted in North China Plain, which is the main maize growing region in China as well as in theworld. Regarding the lack of modeling of leaf chlorophyll content (LCC) and photosynthetically activeradiation (PAR) density effects in most crop LUE models, new models that biomass responds to LCCand PAR, including LUEChlmodel, FAPARChlmodel, LUEChl+FAPARChlmodel and LUEPARmodel werebuilt by improving the algorithms of LUE or FAPAR. LCC is a key role in estimating LUE and FAPAR,so algorithms of leaf chlorophyll content derived from remote sensing were investigated. CombinedLUEChl+FAPARChlmodel and chlorophyll content inversion method, the author implemented the maizegrowth monitoring using HJ-1multi-spectral remote sensing data. Through this study, the mainconclusions are as follows.
     1. Compared to the results (RMSE=390.9g/m2,RE=21.5%) of a LUE model that lack of modelingof leaf chlorophyll content effect, LUEChlmodel (RMSE=91.7g/m2,RE=5.1%), FAPARChlmodel(RMSE=173.8g/m2, RE=9.4%), LUEChl+FAPARChlmodel (RMSE=52.9g/m2, RE=2.6%) and LUEPARmodel (RMSE=75.2g/m2, RE=4.1%) significantly reduced biomass estimation error. LUEChl+FAPARChlmodel especially broke through limitations of many traditional LUE models by improving thealgorithms of LUE and FAPAR, is suitable for using chlorophyll content for crop growth monitoring.Compared NPP results of LUEChlmodel and LUEPARmodel, LUEPARmodel can lower NPP errors thatinduce by PAR density, is more accurate for NPP estimation in clear and overcast sky, performs a goodpotential in crop growth monitoring.
     2. The study of retrieve LCC using spectral index showed that, MTCI, Datt and SRCI performsgood correlation with LCC at whole growth period, is suitable for retrieve LCC at different periods.Canopy reflectance model inversion research showed that the method that retrieved leaf area index(LAI) firstly according to red and near infrared reflectance then retrieved LCC by LAI and green or rededge reflectance is effective, and the results of red edge reflectance has the same accuracy with greenreflectance in chlorophyll content inversion.
     3. A monitoring method of maize growth based on a LUE model that LCC parameterized LUE andFAPAR was established for the first time, and realized using HJ-1multispectral images. In this method,the spatial distribution of maize was extracted by normalized difference vegetation index curve thatbuilt by multi-temporal multispectral images, maize LAI and LCC were retrieved based on ACRMmodel and surface reflectivity, finally LUE, FAPAR and biomass response to LCC were estimated.
     In conclusion, this study established a series of new light use efficiency models that consideredLCC effects, which prepared theory and models for applying more quantitative remote sensing productsto monitoring crop growth. By HJ-1multispectral data, a monitoring method of maize growth based onquantitative remote sensing and a LUE model parameterize by LCC was carry out, which provide agood reference case for quantitative monitoring of crop growth using high resolution multispectral data.
引文
1.陈劲松,黄健熙,林珲,等.基于遥感信息和作物生长模型同化的水稻估产方法研究[J].中国科学:信息科学,2010,(S1):173~183.
    2.陈劲松,林晖,邵芸.微波遥感农业应用研究-水稻生长监测[M].北京:科学出版社,2010.
    3.陈燕丽,钟仕全,莫建飞,等. HJ-1星水稻生育期长势动态监测研究[J].江苏农业科学,2013,41(7):339~342.
    4.陈振林,张建平,王春乙,等.应用WOFOST模型模拟低温与干旱对玉米产量的综合影响[J].中国农业气象,2007,(4):440~442.
    5.戴俊英,鄂玉江,顾慰连.玉米根系的生长规律及其与产量关系的研究Ⅱ.玉米根系与叶的相互作用及其与产量的关系[J].作物学报,1988,14(4):310~314.
    6.鄂玉江,戴俊英,顾慰连.玉米根系的生长规律及其与产量关系的研究Ⅰ.玉米根系生长和吸收能力与地上部分的关系[J].作物学报,1988,14(2):149~154.
    7.方莉,余涛,顾行发,等.北京地区HJ-1卫星CCD数据的气溶胶反演及在大气校正中的应用[J].遥感学报,2013,(01):151~164.
    8.冯海霞,秦其明,蒋洪波,等.基于HJ-1A/1B CCD数据的干旱监测[J].农业工程学报,2011,(S1):358~365.
    9.高彦华,陈良富,柳钦火,等.叶绿素吸收的光合有效辐射比率的遥感估算模型研究[J].遥感学报,2006,10(5):798~803.
    10.何明珠.遥感数据与两叶光能利用率模型同化的总初级生产力模拟[硕士学位论文].南京大学,2013.
    11.何萍,金继运.氮肥用量对春玉米叶片衰老的影响及其机理研究[J].中国农业科学,1998,31(3):66~71.
    12.衡水市农业资源区划.衡水市农业资源区划[J].2007.
    13.黄妙芬,牛生丽,孙中平,等.环境一号卫星CCD相机水体信息采集特性分析[J].遥感信息,2010,(04):68~75.
    14.江东,王乃斌,杨小唤,等. NDVI曲线与农作物长势的时序互动规律[J].生态学报,2002,22(2):247~252.
    15.江东,王乃斌,杨小唤,等.植被指数-地面温度特征空间的生态学内涵及其应用[J].地理科学进展,2001,20(2):146~152.
    16.姜志伟,陈仲新,任建强,等.粒子滤波同化方法在CERES-Wheat作物模型估产中的应用[J].农业工程学报,2012,(14):138~146.
    17.姜志伟.区域冬小麦估产的遥感数据同化技术研究[博士学位论文].中国农业科学院,2012.
    18.廊坊市农业区划办公室.廊坊市农业资源区划[M].北京:中国农业出版社,2007.
    19.李得孝,郭月霞,员海燕,等.玉米叶绿素含量测定方法研究[J].中国农学通报,2005,6:153~155.
    20.李新,摆玉龙.顺序数据同化的Bayes滤波框架[J].地球科学进展,2010,25(5):515~522.
    21.李秀芬,王育光,季生太,等.作物长势监测系统(CGMS)在黑龙江省的应用[J].中国农业气象,2005,(03):155~157.
    22.梁顺林,李小文,王锦地.定量遥感理念与算法[M].北京:科学出版社,2013.
    23.林忠辉,项月琴,莫兴国,等.夏玉米叶面积指数增长模型的研究[J].中国生态农业学报,2003,11(4):69~72.
    24.刘可群,张晓阳,黄进良.江汉平原水稻长势遥感监测及估产模型[J].华中师范大学学报(自然科学版),1997,31(04):110~115.
    25.刘荣高,刘纪远,庄大方.基于MODIS数据估算晴空陆地光合有效辐射[J].地理学报,2004,(01):64~73.
    26.刘翔舸,刘春红,王鹏新,等.基于卡尔曼滤波的小麦叶面积指数同化方法[J].农业工程学报,2010,(S1):176~181.
    27.刘云,孙丹峰,宇振荣,等.基于NDVI-Ts特征空间的冬小麦水分诊断与长势监测[J].农业工程学报,2008,24(5):147~151.
    28.陆应诚,陈君颖,包颖,等.基于HJ-1星CCD数据的溢油遥感特性分析与信息提取[J].中国科学:信息科学,2011,(S1):193~201.
    29.麻雪艳.基于光合产物分配的玉米生物量动态模拟[硕士学位论文].中国气象科学研究院,
    2013.
    30.马玉平,王石立,张黎,等.基于遥感信息的作物模型重新初始化/参数化方法研究初探[J].植物生态学报,2005,(6):52~60.
    31.马玉平,王石立,张黎.针对华北小麦越冬的WOFOST模型改进[J].中国农业气象,2005,(3):145~149.
    32.山东省农业科学院,郭庆法,王庆成,等.中国玉米栽培学[M].上海科学技术出版社,2004.
    33.史定珊,毛留喜. NOAA/AVHRR冬小麦苗情长势遥感动态监测方法研究[J].气象学报,1992,(04):520~523.
    34.苏正淑,张宪政.几种测定植物叶绿素含量的方法比较[J].植物生理学通讯,1989,5:77~78.
    35.唐华俊.新形势下中国粮食自给战略[J].农业经济问题,2014,(02):4~10.
    36.陶欣,范闻捷,王大成,等.植被FAPAR的遥感模型与反演研究[J].地球科学进展,2009,24(7):741~747.
    37.王东伟,王锦地,梁顺林.作物生长模型同化MODIS反射率方法提取作物叶面积指数[J].中国科学:地球科学,2010,(01):73~83.
    38.王来刚,郑国清,陈怀亮,等.基于HJ-CCD影像的河南省冬小麦种植面积变化全覆盖监测[J].中国农业资源与区划,2011,(02):58~62.
    39.王倩.2013年玉米行情回顾及后市展望[J].饲料广角,2014,(01):34~36.
    40.王涛,吕昌河,于伯华.基于WOFOST模型的京津冀地区冬小麦生产潜力评价[J].自然资源学报,2010,(3):475~487.
    41.魏新彩,王新生,刘海,等. HJ卫星图像水稻种植面积的识别分析[J].地球信息科学学报,2012,(03):382~388.
    42.吴炳方,刘成林,张磊,等.中国陆地1km AVHRR数据集[J].遥感学报,2004,8(6):529~550.
    43.吴炳方,张峰,刘成林,等.农作物长势综合遥感监测方法[J].遥感学报,2004,8(6):498~514.
    44.吴炳方.全国农情监测与估产的运行化遥感方法[J].地理学报,2000,55(1):25~35.
    45.吴炳方.中国农情遥感速报系统[J].遥感学报,2004,8(6):481~497.
    46.武维华.植物生理学[M].北京:科学出版社,2003.
    47.夏叡,李云梅,吴传庆,等.基于HJ-1号卫星数据的太湖悬浮物浓度空间分布和变异研究[J].地理科学,2011,31(2):197~203.
    48.闫岩,柳钦火,刘强,等.基于遥感数据与作物生长模型同化的冬小麦长势监测与估产方法研究[J].遥感学报,2006,10(5):804~811.
    49.杨邦杰,裴志远,周清波,等.我国农情遥感监测关键技术研究进展[J].农业工程学报,2002,18(3):191~194.
    50.杨邦杰,裴志远.农作物长势的定义与遥感监测[J].农业工程学报,1999,15(03):214~218.
    51.杨粉团,顾晓鹤,李刚,等.利用多时相HJ-CCD遥感影像监测玉米粘虫灾情空间分布[J].农业工程学报,2013,(14):156~163.
    52.杨鹏,吴文斌,周清波,等.基于作物模型与叶面积指数遥感影像同化的区域单产估测研究[J].农业工程学报,2007,(9):130~136.
    53.杨沈斌,申双和,李秉柏,等. ASAR数据与水稻作物模型同化制作水稻产量分布图(英文)[J].遥感学报,2009,(2):282~290.
    54.杨婷,张慧,王桥,等.基于HJ-1A卫星超光谱数据的太湖叶绿素a浓度及悬浮物浓度反演[J].环境科学,2011,32(11):3207~3214.
    55.张明伟,周清波,陈仲新,等.基于MODIS EVI时间序列的冬小麦长势监测[J].中国农业资源与区划,2007,28(2):29~33.
    56.张玉环,李正强,侯伟真,等.利用HJ-1CCD高分辨率传感器反演灰霾气溶胶光学厚度[J].遥感学报,2013,(04):959~969.
    57.周嗣松,肖乾广,陈维英,等. AVHRR资料在农作物生长状况监测中的应用[J].农业现代化研究,1985,(06):51~53.
    58.朱元励,朱艳,黄彦,等.应用粒子群算法的遥感信息与水稻生长模型同化技术[J].遥感学报,2010,(6):1226~1240.
    59. Baigorria G.A., Jones J.W., Shin D.W., et al. Assessing uncertainties in crop model simulationsusing daily bias-corrected regional circulation model outputs[J]. Climate Research,2007,34(3):211~222.
    60. Barton C.V.M., North P.R.J. Remote sensing of canopy light use efficiency using thephotochemical reflectance index: Model and sensitivity analysis[J]. Remote Sensing ofEnvironment,2001,78(3):264~273.
    61. Baruth B., Genovese G., Leo O. CGMS version9.2User manual and technical documentation[M].2007.
    62. Blackburn G.A. Quantifying chlorophylls and caroteniods at leaf and canopy scales: An evaluationof some hyperspectral approaches[J]. Remote sensing of environment,1998,66(3):273~285.
    63. Boegh E., Soegaard H., Broge N., et al. Airborne multispectral data for quantifying leaf area index,nitrogen concentration, and photosynthetic efficiency in agriculture[J]. Remote Sensing ofEnvironment,2002,81(2-3):179~193.
    64. Brisson N., Gary C., Justes E., et al. An overview of the crop model stics[J]. European Journal ofAgronomy,2003,18(3–4):309~332.
    65. Broge N.H., Mortensen J.V. Deriving green crop area index and canopy chlorophyll density ofwinter wheat from spectral reflectance data[J]. Remote Sensing of Environment,2002,81(1):45~57.
    66. Caemmerer S. Steady-state models of photosynthesis[J]. Plant, cell&environment,2013:36(9):1617-1630.
    67. Campbell G.S., Norman J.M. The description and measurement of plant canopy structure[J]. Plantcanopies: their growth, form and function,1989:1~19.
    68. Cao M., Woodward F.I. Dynamic responses of terrestrial ecosystem carbon cycling to globalclimate change[J]. Nature,1998b,393(6682):249~252.
    69. Cao M., Woodward F.I. Net primary and ecosystem production and carbon stocks of terrestrialecosystems and their responses to climate change[J]. Global Change Biology,1998a,4(2):185~198.
    70. Carter G.A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress[J].International Journal of Remote Sensing,1994,15(3):697~703.
    71. Casa R., Varella H., Buis S., et al. Forcing a wheat crop model with LAI data to access agronomicvariables: Evaluation of the impact of model and LAI uncertainties and comparison with anempirical approach[J]. European Journal of Agronomy,2012,37(1):1~10.
    72. Chen J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications[J].Canadian Journal of Remote Sensing,1996,22(3):229~242.
    73. Chen J.M., Liu J., Cihlar J., et al. Daily canopy photosynthesis model through temporal and spatialscaling for remote sensing applications[J]. Ecological modelling,1999,124(2):99~119.
    74. Chen X., Meng J., Wu B., et al. Monitoring corn FPAR based on HJ-1CCD[J]. Transactions of theChinese Society of Agricultural Engineering,2010,26(SUPPL1):241~245.
    75. Cho M.A., Skidmore A.K. A new technique for extracting the red edge position from hyperspectraldata: The linear extrapolation method[J]. Remote sensing of environment,2006,101(2):181~193.
    76. Ciganda V.S., Gitelson A.A., Schepers J. How deep does a remote sensor sense? Expression ofchlorophyll content in a maize canopy[J]. Remote Sensing of Environment,2012,126(0):240~247.
    77. Claverie M., Demarez V., Duchemin B., et al. Maize and sunflower biomass estimation insouthwest France using high spatial and temporal resolution remote sensing data[J]. RemoteSensing of Environment,2012,124(0):844~857.
    78. Clevers J.G.P.W., van Leeuwen H.J.C. Combined use of optical and microwave remote sensingdata for crop growth monitoring[J]. Remote Sensing of Environment,1996,56(1):42~51.
    79. Collatz G.J., Ribas-Carbo M., Berry J.A. Coupled photosynthesis-stomatal conductance model forleaves of C4plants[J]. Functional Plant Biology,1992,19(5):519~538.
    80. Damour G, Simonneau T, Cochard H, et al. An overview of models of stomatal conductance at theleaf level[J]. Plant, cell&environment,2010,33(9):1419~1438.
    81. Dash J., Curran P.J. The MERIS terrestrial chlorophyll index[J]. International Journal of RemoteSensing,2004,25(23):5403~5413.
    82. Datt B. Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll a+b, and Total CarotenoidContent in Eucalyptus Leaves[J]. Remote Sensing of Environment,1998,66(2):111~121.
    83. Datt B. Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves[J].International Journal of Remote Sensing,1999,20(14):2741~2759.
    84. Daughtry C.S.T., Walthall C.L., Kim M.S., et al. Estimating Corn Leaf Chlorophyll Concentrationfrom Leaf and Canopy Reflectance[J]. Remote Sensing of Environment,2000,74(2):229~239.
    85. De Wit A.J.W., Boogaard H.L., VanDiepen C.A. Spatial resolution of precipitation and radiation:The effect on regional crop yield forecasts[J]. Agricultural and Forest Meteorology,2005,135(1–4):156~168.
    86. De Wit A.J.W., Van Diepen C.A. Crop growth modelling and crop yield forecasting usingsatellite-derived meteorological inputs[J]. International Journal of Applied Earth Observation andGeoinformation,2008,10(4):414~425.
    87. Dente L., Satalino G., Mattia F., et al. Assimilation of leaf area index derived from ASAR andMERIS data into CERES-Wheat model to map wheat yield[J]. Remote Sensing of Environment,2008,112(4):1395~1407.
    88. Evans J.R. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.)[J]. Plantphysiology,1983,72(2):297~302.
    89. Evans J.R., Seemann J.R. The allocation of protein nitrogen in the photosynthetic apparatus: costs,consequences, and control.[J]. Plant biology,1989,8:183~205.
    90. Fang H., Liang S., Hoogenboom G. Integration of MODIS LAI and vegetation index products withthe CSM–CERES–Maize model for corn yield estimation[J]. International Journal of RemoteSensing,2011,32(4):1039~1065.
    91. Fang H., Liang S., Hoogenboom G., et al. Corn‐yield estimation through assimilation of remotelysensed data into the CSM‐CERES‐Maize model[J]. International Journal of Remote Sensing,2008,29(10):3011~3032.
    92. Farquhar G.D., Von Caemmerer S., Berry J.A. Models of photosynthesis[J]. Plant Physiology,2001,125(1):42~45.
    93. Farquhar G.D., Von Caemmerer S.V., Berry J.A. A biochemical model of photosynthetic CO2assimilation in leaves of C3species[J]. Planta,1980a,149(1):78~90.
    94. Fensholt R., Sandholt I., Rasmussen M. S. Evaluation of MODIS LAI, fAPAR and the relationbetween fAPAR and NDVI in a semi-arid environment using in situ measurements[J]. RemoteSensing of Environment,2004,91(3):490-507.
    95. FAS USDA. Global Crop Production Analysis. Retrieved Mar1,2014, fromhttp://www.pecad.fas.usda.gov/
    96. Feret J., Fran?ois C., Asner G.P., et al. PROSPECT-4and5: Advances in the leaf optical propertiesmodel separating photosynthetic pigments[J]. Remote Sensing of Environment,2008,112(6):3030~3043.
    97. Folberth C., Gaiser T., Abbaspour K.C., et al. Regionalization of a large-scale crop growth modelfor sub-Saharan Africa: Model setup, evaluation, and estimation of maize yields[J]. Agriculture,Ecosystems& Environment,2012,151(0):21~33.
    98. Gaiser T., Judex M., Hiepe C., et al. Regional simulation of maize production in tropical savannafallow systems as affected by fallow availability[J]. Agricultural Systems,2010,103(9):656~665.
    99. Gamon J.A., Penuelas J., Field C.B. A narrow-waveband spectral index that tracks diurnal changesin photosynthetic efficiency[J]. Remote Sensing of Environment,1992,41(1):35~44.
    100. Genovese G., Vignolles C., Nègre T., et al. A methodology for a combined use of normaliseddifference vegetation index and CORINE land cover data for crop yield monitoring and forecasting.A case study on Spain[J]. Agronomie,2001,21(1):91~111.
    101. Gitelson A., Merzlyak M.N. Quantitative estimation of chlorophyll-a using reflectance spectra:Experiments with autumn chestnut and maple leaves[J]. Journal of Photochemistry andPhotobiology B: Biology,1994,22(3):247~252.
    102. Gitelson A.A., Gritz Y., Merzlyak M.N. Relationships between leaf chlorophyll content andspectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plantleaves[J]. Journal of Plant Physiology,2003,160(3):271~282.
    103. Gitelson A.A., Peng Y., Masek J.G., et al. Remote estimation of crop gross primary production withLandsat data[J]. Remote Sensing of Environment,2012,121(0):404~414.
    104. Gitelson A. A., Vi?a A., Verma S. B., et al. Relationship between gross primary production andchlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity[J].Journal of Geophysical Research: Atmospheres (1984–2012),2006,111(D8).
    105. Goetz S.J., Prince S.D., Goward S.N., et al. Satellite remote sensing of primary production: animproved production efficiency modeling approach[J]. Ecological Modelling,1999,122(3):239~255.
    106. Hall F.G., Hilker T., Coops N.C. Data assimilation of photosynthetic light-use efficiency usingmulti-angular satellite data: I. Model formulation[J]. Remote Sensing of Environment,2012,121(0):301~308.
    107. Hall F.G., Hilker T., Coops N.C. PHOTOSYNSAT, photosynthesis from space: Theoreticalfoundations of a satellite concept and validation from tower and spaceborne data[J]. RemoteSensing of Environment,2011,115(8):1918~1925.
    108. Hall F.G., Hilker T., Coops N.C., et al. Multi-angle remote sensing of forest light use efficiency byobserving PRI variation with canopy shadow fraction[J]. Remote Sensing of Environment,2008,112(7):3201~3211.
    109. Hatchell D.C. Analytical Spectral Devices Technical Guide[M].1999.
    110. He J., Dukes M.D., Hochmuth G.J., et al. Evaluation of Sweet Corn Yield and Nitrogen Leachingwith CERES-Maize Considering Input Parameter Uncertainties[J]. Transactions of the ASABE,2011,54(4):1257~1268.
    111. Hilker T., Coops N.C., Coggins S.B., et al. Detection of foliage conditions and disturbance frommulti-angular high spectral resolution remote sensing[J]. Remote Sensing of Environment,2009,113(2):421~434.
    112. Hilker T., Coops N.C., Hall F.G., et al. Separating physiologically and directionally inducedchanges in PRI using BRDF models[J]. Remote Sensing of Environment,2008,112(6):2777~2788.
    113. Hilker T., Hall F.G., Coops N.C., et al. Remote sensing of photosynthetic light-use efficiency acrosstwo forested biomes: Spatial scaling[J]. Remote Sensing of Environment,2010,114(12):2863~2874.
    114. Hilker T., Hall F.G., Tucker C.J., et al. Data assimilation of photosynthetic light-use efficiencyusing multi-angular satellite data: II Model implementation and validation[J]. Remote Sensing ofEnvironment,2012,121(0):287~300.
    115. Hilker T., Lyapustin A., Hall F.G., et al. An assessment of photosynthetic light use efficiency fromspace: Modeling the atmospheric and directional impacts on PRI reflectance[J]. Remote Sensing ofEnvironment,2009,113(11):2463~2475.
    116. Hodges T., Botner D., Sakamoto C., et al. Using the CERES-Maize model to estimate productionfor the US Cornbelt[J]. Agricultural and Forest Meteorology,1987,40(4):293~303.
    117. Hosgood B., Jacquemoud S., Andreoli G., et al. Leaf optical properties experiment93(LOPEX93)[M]. European Commission,1995.
    118. Houborg R., Anderson M., Daughtry C. Utility of an image-based canopy reflectance modelingtool for remote estimation of LAI and leaf chlorophyll content at the field scale[J]. Remote Sensingof Environment,2009,113(1):259~274.
    119. Houborg R., Anderson M.C., Daughtry C.S.T., et al. Using leaf chlorophyll to parameterizelight-use-efficiency within a thermal-based carbon, water and energy exchange model[J]. RemoteSensing of Environment,2011,115(7):1694~1705.
    120. Houborg R., Boegh E. Mapping leaf chlorophyll and leaf area index using inverse and forwardcanopy reflectance modeling and SPOT reflectance data[J]. Remote sensing of environment,2008,112(1):186~202.
    121. Houborg R., Cescatti A., Migliavacca M., et al. Satellite retrievals of leaf chlorophyll andphotosynthetic capacity for improved modeling of GPP[J]. Agricultural and Forest Meteorology,2013,177:10~23.
    122. Huemmrich K.F., Gamon J.A., Tweedie C.E., et al. Remote sensing of tundra gross ecosystemproductivity and light use efficiency under varying temperature and moisture conditions[J].Remote Sensing of Environment,2010,114(3):481~489.
    123. Huete A., Didan K., Miura T., et al. Overview of the radiometric and biophysical performance ofthe MODIS vegetation indices[J]. Remote Sensing of Environment,2002,83(1-2):195~213.
    124. Huete A.R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment,1988,25(3):295~309.
    125. Huete A.R., Liu H.Q., Batchily K., et al. A comparison of vegetation indices over a global set ofTM images for EOS-MODIS[J]. Remote Sensing of Environment,1997,59(3):440~451.
    126. LI COR Inc.. Using the LI-6400Version5[M].2005.
    127. Inoue Y., Pe uelas J. Relationship between light use efficiency and photochemical reflectanceindex in soybean leaves as affected by soil water content[J]. International Journal of RemoteSensing,2006,27(22):5109~5114.
    128. Inoue Y., Sakaiya E., Zhu Y., et al. Diagnostic mapping of canopy nitrogen content in rice based onhyperspectral measurements[J]. Remote Sensing of Environment,2012,126:210~221.
    129. Jacquemoud S., Baret F. PROSPECT: A model of leaf optical properties spectra[J]. Remote sensingof environment,1990,34(2):75~91.
    130. Jones J.W., Hoogenboom G., Porter C.H., et al. The DSSAT cropping system model[J]. Europeanjournal of agronomy,2003,18(3):235~265.
    131. Kurosu T., Fujita M., Chiba K. Monitoring of rice crop growth from space using the ERS-1C-bandSAR[J]. Geoscience and Remote Sensing, IEEE Transactions on,1995,33(4):1092~1096.
    132. Lambers H., Chapin III F.S., Pons T.L. Plant water relations[M]. Springer,2008.
    133. le Maire G., Fran?ois C., Soudani K., et al. Calibration and validation of hyperspectral indices forthe estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area indexand leaf canopy biomass[J]. Remote Sensing of Environment,2008,112(10):3846~3864.
    134. Liu H., Yang J., He P., et al. Optimizing Parameters of CSM-CERES-Maize Model to ImproveSimulation Performance of Maize Growth and Nitrogen Uptake in Northeast China[J]. Journal ofIntegrative Agriculture,2012,11(11):1898~1913.
    135. Liu J., Chen J.M., Cihlar J., et al. A process-based boreal ecosystem productivity simulator usingremote sensing inputs[J]. Remote sensing of environment,1997,62(2):158~175.
    136. Liu J., Pattey E., Miller J.R., et al. Estimating crop stresses, aboveground dry biomass and yield ofcorn using multi-temporal optical data combined with a radiation use efficiency model[J]. RemoteSensing of Environment,2010,114(6):1167~1177.
    137. Liu R., Liang S., He H., et al. Mapping incident photosynthetically active radiation from MODISdata over China[J]. Remote Sensing of Environment,2008,112(3):998~1009.
    138. Lobell D.B., Asner G.P., Ortiz-Monasterio J.I., et al. Remote sensing of regional crop production inthe Yaqui Valley, Mexico: estimates and uncertainties[J]. Agriculture, Ecosystems&Environment,2003,94(2):205~220.
    139. Loomis R.S. Crop ecology: productivity and management in agricultural systems[M]. CambridgeUniversity Press,1992.
    140. Ma Y., Wang S., Zhang L., et al. Establishment of Winter Wheat Regional Simulation Model Basedon Remote Sensing Data and Its Application[J]. Acta Meteorologica Sinica,2006,(4):447~458.
    141. Maas S.J. Parameterized model of gramineous crop growth: I. Leaf area and dry masssimulation[J]. Agronomy Journal,1993a,85(2):348~353.
    142. Maas S.J. Parameterized model of gramineous crop growth: II. Within-season simulationcalibration[J]. Agronomy Journal,1993b,85(2):354~358.
    143. Maas S.J. Use of remotely-sensed information in agricultural crop growth models[J]. Ecologicalmodelling,1988,41(3):247~268.
    144. Maccioni A., Agati G., Mazzinghi P. New vegetation indices for remote measurement ofchlorophylls based on leaf directional reflectance spectra[J]. Journal of Photochemistry andPhotobiology B: Biology,2001,61(1-2):52~61.
    145. Main R., Cho M.A., Mathieu R., et al. An investigation into robust spectral indices for leafchlorophyll estimation[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2011,66(6):751~761.
    146. Markwell J., Osterman J.C., Mitchell J.L. Calibration of the Minolta SPAD-502leaf chlorophyllmeter[J]. Photosynthesis Research,1995,46(3):467~472.
    147. McCallum I., Wagner W., Schmullius C., et al. Comparison of four global FAPAR datasets overNorthern Eurasia for the year2000[J]. Remote Sensing of Environment,2010,114(5):941~949.
    148. Medlyn B.E. Physiological basis of the light use efficiency model[J]. Tree physiology,1998,18(3):167~176.
    149. Miller J.R., Hare E.W., WU J. Quantitative characterization of the vegetation red edge reflectance1.An inverted-Gaussian reflectance model[J]. International Journal of Remote Sensing,1990,11(10):1755~1773.
    150. Mo X., Chen J.M., Ju W., et al. Optimization of ecosystem model parameters through assimilatingeddy covariance flux data with an ensemble Kalman filter[J]. Ecological Modelling,2008,217(1-2):157~173.
    151. Moulin S., Bondeau A., Delecolle R. Combining agricultural crop models and satelliteobservations: from field to regional scales[J]. International Journal of Remote Sensing,1998,19(6):1021~1036.
    152. Nilson T. A theoretical analysis of the frequency of gaps in plant stands[J]. AgriculturalMeteorology,1971,8:25~38.
    153. Norman J.M. Scaling processes between leaf and canopy levels[J]. Scaling physiological processes:leaf to globe,1993,41~76.
    154. Oaks A. Efficiency of nitrogen utilization in C3and C4cereals.[J]. Plant physiology,1994,106(2):407.
    155. Paloscia S., Pampaloni P. Microwave polarization index for monitoring vegetation growth[J].Geoscience and Remote Sensing, IEEE Transactions on,1988,26(5):617~621.
    156. Peng Y., Gitelson A.A. Remote estimation of gross primary productivity in soybean and maizebased on total crop chlorophyll content[J]. Remote Sensing of Environment,2012,117(0):440~448.
    157. Peng Y., Gitelson A.A., Keydan G., et al. Remote estimation of gross primary production in maizeand support for a new paradigm based on total crop chlorophyll content[J]. Remote Sensing ofEnvironment,2011,115(4):978~989.
    158. Plummer S., Arino O., Simon M., et al. Establishing a earth observation product service for theterrestrial carbon community: The GLOBCARBON initiative[J]. Mitigation and adaptationstrategies for global change,2006,11(1):97~111.
    159. Poorter H., Remkes C., Lambers H. Carbon and nitrogen economy of24wild species differing inrelative growth rate[J]. Plant Physiology,1990,94(2):621~627.
    160. Potter C.S., Randerson J.T., Field C.B., et al. Terrestrial ecosystem production: A process modelbased on global satellite and surface data[J]. Global Biogeochemical Cycles,1993,7(4):811~841.
    161. Potter E., Wood J., Nicholl C. SunScan Canopy Analysis System User Manual[M].1996.
    162. Prado C.D.A., De Moraes J. Photosynthetic capacity and specific leaf mass in twenty woodyspecies of Cerrado vegetation under field conditions[J]. Photosynthetica,1997,33(1):103~112.
    163. Prince S.D., Goward S.N. Global Primary Production: A Remote Sensing Approach[J]. Journal ofBiogeography,1995,22(4/5):815~835.
    164. Reich P.B., Walters M.B., Ellsworth D.S., et al. Photosynthesis-nitrogen relations in Amazoniantree species[J]. Oecologia,1994,97(1):62~72.
    165. Reynolds C. A.. Input data sources, climate normals, crop models, and data extraction routinesutilized by PECAD[C]//Third International Conference on Geospatial Information in Agricultureand Forestry.2001.
    166. Roebeling R.A., Van Putten E., Genovese G., et al. Application of Meteosat derived meteorologicalinformation for crop yield predictions in Europe[J]. International Journal of Remote Sensing,2004,25(23):5389~5401.
    167. Rojas O.. Operational maize yield model development and validation based on remote sensing andagro-meteorological data in Kenya[J]. International Journal of Remote Sensing,2007,28(17):3775~3793.
    168. Rondeauxa G., Stevena M., Baretb F. Optimization of soil-adjusted vegetation indices[J]. RemoteSensing of Environment,1996,55(2):95~107.
    169. Ruimy A., Saugier B., Dedieu G. Methodology for the estimation of terrestrial net primaryproduction from remotely sensed data[J]. Journal of Geophysical Research: Atmospheres(1984–2012),1994,99(D3):5263~5283.
    170. Running S.W., Hunt E.R. Generalization of a forest ecosystem process model for other biomes,BIOME-BGC, and an application for global-scale models[J]. Scaling physiological processes: Leafto globe,1993:141~158.
    171. Running S.W., Nemani R., Glassy J.M., et al. MODIS daily photosynthesis (PSN) and annual netprimary production(NPP) product (MOD17) Algorithm Theoretical Basis Document[M]. SCFAt-Launch Algorithm ATBD Doc,1999:1-59.
    172. Sage R.F., Pearcy R.W. The nitrogen use efficiency of C3and C4plants I. Leaf nitrogen, growth,and biomass partitioning in Chenopodium album (L.) and Amaranthus retroflexus (L.)[J]. PlantPhysiology,1987,84(3):954~958.
    173. Sage R.F., Pearcy R.W., Seemann J.R. The nitrogen use efficiency of C3and C4plants III. Leafnitrogen effects on the activity of carboxylating enzymes in Chenopodium album (L.) andAmaranthus retroflexus (L.)[J]. Plant physiology,1987,85(2):355~359.
    174. Shao Y., Fan X., Liu H., et al. Rice monitoring and production estimation using multitemporalRADARSAT[J]. Remote sensing of Environment,2001,76(3):310~325.
    175. Sims D.A., Gamon J.A. Relationships between leaf pigment content and spectral reflectance acrossa wide range of species, leaf structures and developmental stages[J]. Remote Sensing ofEnvironment,2002,81(2-3):337~354.
    176. Sinclair T.R., Horie T. Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review[J].Crop science,1989,29(1):90~98.
    177. Strachan I.B., Pattey E., Boisvert J.B. Impact of nitrogen and environmental conditions on corn asdetected by hyperspectral reflectance[J]. Remote Sensing of Environment,2002,80(2):213~224.
    178. Teng F., Wu W., Li D., et al. Yield estimation of winter wheat in North China Plain by using cropgrowth monitoring system (CGMS)[J].2012,1~4.
    179. Tetrault B., Baldwin B. Monitoring Global Crop Condition Indicators Using a Web-BasedVisualization Tool[J].2006,744~748.
    180. Trotter G.M., Whitehead D., Pinkney E.J. The photochemical reflectance index as a measure ofphotosynthetic light use efficiency for plants with varying foliar nitrogen contents[J]. InternationalJournal of Remote Sensing,2002,23(6):1207~1212.
    181. Van Diepen C.A., Wolf J., Van Keulen H., et al. WOFOST: a simulation model of cropproduction[J]. Soil use and management,1989,5(1):16~24.
    182. Van Diepen K., Boogaard H. History of CGMS in the MARS project[J]. Agro Informatica,2009,22(2):11~14.
    183. Van Leeuwen W.J., Orr B.J. Spectral vegetation indices and uncertainty: insights from a user'sperspective[J]. Geoscience and Remote Sensing, IEEE Transactions on,2006,44(7):1931~1933.
    184. Verger A., Baret F., Camacho F. Optimal modalities for radiative transfer-neural networkestimation of canopy biophysical characteristics: Evaluation over an agricultural area withCHRIS/PROBA observations[J]. Remote Sensing of Environment,2011,115(2):415~426.
    185. Verhoef W., Bach H. Coupled soil–leaf-canopy and atmosphere radiative transfer modeling tosimulate hyperspectral multi-angular surface reflectance and TOA radiance data[J]. RemoteSensing of Environment,2007,109(2):166~182.
    186. Vignolles C., Genovese G., Negre T. Crop yield forecast for France based on the CNDVItechnique[J].2002,22~35.
    187. Vogelmann J.E., Rock B.N., Moss D.M. Red edge spectral measurements from sugar mapleleaves[J]. International Journal of Remote Sensing,1993,14(8):1563~1575.
    188. Wallach D. Working with dynamic crop models: Evaluation, analysis, parameterization, andapplications[M]. Elsevier Science,2006.
    189. Weiss M., Baret F. CAN-EYE V6.1user manual[M].2010.
    190. Wigneron J., Ferrazzoli P., Calvet J., et al. A parametric study on passive and active microwaveobservations over a soybean crop[J]. Geoscience and Remote Sensing, IEEE Transactions on,1999,37(6):2728~2733.
    191. Wopereis M., Bouman B., Tuong T.P., et al. ORYZA-W: Rice growth model for irrigated andrainfed environments.[M].1996.
    192. Wu C., Chen J.M., Desai A.R., et al. Remote sensing of canopy light use efficiency in temperateand boreal forests of North America using MODIS imagery[J]. Remote Sensing of Environment,2012,118(0):60~72.
    193. Wu C., Chen J.M., Huang N. Predicting gross primary production from the enhanced vegetationindex and photosynthetically active radiation: Evaluation and calibration[J]. Remote Sensing ofEnvironment,2011,115(12):3424~3435.
    194. Wu C., Han X., Ni J., et al. Estimation of gross primary production in wheat from in situmeasurements[J]. International Journal of Applied Earth Observation and Geoinformation,2010,12(3):183~189.
    195. Wu C., Niu Z., Tang Q., et al. Estimating chlorophyll content from hyperspectral vegetation indices:Modeling and validation[J]. Agricultural and Forest Meteorology,2008,148(8–9):1230~1241.
    196. Wu C., Niu Z., Tang Q., et al. Remote estimation of gross primary production in wheat usingchlorophyll-related vegetation indices[J]. Agricultural and Forest Meteorology,2009,149(6–7):1015~1021.
    197. Xiao X., Boles S., Liu J., et al. Mapping paddy rice agriculture in southern China usingmulti-temporal MODIS images[J]. Remote Sensing of Environment,2005,95(4):480~492.
    198. Xiao X., Zhang Q., Hollinger D., et al. Modeling gross primary production of an evergreenneedleleaf forest using MODIS and climate data[J]. Ecological Applications,2005,15(3):954~969.
    199. Ye Z. A new model for relationship between irradiance and the rate of photosynthesis in Oryzasativa[J]. Photosynthetica,2007,45(4):637~640.
    200. Yuan W., Liu S., Zhou G., et al. Deriving a light use efficiency model from eddy covariance fluxdata for predicting daily gross primary production across biomes[J]. Agricultural and ForestMeteorology,2007,143(3-4):189~207.
    201. Zarco-Tejada P.J., Miller J.R. Land cover mapping at BOREAS using red edge spectral parametersfrom CASI imagery[J]. Journal of Geophysical Research: Atmospheres,1999,104(D22):27921~27933.
    202. Zhang Q., Middleton E.M., Margolis H.A., et al. Can a satellite-derived estimate of the fraction ofPAR absorbed by chlorophyll (FAPARchl) improve predictions of light-use efficiency andecosystem photosynthesis for a bo real aspen forest?[J]. Remote Sensing of Environment,2009,113(4):880~888.
    203. Zhang Q., Xiao X., Braswell B., et al. Estimating light absorption by chlorophyll, leaf and canopyin a deciduous broadleaf forest using MODIS data and a radiative transfer model[J]. RemoteSensing of Environment,2005,99(3):357~371.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700