用户名: 密码: 验证码:
棉花T-DNA激活标签突变体pag1分子机制的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是世界上最重要的纤维作物。世界人口迅速增长,可用耕地持续减少,只有提高亩产量和纤维品质才能应对全球持续增长的棉花需求。陆地棉(Gossypium hirsutum L.)是异源四倍体棉花,也是种植面积最广的棉花,大概占到全部棉花产量的95%。株高不仅是影响棉花株型的决定因素,也是决定产量的重要农艺性状。半矮化且侧枝较短的株型能够使棉花充分利用空间结构,增强抗倒伏能力,获得最佳产量。油菜素内酯(BR)是调节植物株型的重要因素,大田喷施和体外培养也已证实油菜素内酯能够促进棉花纤维的伸长,但是BR调节纤维伸长的机制仍不清楚。本研究以陆地棉T-DNA插入矮化突变体pag1(pagoda1)为研究材料,研究了其形态特征、生理生化特点和遗传特性,利用激活标签克隆了造成突变表型的基因,验证了基因功能;利用该油菜素内酯缺陷型突变体探究BR影响纤维发育的分子机理,为棉花株型的改良、产量和纤维品质的提高提供理论依据和支撑。主要研究结果如下:
     1.首次利用T-DNA激活标签技术,从四倍体棉花中创制了功能获得型突变体pag1, pag1表现出叶片褶皱暗绿、叶柄缩短、育性降低、纤维缩短和强度降低。细胞学观察表明pag1矮化紧缩的表型是由于细胞的伸长和扩展受到抑制造成的。在黑暗条件下pag1仍具有光形态建成反应,施加外源油菜素内酯能够恢复其生长,并且pag1中BR合成的基因受到反馈调节而表达上调,表明pag1不是一个BR不敏感型突变体而是BR缺陷型突变体。
     2.遗传分析表明该突变体是由显性单基因控制的,并且突变表型和T-DNA标签紧密连锁,进一步分析表明激活标签插入到一个P450基因的上游,表达分析证实该基因被激活表达。在拟南芥中超表达该基因后能够重演pag1的矮化表型,并且矮化表型可以被BL处理所恢复。上述结果表明该基因的超表达就是造成pag1矮化的原因,将其命名为PAG1。PAG1的表达受BR和光诱导,PAG1与CYP734A1相似程度较高,拟南芥CYP734A1能够使体内活性BR的失活,因此PAG1可能也参与了类似的BR失活反应。
     3.利用组成型启动子驱动PAG1可获得基因表达量不同的转化体,且转化体的株高与基因表达量成反比,该结果表明可以通过调控PAG1的表达量来调节转基因植物的株高。将来自于棉花的PAG1基因转化单子叶模式植物水稻后也能造成矮化的表型,这表明PAG1也可调节单子叶植物的株型。BR局部处理和嫁接实验证明BR在棉花体内不能进行长距离运输,这为利用PAG1特异调节内源BR含量提供了可能。利用绿色组织特异启动子驱动PAG1转化拟南芥后能够获得对生殖生长影响较弱但株型得到明显改变的转化体,这表明可以利用组织特异的启动子驱动PAG1的表达特定地改良植物株型。
     4. BR的合成和代谢同时进行,精密调控内源BR含量,以保证植物的正常生长和发育。PAG1在棉花纤维的起始和伸长期表达提高,可能在棉花纤维发育中起重要作用。pag1的成熟纤维长度显著缩短;体外胚珠培养条件下,pag1纤维仍然显著短于野生型,而在培养基中添加BL后能够恢复其纤维伸长,表明PAG1过表达导致内源BR失活从而抑制了纤维伸长。纤维的转录组分析表明,PAG1通过调节内源BR含量影响纤维发育,BR可能是通过影响超长链脂肪酸的合成来调节乙烯信号转导途径;BR缺陷影响了脂肪酸合成、乙烯信号转导、钙离子信号转导、细胞壁、细胞骨架和细胞生长相关基因的表达;这暗示BR可能是纤维发育的中枢调节因子,其处于调节纤维发育相关因子的上游,通过影响其他纤维发育相关途径调控纤维伸长。通过特异调节PAG1的表达有望在棉花株型和纤维品质改良方面发挥重要作用。
Cotton is the most important textile crop in the world. The world's population is growing fast,however, the available land continues to decline. Improving the acre yield and fiber quality is the onlyway to satisfy the world demands. Upland cotton (Gossypium hirsutum), an allotetraploid variety, is themost widely cultivated cotton species, accounting for95%of production worldwide. Plant height is notonly a determinant factor of plant architecture, but also an essential agronomic trait determining yield.An ideal cotton architecture includes semi-dwarf and shorter lateral branches, which allows a cottonplant to most efficiently use its three dimensional space and to produce the highest yield.Brassinosteriods (BR) is one of the most important factors effecting plant architecture. Sparing in thecotton field and invitro culture of ovules have proved that BR promote fiber elongation, nevertheless,the mechanism of BR regulation of fiber elongation remains elusive. In this paper, we reported ouridentification of a cotton activation-tagged mutant, and described its morphological, genetic,physiological and biochemical characteristics. The gene that caused the dwarf phenotype was clonedusing the T-DNA tag and verifed by transgenic research. The molecular mechanism of BR regulation offiber elongation was explored using the BR-deficiency mutant.
     1. We isolated the first gain of function mutant of allotetraploid cotton using theactivation-tagging technique. pag1shows extreme dwarfism, wrinkled and dark green leaves,shortened petioles, decreased pollen activity. Histological analysis revealed that cellelongation and expansion were largely reduced in pag1compared to wild-type, whichexplained the dwarfed and compact phenotype. pag1showed a de-etiolated phenotype in thedark, and exogenous application of brassinolide (BL) can rescue the growth of pag1,suggesting that pag1is a BR deficiency mutant but not a BR insensitive mutant.
     2. Genetic analysis showed that the dwarf phenotype was controlled by one single dominant gene,and co-segregated with the T-DNA tag. Future research proved that activation tag insertupstream of one P450gene and caused its over-expression. Ectopic expression of this gene(PAG1) in Arabidopsis caused severely dwarfed phenotypes, which can be restored by BLtreatment. Just like its homolog CYP734A1, PAG1was also up-regulated by exogenouslyapplied BL and light, which implied that PAG1may catabolize active BRs in a similar manner.
     3. In the constitutive expression transgenic lines, the plant height is inversely proportional toPAG1expression level, which indicated that manipulation of PAG1expression can be used tocontrol plant height. The transgenic rice lines also showed dwarf stature, which suggested thatPAG1can also be used change monocot crop height. Tissue-specific treatment and grafingexperiment showed that BR can not transport over long distance and green-tissue specificpromoter drived PAG1can reduce the plant height but only slightly effect reproductive tissues,which suggested that Spatiotemporal manipulation of PAG1expression is a promising meansof improving plant architecture.
     4. Endogenous levels of BRs are mainly regulated through tissue-specific biosynthesis andcatabolism in order to maintain optimal plant growth and development. PAG1is highlyexpressed at fiber initiation and elongation stage, indicating PAG1play vital role in regulatingfiber development. The fiber of pag1is shorter than wild-type and can BL treatment can rescueits fiber elongation, which suggested that the over-expression of PAG1metabolized active BRsand effected fiber elongation. Transcriptome analysis demonstrated that PAG1plays crucialroles in regulating fiber development via controlling the level of endogenous bioactive BRs,which may affect ethylene signaling cascade by mediating VLCFA. Therefore BR may be avery important regulator of fiber elongation, a role which may be linked to effects on VLCFAbiosynthesis, ethylene signaling, the cell wall, and cytoskeleton-related genes expression.
引文
1. Anders S., Huber W. Differential expression analysis for sequence count data. Genome Biology,2010,11(10).
    2. Applequist W. L., Cronn R., Wendel J. F. Comparative development of fiber in wild andcultivated cotton. Evolution&Development,2001,3(1):3-17.
    3. AS Basra, and CP Malik. Development of the cotton fiber. Int Rev Cytol,1984,89:65-113.
    4. Ayliffe M. A., Pallotta M., Langridge P., Pryor A. J. A barley activation tagging system. PlantMolecular Biology,2007,64(3):329-347.
    5. Bai M. Y., Fan M., Oh E., Wang Z. Y. A Triple Helix-Loop-Helix/Basic Helix-Loop-HelixCascade Controls Cell Elongation Downstream of Multiple Hormonal and EnvironmentalSignaling Pathways in Arabidopsis. Plant Cell,2012,24(12):4917-4929.
    6. Bai M. Y., Zhang L. Y., Gampala S. S., Zhu S. W., Song W. Y., Chong K., Wang Z. Y. Functionsof OsBZR1and14-3-3proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci U S A,2007,104(34):13839-13844.
    7. Bajguz A. Metabolism of brassinosteroids in plants. Plant Physiol Biochem,2007,45(2):95-107.
    8. Bancos S., Nomura T., Sato T., Molnar G., Bishop G. J., Koncz C., Yokota T., Nagy F., SzekeresM. Regulation of transcript levels of the Arabidopsis cytochrome p450genes involved inbrassinosteroid biosynthesis. Plant Physiol,2002,130(1):504-513.
    9. Berna G., Robles P., Micol J. L. A mutational analysis of leaf morphogenesis in Arabidopsisthaliana. Genetics,1999,152(2):729-742.
    10. Bishop G. J. Refining the plant steroid hormone biosynthesis pathway. Trends Plant Sci,2007,12(9):377-380.
    11. Bishop G. J., Koncz C. Brassinosteroids and plant steroid hormone signaling. Plant Cell,2002,14Suppl: S97-110.
    12. Busov V., Yordanov Y., Gou J. Q., Meilan R., Ma C., Regan S., Strauss S. Activation tagging isan effective gene tagging system in Populus. Tree Genetics&Genomes,2011,7(1):91-101.
    13. Busov V. B., Meilan R., Pearce D. W., Ma C. P., Rood S. B., Strauss S. H. Activation tagging ofa dominant gibberellin catabolism gene (GA2-oxidase) from poplar that regulates tree stature.Plant Physiology,2003,132(3):1283-1291.
    14. Caldwell D. G., McCallum N., Shaw P., Muehlbauer G. J., Marshall D. F., Waugh R. Astructured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.).Plant Journal,2004,40(1):143-150.
    15. Chandler P. M., Marion-Poll A., Ellis M., Gubler F. Mutants at the Slender1Locus of Barley cvHimalaya. Molecular and Physiological Characterization. Plant Physiology,2002,129(1):181-190.
    16. Chen X. S., Di J. C., Xu N. Y., Xiao S. H., Liu J. G.[The inheritance of an ultra-dwarf plantmutant from upland cotton]. Yi Chuan,2007,29(4):471-474.
    17. Choe S., Dilkes B. P., Fujioka S., Takatsuto S., Sakurai A., Feldmann K. A. The DWF4gene ofArabidopsis encodes a cytochrome P450that mediates multiple22alpha-hydroxylation steps inbrassinosteroid biosynthesis. Plant Cell,1998,10(2):231-243.
    18. Clough S. J., Bent A. F. Floral dip: a simplified method for Agrobacterium-mediatedtransformation of Arabidopsis thaliana. Plant Journal,1998,16(6):735-743.
    19. Clouse S. D. Molecular genetic studies confirm the role of brassinosteroids in plant growth anddevelopment. The Plant Journal,1996,10(1):1-8.
    20. Clouse S. D. Brassinosteroid signal transduction: clarifying the pathway from ligand perceptionto gene expression. Molecular Cell,2002,10(5):973-982.
    21. Clouse S. D. Brassinosteroid signal transduction: from receptor kinase activation totranscriptional networks regulating plant development. The Plant Cell Online,2011,23(4):1219-1230.
    22. Clouse S. D., Sasse J. M. Brassinosteroids: Essential regulators of plant growth anddevelopment. Annual Review of Plant Physiology and Plant Molecular Biology,1998,49:427-451.
    23. Coll-Garcia D., Mazuch J., Altmann T., Mussig C. EXORDIUM regulatesbrassinosteroid-responsive genes. Febs Letters,2004,563(1-3):82-86.
    24. Ding M., Jiang Y., Cao Y., Lin L., He S., Zhou W., Rong J. Gene expression profile analysis ofLigon lintless-1(Li1) mutant reveals important genes and pathways in cotton leaf and fiberdevelopment. Gene,2014,535(2):273-285.
    25. Divi U. K., Krishna P. Brassinosteroid: a biotechnological target for enhancing crop yield andstress tolerance. New Biotechnology,2009,26(3-4):131-136.
    26. Du J., Huang Y. P., Xi J., Cao M. J., Ni W. S., Chen X., Zhu J. K., Oliver D. J., Xiang C. B.Functional gene-mining for salt-tolerance genes with the power of Arabidopsis. Plant J,2008,56(4):653-664.
    27. Du L. Q., Poovaiah B. W. Ca2+/calmodulin is critical for brassinosteroid biosynthesis and plantgrowth. Nature,2005,437(7059):741-745.
    28. Fernandes J., Dong Q., Schneider B., Morrow D. J., Nan G. L., Brendel V., Walbot V.Genome-wide mutagenesis of Zea mays L. using RescueMu transposons. Genome Biol,2004,5(10): R82.
    29. Fu F. F., Ye R., Xu S. P., Xue H. W. Studies on rice seed quality through analysis of alarge-scale T-DNA insertion population. Cell Research,2009,19(3):380-391.
    30. Fujioka S., Yamane H., Spray C. R., Katsumi M., Phinney B. O., Gaskin P., MacMillan J.,Takahashi N. The dominant non-gibberellin-responding dwarf mutant (D8) of maizeaccumulates native gibberellins. Proceedings of the National Academy of Sciences,1988,85(23):9031-9035.
    31. Fujioka S., Yokota T. Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol,2003,54:137-164.
    32. Fujita M., Mizukado S., Fujita Y., Ichikawa T., Nakazawa M., Seki M., Matsui M.,Yamaguchi-Shinozaki K., Shinozaki K. Identification of stress-tolerance-relatedtranscription-factor genes via mini-scale Full-length cDNA Over-eXpressor (FOX) genehunting system. Biochem Biophys Res Commun,2007,364(2):250-257.
    33. Gampala S. S., Kim T. W., He J. X., Tang W. Q., Deng Z. P., Bai M. Y., Guan S. H., Lalonde S.,Sun Y., Gendron J. M., Chen H. J., Shibagaki N., Ferl R. J., Ehrhardt D., Chong K., BurlingameA. L., Wang Z. Y. An essential role for14-3-3proteins in brassinosteroid signal transduction inArabidopsis. Dev Cell,2007,13(2):177-189.
    34. Geldner N., Hyman D. L., Wang X. L., Schumacher K., Chory J. Endosomal signaling of plantsteroid receptor kinase BRI1. Genes&Development,2007,21(13):1598-1602.
    35. Goda H., Shimada Y., Asami T., Fujioka S., Yoshida S. Microarray analysis ofbrassinosteroid-regulated genes in Arabidopsis. Plant Physiol,2002,130(3):1319-1334.
    36. Gomi K., Sasaki A., Itoh H., Ueguchi‐Tanaka M., Ashikari M., Kitano H., Matsuoka M. GID2,an F‐box subunit of the SCF E3complex, specifically interacts with phosphorylated SLR1protein and regulates the gibberellin‐dependent degradation of SLR1in rice. The PlantJournal,2004,37(4):626-634.
    37. Gou X. P., Yin H. J., He K., Du J. B., Yi J., Xu S. B., Lin H. H., Clouse S. D., Li J. GeneticEvidence for an Indispensable Role of Somatic Embryogenesis Receptor Kinases inBrassinosteroid Signaling. Plos Genetics,2012,8(1).
    38. Grove M. D., Spencer G. F., Rohwedder W. K., Mandava N., Worley J. F., Warthen J. D.,Steffens G. L., Flippen-Anderson J. L., Cook J. C. Brassinolide, a plant growth-promotingsteroid isolated from Brassica napus pollen.1979.
    39. Guo Z., Fujioka S., Blancaflor E. B., Miao S., Gou X., Li J. TCP1modulates brassinosteroidbiosynthesis by regulating the expression of the key biosynthetic gene DWARF4in Arabidopsisthaliana. Plant Cell,2010,22(4):1161-1173.
    40. He J. X., Gendron J. M., Sun Y., Gampala S. S. L., Gendron N., Sun C. Q., Wang Z. Y. BZR1isa transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses.Science,2005,307(5715):1634-1638.
    41. He J. X., Gendron J. M., Yang Y. L., Li J. M., Wang Z. Y. The GSK3-like kinase BIN2phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signalingpathway in Arabidopsis. Proc Natl Acad Sci U S A,2002,99(15):10185-10190.
    42. He X. C., Qin Y. M., Xu Y., Hu C. Y., Zhu Y. X. Molecular cloning, expression profiling, andyeast complementation of19beta-tubulin cDNAs from developing cotton ovules. Journal ofExperimental Botany,2008,59(10):2687-2695.
    43. Hinchliffe D. J., Turley R. B., Naoumkina M., Kim H. J., Tang Y., Yeater K. M., Li P., Fang D.D. A combined functional and structural genomics approach identified an EST-SSR markerwith complete linkage to the Ligon lintless-2genetic locus in cotton (Gossypium hirsutum L.).Bmc Genomics,2011,12:445.
    44. Hong Z., Ueguchi-Tanaka M., Fujioka S., Takatsuto S., Yoshida S., Hasegawa Y., Ashikari M.,Kitano H., Matsuoka M. The Rice brassinosteroid-deficient dwarf2mutant, defective in the ricehomolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulatedalternative bioactive brassinosteroid, dolichosterone. Plant Cell,2005,17(8):2243-2254.
    45. Hong Z., Ueguchi‐Tanaka M., Shimizu‐Sato S., Inukai Y., Fujioka S., Shimada Y., TakatsutoS., Agetsuma M., Yoshida S., Watanabe Y. Loss‐of‐function of a rice brassinosteroidbiosynthetic enzyme, C‐6oxidase, prevents the organized arrangement and polar elongationof cells in the leaves and stem. The Plant Journal,2002,32(4):495-508.
    46. Hooley R. Gibberellins: perception, transduction and responses. Plant molecular biology,1994,26(5):1529-1555.
    47. Horiguchi G., Fujikura U., Ferjani A., Ishikawa N., Tsukaya H. Large-scale histological analysisof leaf mutants using two simple leaf observation methods: identification of novel geneticpathways governing the size and shape of leaves. Plant Journal,2006,48(4):638-644.
    48. Hothorn M., Belkhadir Y., Dreux M., Dabi T., Noel J. P., Wilson I. A., Chory J. Structural basisof steroid hormone perception by the receptor kinase BRI1. Nature,2011,474(7352):467-U490.
    49. Huang G.-Q., Gong S.-Y., Xu W.-L., Li W., Li P., Zhang C.-J., Li D.-D., Zheng Y., Li F.-G., LiX.-B. A fasciclin-like arabinogalactan protein, GhFLA1, is involved in fiber initiation andelongation of cotton. Plant Physiology,2013a,161(3):1278-1290.
    50. Huang G. Q., Gong S. Y., Xu W. L., Li W., Li P., Zhang C. J., Li D. D., Zheng Y., Li F. G., Li X.B. A Fasciclin-Like Arabinogalactan Protein, GhFLA1, Is Involved in Fiber Initiation andElongation of Cotton. Plant Physiology,2013b,161(3):1278-1290.
    51. Huang Q. S., Wang H. Y., Gao P., Wang G. Y., Xia G. X. Cloning and characterization of acalcium dependent protein kinase gene associated with cotton fiber development. Plant CellReports,2008,27(12):1869-1875.
    52. Husar S., Berthiller F., Fujioka S., Rozhon W., Khan M., Kalaivanan F., Elias L., Higgins G. S.,Li Y., Schuhmacher R., Krska R., Seto H., Vaistij F. E., Bowles D., Poppenberger B.Overexpression of the UGT73C6alters brassinosteroid glucoside formation in Arabidopsisthaliana. BMC Plant Biol,2011,11:51.
    53. Ichikawa T., Nakazawa M., Kawashima M., Iizumi H., Kuroda H., Kondou Y., Tsuhara Y.,Suzuki K., Ishikawa A., Seki M., Fujita M., Motohashi R., Nagata N., Takagi T., Shinozaki K.,Matsui M. The FOX hunting system: an alternative gain-of-function gene hunting technique.Plant J,2006,48(6):974-985.
    54. Ichikawa T., Nakazawa M., Kawashima M., Muto S., Gohda K., Suzuki K., Ishikawa A.,Kobayashi H., Yoshizumi T., Tsumoto Y., Tsuhara Y., Iizumi H., Goto Y., Matsui M. Sequencedatabase of1172T-DNA insertion sites in Arabidopsis activation-tagging lines that showedphenotypes in T1generation. Plant Journal,2003,36(3):421-429.
    55. Ikeda M., Fujiwara S., Mitsuda N., Ohme-Takagi M. A Triantagonistic Basic Helix-Loop-HelixSystem Regulates Cell Elongation in Arabidopsis. Plant Cell,2012,24(11):4483-4497.
    56. Imaizumi R., Sato S., Kameya N., Nakamura I., Nakamura Y., Tabata S., Ayabe S., Aoki T.Activation tagging approach in a model legume, Lotus japonicus. J Plant Res,2005,118(6):391-399.
    57. Irani N. G., Di Rubbo S., Mylle E., Van den Begin J., Schneider-Pizon J., Hnilikova J., Sisa M.,Buyst D., Vilarrasa-Blasi J., Szatmari A. M., Van Damme D., Mishev K., Codreanu M. C.,Kohout L., Strnad M., Cano-Delgado A. I., Friml J., Madder A., Russinova E. Fluorescentcastasterone reveals BRI1signaling from the plasma membrane. Nature Chemical Biology,2012,8(6):583-589.
    58. Jaillais Y., Hothorn M., Belkhadir Y., Dabi T., Nimchuk Z. L., Meyerowitz E. M., Chory J.Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membranerelease of its kinase inhibitor. Genes&Development,2011,25(3):232-237.
    59. JB H., RU G. On the occurrence of"crinkled dwarf" in Gossypium hirsutum.L. Journal ofGenetics,1937,34(03):437-446.
    60. Ji S. J., Lu Y. C., Feng J. X., Wei G., Li J., Shi Y. H., Fu Q., Liu D., Luo J. C., Zhu Y. X.Isolation and analyses of genes preferentially expressed during early cotton fiber developmentby subtractive PCR and cDNA array. Nucleic Acids Research,2003,31(10):2534-2543.
    61. Jia-Fu Tan, Li-Li Tu, Feng-Lin Deng, Hai-Yan Hu, Yi-Chun Nie, Xian-Long Zhang. A geneticand metabolic analysis revealed that cotton fiber cell development was retarded by flavonoidnaringenin. Plant Physiology,2013,162:86-95.
    62. Jiang S. Y., Bachmann D., La H., Ma Z., Venkatesh P. N., Ramamoorthy R., Ramachandran S.Ds insertion mutagenesis as an efficient tool to produce diverse variations for rice breeding.Plant molecular biology,2007,65(4):385-402.
    63. Jin-Ying Gou, Ling-Jian Wang, Shuang-Ping Chen, Wen-Li Hu, Xiao-Ya Chen. Geneexpression and metabolite profiles of cotton fiber during cell elongation and secondary cell wallsynthesis. Cell Research,2007,17:422-434.
    64. John M. E. Structural characterization of genes corresponding to cotton fiber mRNA, E6:reduced E6protein in transgenic plants by antisense gene. Plant Mol Biol,1996,30(2):297-306.
    65. John M. E. Genetic engineering strategies for cotton fiber modification. Cotton Fibers:Developmental Biology, Quality Improvement and Textile Processing. Food Products Press, animprinting of Haworth Press, Inc., New York,1999:271-292.
    66. John M. E., Crow L. J. Gene expression in cotton (Gossypium hirsutum L.) fiber: cloning of themRNAs. Proceedings of the National Academy of Sciences,1992,89(13):5769-5773.
    67. Kakimoto T. CKI1, a histidine kinase homolog implicated in cytokinin signal transduction.Science,1996,274(5289):982-985.
    68. Kikuchi S., Satoh K., Nagata T., Kawagashira N., Doi K., Kishimoto N., Yazaki J., Ishikawa M.,Yamada H., Ooka H., Hotta I., Kojima K., Namiki T., Ohneda E., Yahagi W., Suzuki K., Li C. J.,Ohtsuki K., Shishiki T., Otomo Y., Murakami K., Iida Y., Sugano S., Fujimura T., Suzuki Y.,Tsunoda Y., Kurosaki T., Kodama T., Masuda H., Kobayashi M., Xie Q., Lu M., Narikawa R.,Sugiyama A., Mizuno K., Yokomizo S., Niikura J., Ikeda R., Ishibiki J., Kawamata M.,Yoshimura A., Miura J., Kusumegi T., Oka M., Ryu R., Ueda M., Matsubara K., Kawai J.,Carninci P., Adachi J., Aizawa K., Arakawa T., Fukuda S., Hara A., Hashizume W., Hayatsu N.,Imotani K., Ishii Y., Itoh M., Kagawa I., Kondo S., Konno H., Miyazaki A., Osato N., Ota Y.,Saito R., Sasaki D., Sato K., Shibata K., Shinagawa A., Shiraki T., Yoshino M., Hayashizaki Y.,Yasunishi A. Collection, mapping, and annotation of over28,000cDNA clones from japonicarice. Science,2003,301(5631):376-379.
    69. Kim H. B., Kwon M., Ryu H., Fujioka S., Takatsuto S., Yoshida S., An C. S., Lee I., Hwang I.,Choe S. The regulation of DWARF4expression is likely a critical mechanism in maintainingthe homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiology,2006,140(2):548-557.
    70. Kim H. J., Triplett B. A. Cotton fiber growth in planta and in vitro. Models for plant cellelongation and cell wall biogenesis. Plant Physiology,2001,127(4):1361-1366.
    71. Kim S. K., Chang S. C., Lee E. J., Chung W. S., Kim Y. S., Hwang S., Lee J. S. Involvement ofbrassinosteroids in the gravitropic response of primary root of maize. Plant Physiology,2000,123(3):997-1004.
    72. Kim T.-W., Wang Z.-Y. Brassinosteroid signal transduction from receptor kinases totranscription factors. Annual Review of Plant Biology,2010,61:681-704.
    73. Kim T. W., Guan S. H., Burlingame A. L., Wang Z. Y. The CDG1Kinase MediatesBrassinosteroid Signal Transduction from BRI1Receptor Kinase to BSU1Phosphatase andGSK3-like Kinase BIN2. Molecular Cell,2011,43(4):561-571.
    74. Kim T. W., Guan S. H., Sun Y., Deng Z. P., Tang W. Q., Shang J. X., Sun Y., Burlingame A. L.,Wang Z. Y. Brassinosteroid signal transduction from cell-surface receptor kinases to nucleartranscription factors. Nature Cell Biology,2009,11(10):1254-U1233.
    75. Kinoshita T., Cano-Delgado A. C., Seto H., Hiranuma S., Fujioka S., Yoshida S., Chory J.Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature,2005,433(7022):167-171.
    76. Kondou Y., Higuchi M., Matsui M. High-Throughput Characterization of Plant Gene Functionsby Using Gain-of-Function Technology. Annual Review of Plant Biology,2010,61(1):373-393.
    77. Koorneef M., Elgersma A., Hanhart C., Loenen‐Martinet E. v., Rijn L. v., Zeevaart J. Agibberellin insensitive mutant of Arabidopsis thaliana. Physiologia plantarum,1985,65(1):33-39.
    78. Lee J., Burns T. H., Light G., Sun Y., Fokar M., Kasukabe Y., Fujisawa K., Maekawa Y., AllenR. D. Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiberelongation. Planta,2010,232(5):1191-1205.
    79. Lee J. J., Woodward A. W., Chen Z. J. Gene expression changes and early events in cotton fibredevelopment. Ann Bot,2007,100(7):1391-1401.
    80. Li J., Wen J., Lease K. A., Doke J. T., Tax F. E., Walker J. C. BAK1, an Arabidopsis LRRreceptor-like protein kinase, interacts with BRI1and modulates brassinosteroid signaling. Cell,2002,110(2):213-222.
    81. Li J. M., Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroidsignal transduction. Cell,1997,90(5):929-938.
    82. Li L., Wang X. L., Huang G. Q., Li X. B. Molecular characterization of cotton GhTUA9genespecifically expressed in fibre and involved in cell elongation. Journal of Experimental Botany,2007,58(12):3227-3238.
    83. Li X. B., Fan X. P., Wang X. L., Cai L., Yang W. C. The cotton ACTIN1gene is functionallyexpressed in fibers and participates in fiber elongation. Plant Cell,2005,17(3):859-875.
    84. Lisso J., Steinhauser D., Altmann T., Kopka J., Mussig C. Identification ofbrassinosteroid-related genes by means of transcript co-response analyses. Nucleic AcidsResearch,2005,33(8):2685-2696.
    85. Liu Y. G., Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification ofunknown flanking sequences. BioTechniques,2007,43(5):649-+.
    86. Luo M., Xiao Y., Li X., Lu X., Deng W., Li D., Hou L., Hu M., Li Y., Pei Y. GhDET2, a steroid5alpha-reductase, plays an important role in cotton fiber cell initiation and elongation. Plant J,2007,51(3):419-430.
    87. Ma J., Wei H., Song M., Pang C., Liu J., Wang L., Zhang J., Fan S., Yu S. TranscriptomeProfiling Analysis Reveals That Flavonoid and Ascorbate-Glutathione Cycle Are Importantduring Anther Development in Upland Cotton. PLoS One,2012,7(11).
    88. Makarevitch I., Thompson A., Muehlbauer G. J., Springer N. M. BRD1gene in maize encodes abrassinosteroid C-6oxidase. PloS one,2012,7(1): e30798.
    89. Maluszynski M., Ahloowalia B. S., Sigurbjornsson B. Application of in-Vivo and in-VitroMutation Techniques for Crop Improvement. Euphytica,1995,85(1-3):303-315.
    90. Mathews H., Clendennen S. K., Caldwell C. G., Liu X. L., Connors K., Matheis N., Schuster D.K., Menasco D. J., Wagoner W., Lightner J., Wagner D. R. Activation tagging in tomatoidentifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport.Plant Cell,2003,15(8):1689-1703.
    91. Mathur J., Molnar G., Fujioka S., Takatsuto S., Sakurai A., Yokota T., Adam G., Voigt B., NagyF., Maas C., Schell J., Koncz C., Szekeres M. Transcription of the Arabidopsis CPD gene,encoding a steroidogenic cytochrome P450, is negatively controlled by brassinosteroids. PlantJournal,1998,14(5):593-602.
    92. McSteen P., Leyser O. Shoot branching. Annu. Rev. Plant Biol.,2005,56:353-374.
    93. Miyao A., Iwasaki Y., Kitano H., Itoh J., Maekawa M., Murata K., Yatou O., Nagato Y.,Hirochika H. A large-scale collection of phenotypic data describing an insertional mutantpopulation to facilitate functional analysis of rice genes. Plant molecular biology,2007,63(5):625-635.
    94. Mori M., Nomura T., Ooka H., Ishizaka M., Yokota T., Sugimoto K., Okabe K., Kajiwara H.,Satoh K., Yamamoto K. Isolation and characterization of a rice dwarf mutant with a defect inbrassinosteroid biosynthesis. Plant Physiology,2002,130(3):1152-1161.
    95. Mortazavi A., Williams B. A., Mccue K., Schaeffer L., Wold B. Mapping and quantifyingmammalian transcriptomes by RNA-Seq. Nature Methods,2008,5(7):621-628.
    96. Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissuecultures. Physiologia Plantarum,1962,15(3):473-497.
    97. Mussig C., Fischer S., Altmann T. Brassinosteroid-regulated gene expression. Plant Physiol,2002,129(3):1241-1251.
    98. Mussig C., Shin G. H., Altmann T. Brassinosteroids promote root growth in Arabidopsis. PlantPhysiology,2003,133(3):1261-1271.
    99. Nadarajan N., Sree Rangasamy S. R. Inheritance of the fuzzless-lintless character in cotton(Gossypium hirsutum). Theoretical and Applied Genetics,1988,75(5):728-730.
    100. Nakamura H., Hakata M., Amano K., Miyao A., Toki N., Kajikawa M., Pang J., Higashi N.,Ando S., Toki S., Fujita M., Enju A., Seki M., Nakazawa M., Ichikawa T., Shinozaki K., MatsuiM., Nagamura Y., Hirochika H., Ichikawa H. A genome-wide gain-of function analysis of ricegenes using the FOX-hunting system. Plant Mol Biol,2007,65(4):357-371.
    101. Nakazawa M., Ichikawa T., Ishikawa A., Kobayashi H., Tsuhara Y., Kawashima M., Suzuki K.,Muto S., Matsui M. Activation tagging, a novel tool to dissect the functions of a gene family.Plant Journal,2003,34(5):741-750.
    102. Nam K. H., Li J. M. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling.Cell,2002,110(2):203-212.
    103. Neff M. M., Nguyen S. M., Malancharuvil E. J., Fujioka S., Noguchi T., Seto H., Tsubuki M.,Honda T., Takatsuto S., Yoshida S., Chory J. BAS1: A gene regulating brassinosteroid levelsand light responsiveness in Arabidopsis. Proc Natl Acad Sci U S A,1999,96(26):15316-15323.
    104. Nomura T., Ueno M., Yamada Y., Takatsuto S., Takeuchi Y., Yokota T. Roles of brassinosteroidsand related mRNAs in pea seed growth and germination. Plant Physiology,2007,143(4):1680-1688.
    105. Ohnishi T., Nomura T., Watanabe B., Ohta D., Yokota T., Miyagawa H., Sakata K., Mizutani M.Tomato cytochrome P450CYP734A7functions in brassinosteroid catabolism. Phytochemistry,2006,67(17):1895-1906.
    106. Peng J., Richards D. E., Hartley N. M., Murphy G. P., Devos K. M., Flintham J. E., Beales J.,Fish L. J., Worland A. J., Pelica F.‘Green revolution’genes encode mutant gibberellin responsemodulators. Nature,1999a,400(6741):256-261.
    107. Peng J. R., Richards D. E., Hartley N. M., Murphy G. P., Devos K. M., Flintham J. E., Beales J.,Fish L. J., Worland A. J., Pelica F., Sudhakar D., Christou P., Snape J. W., Gale M. D., HarberdN. P.'Green revolution' genes encode mutant gibberellin response modulators. Nature,1999b,400(6741):256-261.
    108. Peng P., Li J. Brassinosteroid signal transduction: A mix of conservation and novelty. Journal ofplant growth regulation,2003,22(4):298-312.
    109. Peng P., Yan Z., Zhu Y., Li J. Regulation of the Arabidopsis GSK3-like kinaseBRASSINOSTEROID-INSENSITIVE2through proteasome-mediated protein degradation.Molecular plant,2008,1(2):338-346.
    110. Peters J. L., Cnudde F., Gerats T. Forward genetics and map-based cloning approaches. Trendsin Plant Science,2003,8(10):484-491.
    111. Poppenberger B., Fujioka S., Soeno K., George G. L., Vaistij F. E., Hiranuma S., Seto H.,Takatsuto S., Adam G., Yoshida S., Bowles D. The UGT73C5of Arabidopsis thalianaglucosylates brassinosteroids. Proc Natl Acad Sci U S A,2005,102(42):15253-15258.
    112. Pu L., Li Q., Fan X., Yang W., Xue Y. The R2R3MYB transcription factor GhMYB109isrequired for cotton fiber development. Genetics,2008,180(2):811-820.
    113. Qin Y. M., Hu C. Y., Pang Y., Kastaniotis A. J., Hiltunen J. K., Zhu Y. X. SaturatedVery-Long-Chain Fatty Acids Promote Cotton Fiber and Arabidopsis Cell Elongation byActivating Ethylene Biosynthesis. The Plant Cell Online,2007a,19(11):3692-3704.
    114. Qin Y. M., Hu C. Y., Pang Y., Kastaniotis A. J., Hiltunen J. K., Zhu Y. X. Saturatedvery-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activatingethylene biosynthesis. Plant Cell,2007b,19(11):3692-3704.
    115. Qin Y. M., Zhu Y. X. How cotton fibers elongate: a tale of linear cell-growth mode. Curr OpinPlant Biol.,2011a,14(1):106-111.
    116. Qin Y. M., Zhu Y. X. How cotton fibers elongate: a tale of linear cell-growth mode. CurrentOpinion in Plant Biology,2011b,14(1):106-111.
    117. Reddy P. S., Mahanty S., Kaul T., Nair S., Sopory S. K., Reddy M. K. A high-throughputgenome-walking method and its use for cloning unknown flanking sequences. AnalyticalBiochemistry,2008,381(2):248-253.
    118. Renard M., Delourme R., Barret P., Brunel D., Froger N., Tanguy X. Mutant gene of the GRASfamily and plants with reduced development containing said mutant gene.2010,
    119. Rhyne C. L. The Inheritance of Yellow-Green, a Possible Mutation in Cotton. Genetics,1955,40(2):235-245.
    120. Rouleau M., Marsolais F., Richard M., Nicolle L., Voigt B., Adam G., Varin L. Inactivation ofbrassinosteroid biological activity by a salicylate-inducible steroid sulfotransferase fromBrassica napus. J Biol Chem,1999,274(30):20925-20930.
    121. Ruan Y. L. Boosting Seed Development as a New Strategy to Increase Cotton Fiber Yield andQuality. Journal of Integrative Plant Biology,2013,55(7):572-575.
    122. Ruan Y. L., Chourey P. S. A fiberless seed mutation in cotton is associated with lack of fibercell initiation in ovule epidermis and alterations in sucrose synthase expression and carbonpartitioning in developing seeds. Plant Physiology,1998,118(2):399-406.
    123. Russinova E., Borst J. W., Kwaaitaal M., Cano-Delgado A., Yin Y. H., Chory J., de Vries S. C.Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1andAtSERK3(BAK1). Plant Cell,2004,16(12):3216-3229.
    124. Sakamoto T., Kawabe A., Tokida-Segawa A., Shimizu B., Takatsuto S., Shimada Y., Fujioka S.,Mizutani M. Rice CYP734As function as multisubstrate and multifunctional enzymes inbrassinosteroid catabolism. Plant Journal,2011,67(1):1-12.
    125. Sakamoto T., Morinaka Y., Ohnishi T., Sunohara H., Fujioka S., Ueguchi-Tanaka M., MizutaniM., Sakata K., Takatsuto S., Yoshida S., Tanaka H., Kitano H., Matsuoka M. Erect leavescaused by brassinosteroid deficiency increase biomass production and grain yield in rice.Nature Biotechnology,2006,24(1):105-109.
    126. Settles A. M., Holding D. R., Tan B. C., Latshaw S. P., Liu J., Suzuki M., Li L., O'Brien B. A.,Fajardo D. S., Wroclawska E., Tseung C. W., Lai J. S., Hunter C. T., Avigne W. T., Baier J.,Messing J., Hannah L. C., Koch K. E., Becraft P. W., Larkins B. A., McCarty D. R.Sequence-indexed mutations in maize using the UniformMu transposon-tagging population.BMC Genomics,2007,8.
    127. Shang H.-H., Liu C.-L., Zhang C.-J., Li F.-L., Hong W.-D., Li F.-G. Histological andUltrastructural Observation Reveals Significant Cellular Differences between AgrobacteriumTransformed Embryogenic and Non-embryogenic Calli of Cotton. Journal of Integrative PlantBiology,2009,51(5):456-465.
    128. She J., Han Z. F., Kim T. W., Wang J. J., Cheng W., Chang J. B., Shi S. A., Wang J. W., Yang M.J., Wang Z. Y., Chai J. J. Structural insight into brassinosteroid perception by BRI1. Nature,2011,474(7352):472-U496.
    129. Sheng-Jian Ji, Ying‐Chun Lu, Jian‐Xun Feng, Gang Wei, Jun Li, Yong-Hui Shi, Qiang Fu,Di Liu, Jing-Chu Luo, Yu‐Xian Zhu. Isolation and analyses of genes preferentially expressedduring early cotton fiber development by subtractive PCR and cDNA array. Nucleic Acids Res,2003,31:2534-2543.
    130. Shi Y. H., Zhu S. W., Mao X. Z., Feng J. X., Qin Y. M., Zhang L., Cheng J., Wei L. P., Wang Z.Y., Zhu Y. X. Transcriptome profiling, molecular biological, and physiological studies reveal amajor role for ethylene in cotton fiber cell elongation. Plant Cell,2006,18(3):651-664.
    131. Silverstone A. L., Ciampaglio C. N., Sun T.-p. The Arabidopsis RGA gene encodes atranscriptional regulator repressing the gibberellin signal transduction pathway. The Plant CellOnline,1998,10(2):155-169.
    132. Song L., Shi Q. M., Yang X. H., Xu Z. H., Xue H. W. Membrane steroid-binding protein1(MSBP1) negatively regulates brassinosteroid signaling by enhancing the endocytosis of BAK1.Cell Research,2009,19(7):864-876.
    133. Spielmeyer W., Ellis M. H., Chandler P. M. Semidwarf (sd-1),“green revolution” rice, containsa defective gibberellin20-oxidase gene. Proceedings of the National Academy of Sciences,2002,99(13):9043-9048.
    134. Sun Y. Brassinosteroid Regulates Fiber Development on Cultured Cotton Ovules. Plant andCell Physiology,2005,46(8):1384-1391.
    135. Sun Y., Fan X. Y., Cao D. M., Tang W. Q., He K., Zhu J. Y., He J. X., Bai M. Y., Zhu S. W., OhE., Patil S., Kim T. W., Ji H. K., Wong W. H., Rhee S. Y., Wang Z. Y. Integration ofBrassinosteroid Signal Transduction with the Transcription Network for Plant GrowthRegulation in Arabidopsis. Dev Cell,2010a,19(5):765-777.
    136. Sun Y., Fan X. Y., Cao D. M., Tang W. Q., He K., Zhu J. Y., He J. X., Bai M. Y., Zhu S. W., OhE., Patil S., Kim T. W., Ji H. K., Wong W. H., Rhee S. Y., Wang Z. Y. Integration ofBrassinosteroid Signal Transduction with the Transcription Network for Plant GrowthRegulation in Arabidopsis. Developmental Cell,2010b,19(5):765-777.
    137. Swarbreck D., Wilks C., Lamesch P., Berardini T. Z., Garcia-Hernandez M., Foerster H., Li D.,Meyer T., Muller R., Ploetz L., Radenbaugh A., Singh S., Swing V., Tissier C., Zhang P., HualaE. The Arabidopsis Information Resource (TAIR): gene structure and function annotation.Nucleic Acids Research,2008,36: D1009-D1014.
    138. Symons G. M., Reid J. B. Brassinosteroids do not undergo long-distance transport in pea.Implications for the regulation of endogenous brassinosteroid levels. Plant Physiology,2004,135(4):2196-2206.
    139. Symons G. M., Ross J. J., Jager C. E., Reid J. B. Brassinosteroid transport. Journal ofExperimental Botany,2008,59(1):17-24.
    140. Tadege M., Wen J. Q., He J., Tu H. D., Kwak Y., Eschstruth A., Cayrel A., Endre G., Zhao P. X.,Chabaud M., Ratet P., Mysore K. S. Large-scale insertional mutagenesis using the TNT1retrotransposon in the model legume Medicago truncatula. Plant Journal,2008,54(2):335-347.
    141. Tanabe S., Ashikari M., Fujioka S., Takatsuto S., Yoshida S., Yano M., Yoshimura A., Kitano H.,Matsuoka M., Fujisawa Y., Kato H., Iwasaki Y. A novel cytochrome P450is implicated inbrassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, withreduced seed length. Plant Cell,2005,17(3):776-790.
    142. Tanaka K., Asami T., Yoshida S., Nakamura Y., Matsuo T., Okamoto S. Brassinosteroidhomeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in itsmetabolism. Plant Physiology,2005,138(2):1117-1125.
    143. Tang W., Tu L., Yang X., Tan J., Deng F., Hao J., Guo K., Lindsey K., Zhang X. The calciumsensor GhCaM7promotes cotton fiber elongation by modulating reactive oxygen species (ROS)production. New Phytologist,2014.
    144. Tang W., Yuan M., Wang R., Yang Y., Wang C., Oses-Prieto J. A., Kim T.-W., Zhou H.-W.,Deng Z., Gampala S. S. PP2A activates brassinosteroid-responsive gene expression and plantgrowth by dephosphorylating BZR1. Nature Cell Biology,2011,13(2):124-131.
    145. Tang W. Q., Kim T. W., Oses-Prieto J. A., Sun Y., Deng Z. P., Zhu S. W., Wang R. J.,Burlingame A. L., Wang Z. Y. BSKs mediate signal transduction from the receptor kinase BRI1in Arabidopsis. Science,2008,321(5888):557-560.
    146. Thornton L. E., Peng H., Neff M. M. Rice CYP734A cytochrome P450s inactivatebrassinosteroids in Arabidopsis. Planta,2011,234(6):1151-1162.
    147. Thornton L. E., Rupasinghe S. G., Peng H., Schuler M. A., Neff M. M. Arabidopsis CYP72C1is an atypical cytochrome P450that inactivates brassinosteroids. Plant Molecular Biology,2010,74(1-2):167-181.
    148. Tinland B. The integration of T-DNA into plant genomes. Trends in Plant Science,1996,1(6):178-184.
    149. Tiwari S. C., Wilkins T. A. Cotton (Gossypium-Hirsutum) Seed Trichomes Expand Via DiffuseGrowing Mechanism. Canadian Journal of Botany-Revue Canadienne De Botanique,1995a,73(5):746-757.
    150. Tiwari S. C., Wilkins T. A. Cotton (Gossypium Hirsutum) Seed Trichomes Expand Via DiffuseGrowing Mechanism. Canadian Journal of Botany,1995b,73(5):746-757.
    151. Trapnell C., Pachter L., Salzberg S. L. TopHat: discovering splice junctions with RNA-Seq.Bioinformatics,2009,25(9):1105-1111.
    152. Trolinder N. L., Shang X. In vitro selection and regeneration of cotton resistant to hightemperature stress. Plant Cell Rep,1991,10(9):448-452.
    153. Turk E. M., Fujioka S., Seto H., Shimada Y., Takatsuto S., Yoshida S., Denzel M. A., Torres Q.I., Neff M. M. CYP72B1inactivates brassinosteroid hormones: an intersection betweenphotomorphogenesis and plant steroid signal transduction. Plant Physiol,2003,133(4):1643-1653.
    154. Turk E. M., Fujioka S., Seto H., Shimada Y., Takatsuto S., Yoshida S., Wang H. C., Torres Q. I.,Ward J. M., Murthy G., Zhang J. Y., Walker J. C., Neff M. M. BAS1and SOB7act redundantlyto modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivationmechanisms. Plant Journal,2005,42(1):23-34.
    155. van der Graaff E., Dulk-Ras A. D., Hooykaas P. J., Keller B. Activation tagging of the LEAFYPETIOLE gene affects leaf petiole development in Arabidopsis thaliana. Development,2000,127(22):4971-4980.
    156. Vazquez F., Gasciolli V., CrétéP., Vaucheret H. The nuclear dsRNA binding protein HYL1isrequired for microRNA accumulation and plant development, but not posttranscriptionaltransgene silencing. Current Biology,2004,14(4):346-351.
    157. Vert G., Chory J. Downstream nuclear events in brassinosteroid signalling. Nature,2006,441(7089):96-100.
    158. Wan S. Y., Wu J. X., Zhang Z. G., Sun X. H., Lv Y., Gao C., Ning Y. D., Ma J., Guo Y. P.,Zhang Q., Zheng X., Zhang C. Y., Ma Z. Y., Lu T. G. Activation tagging, an efficient tool forfunctional analysis of the rice genome. Plant Molecular Biology,2009,69(1-2):69-80.
    159. Wang H. J., Yang C. J., Zhang C., Wang N. Y., Lu D. H., Wang J., Zhang S. S., Wang Z. X., MaH., Wang X. L. Dual Role of BKI1and14-3-3s in Brassinosteroid Signaling to Link Receptorwith Transcription Factors. Dev Cell,2011,21(5):825-834.
    160. Wang K., Wang Z., Li F., Ye W., Wang J., Song G., Yue Z., Cong L., Shang H., Zhu S., Zou C.,Li Q., Yuan Y., Lu C., Wei H., Gou C., Zheng Z., Yin Y., Zhang X., Liu K., Wang B., Song C.,Shi N., Kohel R. J., Percy R. G., Yu J. Z., Zhu Y.-X., Wang J., Yu S. The draft genome of adiploid cotton Gossypium raimondii. Nature Genetics,2012a,44(10):1098-1103.
    161. Wang X., Chory J. Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1signaling, from the plasma membrane. Science,2006a,313(5790):1118-1122.
    162. Wang X. F., Kota U., He K., Blackburn K., Li J., Goshe M. B., Huber S. C., Clouse S. D.Sequential transphosphorylation of the BRI1/BAK1receptor kinase complex impacts earlyevents in brassinosteroid signaling. Dev Cell,2008,15(2):220-235.
    163. Wang X. L., Chory J. Brassinosteroids regulate dissociation of BKI1, a negative regulator ofBRI1signaling, from the plasma membrane. Science,2006b,313(5790):1118-1122.
    164. Wang Y. N., Liu C., Li K. X., Sun F. F., Hu H. Z., Li X., Zhao Y. K., Han C. Y., Zhang W. S.,Duan Y. F., Liu M. Y., Li X. Arabidopsis EIN2modulates stress response through abscisic acidresponse pathway. Plant Mol Biol,2007,64(6):633-644.
    165. Wang Z.-Y., Bai M.-Y., Oh E., Zhu J.-Y. Brassinosteroid signaling network and regulation ofphotomorphogenesis. Annual review of genetics,2012b,46:701-724.
    166. Wang Z.-Y., Nakano T., Gendron J., He J., Chen M., Vafeados D., Yang Y., Fujioka S., YoshidaS., Asami T. Nuclear-localized BZR1mediates brassinosteroid-induced growth and feedbacksuppression of brassinosteroid biosynthesis. Developmental cell,2002a,2(4):505-513.
    167. Wang Z. Y., Nakano T., Gendron J., He J. X., Chen M., Vafeados D., Yang Y. L., Fujioka S.,Yoshida S., Asami T., Chory J. Nuclear-localized BZR1mediates brassinosteroid-inducedgrowth and feedback suppression of brassinosteroid biosynthesis. Dev Cell,2002b,2(4):505-513.
    168. Wang Z. Y., Seto H., Fujioka S., Yoshida S., Chory J. BRI1is a critical component of aplasma-membrane receptor for plant steroids. Nature,2001,410(6826):380-383.
    169. Weigel D., Ahn J. H., Blazquez M. A., Borevitz J. O., Christensen S. K., Fankhauser C.,Ferrandiz C., Kardailsky I., Malancharuvil E. J., Neff M. M., Nguyen J. T., Sato S., Wang Z. Y.,Xia Y., Dixon R. A., Harrison M. J., Lamb C. J., Yanofsky M. F., Chory J. Activation tagging inArabidopsis. Plant Physiol,2000,122(4):1003-1013.
    170. Wu C. Y., Trieu A., Radhakrishnan P., Kwok S. F., Harris S., Zhang K., Wang J. L., Wan J. M.,Zhai H. Q., Takatsuto S., Matsumoto S., Fujioka S., Feldmann K. A., Pennell R. I.Brassinosteroids regulate grain filling in rice. Plant Cell,2008,20(8):2130-2145.
    171. Wu X. M., Li F. G., Zhang C. J., Liu C. L., Zhang X. Y. Differential gene expression of cottoncultivar CCRI24during somatic embryogenesis. Journal of Plant Physiology,2009,166(12):1275-1283.
    172. Xin Z., Wang M. L., Barkley N. A., Burow G., Franks C., Pederson G., Burke J. Applyinggenotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemicallyinduced sorghum mutant population. BMC Plant Biol,2008,8:103.
    173. Xu B., Gou J.-Y., Li F.-G., Shangguan X.-X., Zhao B., Yang C.-Q., Wang L.-J., Yuan S., LiuC.-J., Chen X.-Y. A Cotton BURP Domain Protein Interacts With α-Expansin and TheirCo-Expression Promotes Plant Growth and Fruit Production. Molecular Plant,2013,6(3):945-958.
    174. Yamamuro C., Ihara Y., Wu X., Noguchi T., Fujioka S., Takatsuto S., Ashikari M., Kitano H.,Matsuoka M. Loss of function of a rice brassinosteroid insensitive1homolog preventsinternode elongation and bending of the lamina joint. The Plant Cell Online,2000,12(9):1591-1605.
    175. Yang C. J., Zhang C., Lu Y. N., Jin J. Q., Wang X. L. The Mechanisms of Brassinosteroids'Action: From Signal Transduction to Plant Development. Mol Plant,2011,4(4):588-600.
    176. Yang X., Zhang X. Regulation of Somatic Embryogenesis in Higher Plants. Critical Reviews inPlant Sciences,2010,29(1):36-57.
    177. Ye Q. Q., Zhu W. J., Li L., Zhang S. S., Yin Y. H., Ma H., Wang X. L. Brassinosteroids controlmale fertility by regulating the expression of key genes involved in Arabidopsis anther andpollen development. Proceedings of the National Academy of Sciences of the United States ofAmerica,2010,107(13):6100-6105.
    178. Yi X., Du Z., Su Z. PlantGSEA: a gene set enrichment analysis toolkit for plant community.Nucleic Acids Research,2013,41(W1): W98-W103.
    179. Yin Y. H., Vafeados D., Tao Y., Yoshida S., Asami T., Chory J. A new class of transcriptionfactors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell,2005,120(2):249-259.
    180. Yin Y. H., Wang Z. Y., Mora-Garcia S., Li J. M., Yoshida S., Asami T., Chory J. BES1accumulates in the nucleus in response to brassinosteroids to regulate gene expression andpromote stem elongation. Cell,2002,109(2):181-191.
    181. Yu H., Chen X., Hong Y. Y., Wang Y., Xu P., Ke S. D., Liu H. Y., Zhu J. K., Oliver D. J., XiangC. B. Activated expression of an Arabidopsis HD-START protein confers drought tolerancewith improved root system and reduced stomatal density. Plant Cell,2008,20(4):1134-1151.
    182. Yu X. F., Li L., Zola J., Aluru M., Ye H. X., Foudree A., Guo H. Q., Anderson S., Aluru S., LiuP., Rodermel S., Yin Y. H. A brassinosteroid transcriptional network revealed by genome-wideidentification of BESI target genes in Arabidopsis thaliana. Plant Journal,2011,65(4):634-646.
    183. Zhang C., Sun J. L., Jia Y. H., Wang J., Xu Z. J., Du X. M. Morphological characters,inheritance and response to exogenous hormones of a cotton super-dwarf mutant of Gossypiumhirsutum. Plant Breeding,2011a,130(1):67-72.
    184. Zhang M., Zheng X., Song S., Zeng Q., Hou L., Li D., Zhao J., Wei Y., Li X., Luo M., Xiao Y.,Luo X., Zhang J., Xiang C., Pei Y. Spatiotemporal manipulation of auxin biosynthesis in cottonovule epidermal cells enhances fiber yield and quality. Nature Biotechnology,2011b,29(5):453-458.
    185. Zhao B. L., Li J. Regulation of Brassinosteroid Biosynthesis and Inactivation. Journal ofIntegrative Plant Biology,2012,54(10):746-759.
    186. Zhao Y. C., Qi Z., Berkowitz G. A. Teaching an Old Hormone New Tricks: Cytosolic Ca2+Elevation Involvement in Plant Brassinosteroid Signal Transduction Cascades. PlantPhysiology,2013,163(2):555-565.
    187. Zheng W., Zhang X., Yang Z., Wu J., Li F., Duan L., Liu C., Lu L., Zhang C. AtWuschelPromotes Formation of the Embryogenic Callus in Gossypium hirsutum. PLoS One,2014,9(1):e87502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700