NK细胞受体与Nectin/Necl家族配体相互作用的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NK细胞在机体的免疫监视中发挥着重要作用。它可以识别并杀伤肿瘤细胞和病毒感染的细胞。NK细胞对靶细胞的识别和杀伤依赖于它表面表达的各种激活型和抑制型的受体。这两类NK细胞受体与靶细胞上配体结合后促进或者抑制NK细胞的杀伤作用。除了NKG2D、NKp30、NKp44和NKp46等受体以外,NK细胞表面还表达一类特殊受体,可以识别Nectin/Necl家族蛋白。Nectin/Necl家族共有9个成员,分别是Nectin-1,2,3,4和Neel-1,2,3,4,5这个家族蛋白的主要功能是介导细胞之间的粘附。其中Nectin-2、Necl-2和Necl-5还可以作为配体被NK细胞受体识别。DNAM-1和TIGIT分别是激活型受体/抑制型受体,它们识别共同的配体Nectin-2和Necl-5。CRTAM是一种激活型的受体,它识别的配体是Necl-2。CD96的配体也是Necl-5,但其作为激活型还是抑制型的受体仍存争议。本研究旨在阐明CRTAM、CD96和DNAM-1与配体的相互作用机制。
     CRTAM与配体Necl-2的相互作用可以促进NK细胞和T细胞对肿瘤细胞的杀伤。除此之外,二者相互作用可以促进CD8+T细胞分泌Y干扰素,促进CD8+T细胞在淋巴结里的停留和活化。它们还在自身免疫病中发挥作用,在小鼠的自身免疫性脱毛症模型中,活化的CD8+T通过CRTAM杀伤表达Necl-2的毛囊角化细胞。但CRTAM与Necl-2相互作用的分子机制并不清楚。此外,CRTAM和Necl-2本身还分别参与了细胞粘附作用,这种细胞粘附作用与它们介导的免疫识别有什么关系也亟待研究解决。
     本研究中,在体外成功制备了CRTAM/Necl-2复合体蛋白,并解析了复合物的晶体结构。在CRTAM/Necl-2复合体的结构中,我们在两个蛋白的接触面上找到了一对“双锁钥”区域负责他们之间的相互结合;我们进一步在双“锁钥”区域引入突变,通过表面等离子共振实验和四聚体染色实验验证了区域上关键氨基酸对于复合物形成的重要作用。同时,我们通过体外生化实验证实CRTAM和Necl-2本身都可以形成同源二聚体,有意思的是,它们形成同源二聚体的结合面与它们形成异源二聚体的结合面相同。这就揭示了同源二聚化和异源二聚化的竞争关系。我们通过体外的细胞接合实验进一步验证了上面的竞争模式。由于CRTAM和Necl-2的同源二聚化介导了细胞粘附,而它们互相二聚化介导了免疫识别,这也体现了细胞粘附和免疫识别相互竞争的关系。通过我们的结构学研究发现的这种免疫分子结合的竞争关系在生理上可能具有重要意义,例如Necl-2同源二聚化介导的肿瘤细胞的粘附和聚集会促进它们向血管内皮细胞的侵入和转移,而CRTAM与Necl-2的识别一方面会促进NK细胞对肿瘤细胞的杀伤,另一方面会抑制肿瘤细胞自身的粘附、聚集和向组织的转移。
     DNAM-1作为NK细胞另一个重要的表面受体在NK细胞对肿瘤细胞的杀伤中发挥重要作用。如DNAM-1与配体Nectin-2和Necl-5的相互作用促进了NK细胞对结肠癌细胞、大肠癌细胞、宫颈癌细胞和黑色素瘤细胞等多种肿瘤细胞的杀伤。除此之外,DNAM-1与配体的作用还可以调节T细胞的发育与分化,参与NK细胞和T细胞与抗原呈递细胞之间的互作等。DNAM-1在很多自身免疫病中发挥作用,如DNAM-1与配体参与了移植物抗宿主病、系统性红斑狼疮症和II型顽固性乳糜泻中等疾病造成的免疫损伤。然而DNAM-1与配体Nectin-2和Necl-5是如何相互作用的?DNAM-1、TIGIT和CD96共用相同的配体Necl-5,它们与配体的作用机制是否相同?这就是我们想要研究的问题。我们在体外表达了DNAM-1和CD96蛋白,及其配体Necl-5和Nectin-2,并成功制备DNAM-1和两个配体的复合体蛋白。我们进一步解析了人和小鼠DNAM-1以及人CD96的结构。通过与前人解析的TIGIT/Necl-5的结构比较,我们在DNAM-1、CD96以及对应配体上找到了负责结合的可能氨基酸。从而在分子水平揭示了NK细胞上这类受体结合配体的共有分子机制。
     综上所述,我们的研究阐明了NK细胞上CRTAM、CD96和DNAM-1等受体与其配体的相互作用分子基础,为NK细胞免疫识别的机制以及可能得后续的基于结构的药物设计打下了基础。
NK cells play important roles in immune surveillance. They could detect and kill tumor cells or virus infected cells directly through lymphocyte cytotoxicity. The recognition and killing of target cells depend on activating and inhibiting receptors expressed on NK cells, which activates or inhibits the cytotoxity respectively. Besides common receptors such as NKG2D、NKp30、NKp44and NKp46, NK cells also express a specific kind of receptors recognizing proteins which belongs to Nectin/Necls family members whose major role are mediating cell adhesion. There are9members in this family, Nectin1,2,3,4and Necl-1,2,3,4,5.Nectin-2, Necl-2and Necl-5are also ligands for a spefic kind of NK cell receptors, which includes CRTAM, DNAM-1,CD96and TIGIT. Though DNAM-1and TIGTI are stimulating and inhibitory receptors respectively, they share the same ligands nectin-2and necl-5. CRTAM is an activating receptor which recognize Necl-2. CD96recognize Necl-5. Whether CD96is an activating or inhibitory receptor is still controversial.Our research aims to delineate the mechanism of how CRTAM,CD96and DNAM-1recognize their ligand.
     The interaction of CRTAM and Necl-2stimulate NK cells and T cells to kill tumor cells. Besides, binding between CRTAM and Necl-2faciliates CD8+T cells to secrete interferon y as well as regulates their retention in the lymph nodes.The excessive interaction beween these two proteins often results in autoimmune diseases. In mouse autoimmune alopecia model, activating CD8+T cells express CRTAM and kills necl-2positive hair follicle keratinocytes.But mechanism of the interaction between these two proteins is not clear. In addition, CRTAM and Necl-2are also involved in cell adhesion. What is relationship between cell adhesion and immune recognition both mediated by these proteins is also unkown.
     In our research, we expressed CRTAM/Necl-2complex in vitro, found a "double lock and key" region located at the interface of CRTAM and necl-2, which was responsible for binding of these two proteins.Key amino acids in this region are identied and futher validated by biochemical assays such as surface plasmon resonance and tetramer staining. The same interafaces both in CRTAM and necl-2were also identified,which mediated CRTAM and necl-2self-homodimerization as well as their cross heterodimerization. Since the former interaction was involved in cell adhesion whereas the latter one contributed to immune recognition, the competion between them might also reflect their competing roles in vivo. This competing mode might be significant in vivo, as necl-2expressed on tumor cells facilitated their adhesion, aggregation, binding to endothelial cells and transferring to tissues. Binding between necl-2and CRTAM resulted in weaker tumor adhesion and their killing by immune cells.
     The major function of DNAM-1is to stimulate the cytotoxity of NK cells. For instance, the interaction between DNAM-1and its ligands nectin-2and necl-5stimulates NK cells to kill colon cancer cells, colorectal cancer cells, cervical cancer cells and melanoma. Besides, they also contribute to other immune process. DNAM-1also participtes in regulating T cell development and differenciation, the interaction between NK cells and antigen presenting cells, binding of leukocytes to endothelial cells. DNAM-1and its ligands are involved in the immnopathogy of graft-versus-host disease, Systemic Lupus Erythematosus and Refractory Celiac Disease Type Ⅱ. However, how DNAM-1interact with its ligands nectin-2and necl-5is unclear. Besides, DNAM-1, TIGIT and CD96share the same receptor necl-5, whether they use common mechanism is unkown. This are the questions we want to solve. We prepare DNAM-1, CD96, necl-5and nectin-2. We successfully get the complex of DNAM-1with its two ligand. By comparing the the anino acid sequences and the crystal structures of DNAM-1, CD96with the previously reported TIGIT/Necl-5. Conserve amino acids that might be responsible for complex formation.were identified in DNAM-1, CD96and TIGIT as well as their corresponding ligands. Our analysis might reveal a common receptor-ligand binding mechasm in this specific family of NK cell receptors.
     In summary, our research delineate our NK cell receptor CRTAM, CD96and DNAM-1recognize their ligands, which provides foundation for research on NK cell recognition and drug design
引文
1. Alberts, B., et al., Molecular Biology Of The Cell,5th Edition.2008 p. 1131-1203.
    2.王金发,细胞生物学.2003:p.156-163.
    3.翟中和,王喜忠,丁明孝,细胞生物学.2000:p.87-97.
    4. Hardin, J., GP. Bertoni, and L.J. Kleinsmith, Becker's World of the Cell,8th Edition.2012.
    5. Rikitake, Y, K. Mandai, and Y. Takai, The role of nectins in different types of cell-cell adhesion. J Cell Sci,2012.125(Pt 16):p.3713-22.
    6. Bork, P., L. Holm, and C. Sander, The Immunoglobulin Fold Structural Classification, Sequence Patterns and Common Core J.Mol.Biol,1994.242:p. 309-320.
    7. Smith, D.K. and H. Xue, Sequence Profiles of Immunoglobuliln and Immunoglobulin-like Domains. J.Mol.Biol,1997.274:p.530-545.
    8. Murphy, K., Janeway's immunobiology 8th edition.2012:p.128-134.
    9. Williams, A.F. and A.N. Barclay, The Immunoglobulin Superfamily-domains for Cell Surface Recognition. Ann. Rev. Immunol.,1998.6:p.381-405.
    10. Harpaz, Y. and C. Chothia, Many of the Immunoglobulin Superfamily Domains in Cell Adhsion Molecules and Surface Receptors Belong to a New Structural Set Which is Close to That Containing Variable Domains. J.Mol.Biol,1994.238:p. 528-539.
    11. Takai, Y, et al., Nectins and nectin-like molecules:roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol,2008.9(8):p.603-15.
    12. Fuchs, A. and M. Colonna, The role of NK cell recognition of nectin and nectin-like proteins in tumor immunosurveillance. Semin Cancer Biol,2006.16(5):p. 359-66.
    13. Takai, Y, et al., The immunoglobulin-like cell adhesion molecule nectin and its associated protein afadin. Annu Rev Cell Dev Biol,2008.24:p.309-42.
    14. Lee, H.J. and J.J. Zheng, PDZ domains and their binding partners:structure, specificity, and modification. Cell Commun Signal,2010.8:p.8.
    15. Harris, B.Z. and W.A. Lim, Mechanism and role of PDZ domains in signalling complex assembly. Signal Transduction and Cellular Organization,2001.114(18):p. 3219-3231.
    16. Irie, K., et al., Roles and modes of action of nectins in cell-cell adhesion. Semin Cell Dev Biol,2004.15(6):p.643-56.
    17. Zhang, P., et al., Crystal structure of CD155 and electron microscopic studies of its complexes with polioviruses. Proc Natl Acad Sci U S A,2008.105(47):p. 18284-9.
    18. Narita, H., et al., Crystal Structure of the cis-Dimer of Nectin-1:implications for the architecture of cell-cell junctions. J Biol Chem,2011.286(14):p.12659-69.
    19. Fogel, A.I., et al., N-glycosylation at the SynCAM (synaptic cell adhesion molecule) immunoglobulin interface modulates synaptic adhesion. J Biol Chem,2010. 285(45):p.34864-74.
    20. Dong, X., et al., Crystal structure of the V domain of human Nectin-like molecule-1/Syncam3/Tslll/Igsf4b, a neural tissue-specific immunoglobulin-like cell-cell adhesion molecule. J Biol Chem,2006.281(15):p.10610-7.
    21. Harrison, O.J., et al., Nectin ectodomain structures reveal a canonical adhesive interface. Nat Struct Mol Biol,2012.19(9):p.906-15.
    22. Samanta, D., et al., Structure of Nectin-2 reveals determinants of homophilic and heterophilic interactions that control cell-cell adhesion. Proc Natl Acad Sci U S A, 2012.109(37):p.14836-40.
    23. Boles, K.S., et al., The tumor suppressor TSLC1/NECL-2 triggers NK-cell and CD8+ T-cell responses through the cell-surface receptor CRTAM. Blood,2005. 106(3):p.779-86.
    24. Chan, C.J., D.M. Andrews, and M.J. Smyth, Receptors that interact with nectin and nectin-like proteins in the immunosurveillance and immunotherapy of cancer. Curr Opin Immunol,2012.24(2):p.246-51.
    25. Togashi, H., et al., Nectins establish a checkerboard-like cellular pattern in the auditory epithelium. Science,2011.333(6046):p.1144-7.
    26. MORRISON, M.E. and V.R. RACANIELLO, Molecular Cloning and Expression of a Murine Homolog of the Human Poliovirus Receptor Gene. J Virol,1992.66:p. 2807-2813.
    27. Takai, Y., et al., Nectins and nectin-like molecules:Roles in cell adhesion, migration, and polarization. Cancer Science,2003.94:p.655-667.
    28. Reymond, N., et al., Nectin4/PRR4, a new afadin-associated member of the nectin family that trans-interacts with nectinl/PRRl through V domain interaction. J Biol Chem,2001.276(46):p.43205-15.
    29. Brancati, F., et al., Mutations in PVRL4, encoding cell adhesion molecule nectin-4, cause ectodermal dysplasia-syndactyly syndrome. Am J Hum Genet,2010. 87(2):p.265-73.
    30. Fabre-Lafay, S., et al., Nectin-4 is a new histological and serological tumor associated marker for breast cancer. BMC Cancer,2007.7:p.73.
    31. Takano, A., et al., Identification of nectin-4 oncoprotein as a diagnostic and therapeutic target for lung cancer. Cancer Res,2009.69(16):p.6694-703.
    32. Derycke, M.S., et al., Nectin 4 overexpression in ovarian cancer tissues and serum:potential role as a serum biomarker. Am J Clin Pathol,2010.134(5):p. 835-45.
    33. Pratakpiriya, W., et al., Nectin4 is an epithelial cell receptor for canine distemper virus and involved in neurovirulence. J Virol,2012.86(18):p.10207-10.
    34. Kuramochi, M., et al., TSLCl is a tumor-suppressor gene in human non-small-cell lung cancer. Nature Genetics,2001.
    35. Masuda, M., et al., The tumor suppressor protein TSLCl is involved in cell-cell adhesion. J Biol Chem,2002.277(34):p.31014-9.
    36. Lung, H.L., et al., TSLCl is a tumor suppressor gene associated with metastasis in nasopharyngeal carcinoma. Cancer Res,2006.66(19):p.9385-92.
    37. Ito, T., Y. Shimada, and Y. Hashimoto, Involvement of TSLC-1 in Progress of Esophageal Squamous Cell Carcinoma. Cancer Research,2003.63:p.6320-6326.
    38. Murakami, Y., Involvement of a cell adhesion molecule, TSLC1/IGSF4, in human oncogenesis. Cancer Sci,2005.96(9):p.543-52.
    39. Li, J., et al., IGSF4 promoter methylation and expression silencing in human cervical cancer. Gynecol Oncol,2005.96(1):p.150-8.
    40. Williams, Y.N., et al., Cell adhesion and prostate tumor-suppressor activity of TSLL2/IGSF4C, an immunoglobulin superfamily molecule homologous to TSLC1/IGSF4. Oncogene,2006.25(10):p.1446-53.
    41. Sussan, T.E., et al., Tumor suppressor in lung cancer 1 (TSLCl) alters tumorigenic growth properties and gene expression. Mol Cancer,2005.4:p.28.
    42. Yageta, M., et al., Direct Association of TSLCl and DAL-1, Two Distinct Tumor Suppressor Proteins in Lung Cancer. Cancer Research,2002.62:p.5129-5133.
    43. Steenbergen, R.D.M., et al., TSLC1 Gene Silencing in Cervical Cancer Cell Lines and Cervical Neoplasia. JNCI Journal of the National Cancer Institute,2004.96(4):p. 294-305.
    44. Heller, G., et al., Expression and methylation pattern of TSLC1 cascade genes in lung carcinomas. Oncogene,2006.25(6):p.959-68.
    45. Faraji, F., et al., Cadml is a metastasis susceptibility gene that suppresses metastasis by modifying tumor interaction with the cell-mediated immunity. PLoS Genet,2012.8(9):p. e1002926.
    46. Sasaki, H., et al., Overexpression of a cell adhesion molecule, TSLC1, as a possible molecular marker for acute-type adult T-cell leukemia. Blood,2005.105(3): p.1204-13.
    47. Hagiyama, M., et al., Enhanced nerve-mast cell interaction by a neuronal short isoform of cell adhesion molecule-1. J Immunol,2011.186(10):p.5983-92.
    48. Koma, Y., et al., Cell adhesion molecule 1 is a novel pancreatic-islet cell adhesion molecule that mediates nerve-islet cell interactions. Gastroenterology,2008.134(5):p. 1544-54.
    49. Wakayama, T. and S. Iseki, Role of the spermatogenic-Sertoli cell interaction through cell adhesion molecule-1 (CADM1) in spermatogenesis. Anat Sci Int,2009. 84(3):p.112-21.
    50. Maekawa, M, et al., Localisation of RA175 (Cadm1), a cell adhesion molecule of the immunoglobulin superfamily, in the mouse testis, and analysis of male infertility in the RA175-deficient mouse. Andrologia,2011.43(3):p.180-8.
    51. Giangreco, A., et al., Nec12 regulates epidermal adhesion and wound repair. Development,2009.136(20):p.3505-14.
    52. Masuda, M., et al., Tumor suppressor in lung cancer (TSLC)l suppresses epithelial cell scattering and tubulogenesis. J Biol Chem,2005.280(51):p.42164-71.
    53. He, Y., et al., Complexes of Poliovirus Serotypes with Their Common Cellular Receptor, CD155. J Virol,2003.77(8):p.4827-4835.
    54. Sloan, K.E., et al., CD155/PVR plays a key role in cell motility during tumor cell invasion and migration. BMC Cancer,2004.4:p.73.
    55. Lange, R., et al., The poliovirus receptor CD 155 mediates cell-to-matrix contacts by specifically binding to vitronectin. Virology,2001.285(2):p.218-27.
    56. OGITA, H., W. IKEDA, and Y. TAKAI, Roles of cell adhesion molecules nectin and nectin-like molecule-5 in the regulation of cell movement and proliferation. Journal of Microscopy,2008.231:p.455-465.
    57. Sakisaka, T., et al., The roles of nectins in cell adhesions:cooperation with other cell adhesion molecules and growth factor receptors. Curr Opin Cell Biol,2007.19(5): p.593-602.
    58. Janeway, C.A., Jr. and R. Medzhitov, Innate immune recognition. Annu Rev Immunol,2002.20:p.197-216.
    59. Medzhitov, R. and C.A.J. Jr., Decoding the Patterns of Self and Nonself by the Innate Immune System. Science,2002.296:p.298-300.
    60. Martinon, F., A. Mayor, and J. Tschopp, The inflammasomes:guardians of the body. Annu Rev Immunol,2009.27:p.229-65.
    61. Kawai, T. and S. Akira, The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol,2009.21(4):p.317-37.
    62. Akira, S., S. Uematsu, and O. Takeuchi, Pathogen recognition and innate immunity. Cell,2006.124(4):p.783-801.
    63. Creagh, E.M. and L.A. O'Neill, TLRs, NLRs and RLRs:a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol,2006.27(8):p.352-7.
    64. Lemaitre, B., et al., The Dorsoventral Regulatory Gene Cassette spatzle/Toll/cactus Controls the Potent Antifungal Response in Drosophila Adults. Cell,1996.86:p.979-983.
    65. Lee, C.C., A.M. Avalos, and H.L. Ploegh, Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol,2012.12(3):p.168-79.
    66. Takeuchi, O. and S. Akira, Pattern recognition receptors and inflammation. Cell, 2010.140(6):p.805-20.
    67. Cooper, M.A., T.A. Fehniger, and M.A. Caligiuri, The biology of human natural killer-cell subsets. Trends Immunol,2001.22:p.633-640.
    68. Vivier, E., et al., Functions of natural killer cells. Nat Immunol,2008.9(5):p. 503-10.
    69. Crocker, P.R. and A. Varki, Siglecs, sialic acids and innate immunity. Trends Immunol,2001.22:p.337-342.
    70. Vilches, C. and P. Parham, KIR:diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol,2002.20:p.217-51.
    71. Lanier, L.L., NK cell recognition. Annu Rev Immunol,2005.23:p.225-74.
    72. Lanier, L.L., DAP10-and DAP12-associated receptors in innate immunity. Immunol Rev,2009.227:p.150-160.
    73. Braud, V.M., et al., HLA-E bindsto natural killer cell receptors CD94/NKG2A, B andC. Nature,1998.391:p.795-799.
    74. Raulet, D.H., Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol,2003.3(10):p.781-90.
    75. Jost, S. and M. Altfeld, Control of human viral infections by natural killer cells. Annu Rev Immunol,2013.31:p.163-94.
    76. Kennedy, J., et al., A molecular analysis of NKT cells:identification of a class-Ⅰ restricted T cell-associated molecule(CRTAM). J Leukoc Biol,2000.67:p.725-734.
    77. Yeh, J.H., S.S. Sidhu, and A.C. Chan, Regulation of a late phase of T cell polarity and effector functions by Crtam. Cell,2008.132(5):p.846-59.
    78. Galibert, L., et al., Nectin-like protein 2 defines a subset of T-cell zone dendritic cells and is a ligand for class-I-restricted T-cell-associated molecule. J Biol Chem, 2005.280(23):p.21955-64.
    79. Arase, N., et al., Heterotypic interaction of CRTAM with Necl2 induces cell adhesion on activated NK cells and CD8+T cells. Int Immunol,2005.17(9):p. 1227-37.
    80. Takeuchi, A., et al., CRTAM confers late-stage activation of CD8+T cells to regulate retention within lymph node. J Immunol,2009.183(7):p.4220-8.
    81. Giangreco, A., et al., Epidermal Cadml expression promotes autoimmune alopecia via enhanced T cell adhesion and cytotoxicity. J Immunol,2012.188(3):p. 1514-22.
    82. Burns, G.F., et al., TliSAl, A Human T lineage-specific Activation Antigen Involved in the Differentiation of Cytotoxic T lymphocytes and Anomalous Killer Cells from Their Precursors. J Exp Med,1985.161:p.1063-1078.
    83. Scott, J.L., et al., Characterization of a Novel Membrane Glyprotein Involved in Platelet Activation. J Biol Chem,1989.264:p.13475-13482.
    84. Shibuya, A., et al., DNAM-1, A Novel Adhesion Molecule Involved in the Cytolytic Function of T Lymphocytes. Immunity,1996.4:p.573-581.
    85. Sherrington, P.D., et al., TLiSAl (PTA1) Activation Antigen Implicated in T Cell Differentiation and Platelet Activation Is a Member of the Immunoglobulin Superfamily Exhibiting Distinctive Regulation of Expression. J Biol Chem,1997.272: p.21735-21744.
    86. Shibuya, K., et al., Physical and Functional Association of LFA-1 with DNAM-1 Adhesion Molecule. Immunity,1999.11:p.615-623.
    87. Shibuya, K., et al., CD226 (DNAM-1) is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferation. J Exp Med,2003.198(12):p.1829-39.
    88. Dardalhon, V., et al., CD226 Is Specifically Expressed on the Surface of Thl Cells and Regulates Their Expansion and Effector Functions. J Immunol,2005.175:p. 1558-1565.
    89. Douroudis, K., et al., The CD226 gene in susceptibility of type 1 diabetes. Tissue Antigens,2009.74(5):p.417-9.
    90. Gan, E.H., et al., The role of a nonsynonymous CD226 (DNAX-accessory molecule-1) variant (Gly 307Ser) in isolated Addison's disease and autoimmune polyendocrinopathy type 2 pathogenesis. Clin Endocrinol (Oxf),2011.75(2):p. 165-8.
    91. Hafler, J.P., et al., CD226 Gly307Ser association with multiple autoimmune diseases. Genes Immun,2009.10(1):p.5-10.
    92. Bottino, C, et al., Identification of PVR (CD155) and Nectin-2 (CD 112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med, 2003.198(4):p.557-67.
    93. Tahara-Hanaoka, S., et al., Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int Immunol, 2004.16:p.533-538.
    94. Pende, D., et al., Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias:evidence for the involvement of the Poliovirus receptor (CD 155) and Nectin-2 (CD112). Blood, 2005.105(5):p.2066-73.
    95. El-Sherbiny, Y.M., et al., The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res,2007.67(18):p. 8444-9.
    96. Chan, C.J., et al., DNAM-1/CD155 interactions promote cytokine and NK cell-mediated suppression of poorly immunogenic melanoma metastases. J Immunol, 2010.184(2):p.902-11.
    97. Pende, D., et al., PVR (CD155) and Nectin-2 (CD112) as ligands of the human DNAM-1 (CD226) activating receptor:involvement in tumor cell lysis. Mol Immunol, 2005.42(4):p.463-9.
    98. Iguchi-Manaka, A., et al., Accelerated tumor growth in mice deficient in DNAM-1 receptor. J Exp Med,2008.205(13):p.2959-64.
    99. Carlsten, M., et al., Primary human tumor cells expressing CD155 impair tumor targeting by down-regulating DNAM-1 on NK cells. J Immunol,2009.183(8):p. 4921-30.
    100. Fauci, A.S., D. Mavilio, and S. Kottilil, NK cells in HIV infection:paradigm for protection or targets for ambush. Nat Rev Immunol,2005.5(11):p.835-43.
    101. Lanier, L.L., Evolutionary struggles between NK cells and viruses. Nat Rev Immunol,2008.8(4):p.259-68.
    102. Dunn, C, et al., Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against natural killer cell cytotoxicity. J Exp Med,2003.197(11):p.1427-39.
    103. Tomasec, P., et al., Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nat Immunol,2005.6(2):p.181-8.
    104. Matusali, G., et al., The human immunodeficiency virus type 1 Nef and Vpu proteins downregulate the natural killer cell-activating ligand PVR. J Virol,2012. 86(8):p.4496-504.
    105.. Seth, S., et al., Abundance of follicular helper T cells in Peyer's patches is modulated by CD155. Eur J Immunol,2009.39(11):p.3160-70.
    106. Qiu, Q., et al., CD 155 is involved in negative selection and is required to retain terminally maturing CD8 T cells in thymus. J Immunol,2010.184(4):p.1681-9.
    107. Danisch, S., et al., CD226 interaction with CD 155 impacts on retention and negative selection of CD8 positive thymocytes as well as T cell differentiation to follicular helper cells in Peyer's Patches. Immunobiology,2013.218(2):p.152-8.
    108. Pende, D., et al., Expression of the DNAM-1 ligands, Nectin-2 (CD 112) and poliovirus receptor (CD155), on dendritic cells:relevance for natural killer-dendritic cell interaction. Blood,2006.107(5):p.2030-6.
    109. Gilfillan, S., et al., DNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. J Exp Med,2008.205(13):p. 2965-73.
    110. Seth, S., et al., Absence of CD155 aggravates acute graft-versus-host disease. Proc Natl Acad Sci U S A,2011.108(10):p. E32-3; author reply E34.
    111. Koyama, M., et al., Promoting regulation via the inhibition of DNAM-1 after transplantation. Blood,2013.121:p.3511-3520.
    112. Huang, Z., et al., Involvement of CD226+ NK cells in immunopathogenesis of systemic lupus erythematosus. J Immunol,2011.186(6):p.3421-31.
    113. Tjon, J.M., et al., DNAM-1 mediates epithelial cell-specific cytotoxicity of aberrant intraepithelial lymphocyte lines from refractory celiac disease type II patients. J Immunol,2011.186(11):p.6304-12.
    114. Reymond, N., et al., DNAM-1 and PVR regulate monocyte migration through endothelial junctions. J Exp Med,2004.199(10):p.1331-41.
    115. Kojima, H., et al., CD226 mediates platelet and megakaryocytic cell adhesion to vascular endothelial cells. J Biol Chem,2003.278(38):p.36748-53.
    116. Wang, P.L., et al., Identification and Molecular Cloning of TACTILE a Novel Human T cell Activation Antigen that is a Member of the Ig Gene Superfamily. J Immunol,1992.148:p.2600-2608.
    117. Fuchs, A., et al., Cutting Edge:CD96 (Tactile) Promotes NK Cell-Target Cell Adhesion by Interacting with the Poliovirus Receptor (CD155). J Immunol,2004.172: p.3994-3998.
    118. Meyer, D., et al., CD96 interaction with CD155 via its first Ig-like domain is modulated by alternative splicing or mutations in distal Ig-like domains. J Biol Chem, 2009.284(4):p.2235-44.
    119. Hosen, N., et al., CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci U S A,2007.104(26):p.11008-13.
    120. Kaname, T., et al., Mutations in CD96, a member of the immunoglobulin superfamily, cause a form of the C (Opitz trigonocephaly) syndrome. Am J Hum Genet,2007.81(4):p.835-41.
    121. Yu, X., et al., The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol, 2009.10(1):p.48-57.
    122. Boles, K.S., et al., A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC. Eur J Immunol,2009.39(3):p.695-703.
    123. Stanietsky, N., et al., The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci U S A,2009.106(42):p.17858-63.
    124. Stanietsky, N., et al., Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR. Eur J Immunol,2013.43(8):p.2138-50.
    125. Levin, S.D., et al., Vstm3 is a member of the CD28 family and an important modulator of T-cell function. Eur J Immunol,2011.41(4):p.902-15.
    126. Liu, S., et al., Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ,2013. 20(3):p.456-64.
    127. Bi, J., et al., T-cell Ig and ITIM domain regulates natural killer cell activation in murine acute viral hepatitis. Hepatology,2013.
    128. Stengel, K.F., et al., Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc Natl Acad Sci U S A,2012.109(14):p.5399-404.
    129. Birch, J., et al., Characterization of ovine Nectin-4, a novel peste des petits ruminants virus receptor. J Virol,2013.87(8):p.4756-61.
    130. Martinez, W.M. and P.G Spear, Structural features of nectin-2 (HveB) required for herpes simplex virus entry. J Virol,2001.75(22):p.11185-95.
    131. Yoon, M. and P.G. Spear, Disruption of Adherens Junctions Liberates Nectin-1 To Serve as Receptor for Herpes Simplex Virus and Pseudorabies Virus Entry. J Virol, 2002.76(14):p.7203-7208.
    132. Muhlebach, M.D., et al., Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature,2011.480(7378):p.530-3.
    133. Spear, P.G., Herpes simplex virus:receptors and ligands for cell entry. Cell Microbiol,2004.6(5):p.401-10.
    134. Zhang, N., et al., Binding of herpes simplex virus glycoprotein D to nectin-1 exploits host cell adhesion. Nat Commun,2011.2:p.577.
    135. Di Giovine, P., et al., Structure of herpes simplex virus glycoprotein D bound to the human receptor nectin-1. PLoS Pathog,2011.7(9):p. e1002277.
    136. Zhang, X., et al., Structure of measles virus hemagglutinin bound to its epithelial receptor nectin-4. Nat Struct Mol Biol,2013.20(1):p.67-72.
    137. Tatsuo, H., et al., SLAM (CDw150) is a cellular receptor for measles virus. Nature,2000.406(24):p.893-897.
    138. Naniche, D., et al., Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J. Virol.,1993.67:p.6025-6032.
    139. Noyce, R.S., et al., Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog,2011.7(8):p. e1002240.
    140. Santiago, C, et al., Structure of the measles virus hemagglutinin bound to the CD46 receptor. Nat Struct Mol Biol,2010.17(1):p.124-9.
    141. Hashiguchi, T., et al., Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Nat Struct Mol Biol,2011.18(2):p.135-41.
    142. Mendelsohn, C.L., E. Wimmer, and V.R. Racaniello, Cellular receptor for poliovirus:Molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. CELL,1989.56(5):p.855-865.
    143. Wimmer, E., C.U.T. Hellen, and X. Cao, Genetics of Poliovirus. Ann. Rev. Genet.,1993.27:p.353-436.
    144. Otwinowski, Z. and W. Minor, Processing of X-ray Diffraction Data Collected in Oscillation. Methods Enzymol,1997.276:p.307-326.
    145. Collaborative Computational Project, N., The CCP4 suite:programs for protein crystallography. Acta Crystallogr D Biol Crystallogr,1994.50:p.760-763.
    146. Emsley, P. and K. Cowtan, Coot:model-building tools for molecular graphics. Acta Crystallographica Section D,2004.60(12 Part 1):p.2126-2132.
    147. Adams, P.D., et al., PHENIX:building new software for automated crystallographic structure determination. Acta Crystallographica Section D,2002. 58(11):p.1948-1954.
    148. Holm, L. and P. Rosenstrom, Dali server:conservation mapping in 3D. Nucleic Acids Res,2010.38(Web Server issue):p. W545-9.